Comparative Analysis of Energy Recovery Configurations for Solar Vacuum Membrane Distillation
Abstract
1. Introduction
2. Materials and Methods
2.1. Principle of Operation of the Four Configurations
2.1.1. Configuration 1: VMD Using a Condenser
2.1.2. Configuration 2: VMD Using an LRVP
2.1.3. Configuration 3: VMD Using a Heat Pump
2.1.4. Configuration 4: VMD with MVC
2.2. Energy Analysis of the Four Configurations
3. Performance Indicators
3.1. Gained Output Ratio (GOR)
3.2. Specific Energy Consumption (SEC)
3.3. Water Product Cost (WPC)
4. Results and Discussions
4.1. Solar Radiation
4.2. Design of Equipment for the Four Configurations
4.3. Energetic Evaluation of the Four Configurations
4.4. Economic Evaluation of the Four Configurations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AGMD | Air gap membrane distillation |
CC | Capital cost |
CSWHT | Compact solar water heater technology |
COP | Coefficient of performance of heat pump |
DCC | Direct capital cost |
DCMD | Direct contact membrane distillation |
GOR | Gained output ratio |
HP | Heat pump |
ICC | Indirect capital cost |
LRVP | Liquid ring vacuum pump |
MD | Membrane distillation |
MED | Multi-effect distillation |
MVC | Mechanical vapor compression |
MSF | Multi-stage flash |
MSVMD | Multi-stage vacuum membrane distillation |
PV | photovoltaic |
RO | Reverse osmosis |
SEC | Specific energy consumption |
SEEC | Specific electrical energy consumption |
STEC | Specific thermal energy consumption |
SGMD | Sweeping gas membrane distillation |
VMD | Vacuum membrane distillation |
WPC | Water product cost |
References
- Al-Hrari, M.; Ceylan, İ.; Nakoa, K.; Ergün, A. Concentrated photovoltaic and thermal system application for fresh water production. Appl. Therm. Eng. 2020, 171, 115054. [Google Scholar] [CrossRef]
- World Economic Forum. Water Futures: Mobilizing Multi-Stakeholder Action for Resilience. 2025. Available online: https://reports.weforum.org/docs/WEF_Water_Futures_Mobilizing_Multi_Stakeholder_Action_for_Resilience_2025.pdf (accessed on 1 August 2025).
- Bibi, W.; Asif, M.; Iqbal, F.; Rabbi, J. Hybrid vacuum membrane distillation-multi effect distillation (VMD-MED) system for reducing specific energy consumption in desalination. Desalination Water Treat. 2024, 317, 100064. [Google Scholar] [CrossRef]
- Soomro, M.I.; Kumar, S.; Ullah, A.; Shar, M.A.; Alhazaa, A. Solar-Powered Direct Contact Membrane Distillation System: Performance and Water Cost Evaluation. Sustainability 2022, 14, 16616. [Google Scholar] [CrossRef]
- Alawad, S.M.; Shamet, O.; Khalifa, A.E.; Lawal, D. Enhancing productivity and energy efficiency in vacuum membrane distillation systems. Energy Convers. Manag. X 2024, 22, 100593. [Google Scholar] [CrossRef]
- Wu, L.; Zheng, Z.; Zhang, D.; Zhang, Y.; Zhang, B.; Tang, Z. Optimization of design and operational parameters of hybrid MED-RO desalination system via modelling, simulation and engineering application. Results Eng. 2024, 24, 103253. [Google Scholar] [CrossRef]
- Rahaoui, K.; Khayyam, H.; Ve, Q.L.; Akbarzadeh, A.; Date, A. Renewable Thermal Energy Driven Desalination Process for a Sustainable Management of Reverse Osmosis Reject Water. Sustainability 2021, 13, 10860. [Google Scholar] [CrossRef]
- Alawad, S.M.; Khalifa, A.E. Improved performance of vacuum membrane distillation process. Desalination Water Treat. 2023, 309, 193–199. [Google Scholar] [CrossRef]
- Alam, W.; Asif, M.; Suleman, M. Techno-economic evaluation of multi-stage vacuum membrane distillation (MSVMD). Desalination Water Treat. 2021, 230, 64–79. [Google Scholar] [CrossRef]
- Aytaç, E.; Contreras-Martínez, J.; Khayet, M. Mathematical and computational modeling of membrane distillation technology: A data-driven review. Int. J. Thermofluids 2024, 21, 100567. [Google Scholar] [CrossRef]
- Al-Sairfi, H.; Koshuriyan, M.Z.A.; Ahmed, M. Membrane distillation of saline feeds and produced water: A comparative study of an air-gap and vacuum-driven modules. Desalination Water Treat. 2024, 317, 100145. [Google Scholar] [CrossRef]
- Ma, Q.; Ahmadi, A.; Cabassud, C. Optimization and design of a novel small-scale integrated vacuum membrane distillation—Solar flat-plate collector module with heat recovery strategy through heat pumps. Desalination 2020, 478, 114285. [Google Scholar] [CrossRef]
- Ahmadi, H.; Ziapour, B.M.; Ghaebi, H.; Nematollahzadeh, A. Optimization of vacuum membrane distillation and advanced design of compact solar water heaters with heat recovery. J. Water Process Eng. 2024, 67, 106212. [Google Scholar] [CrossRef]
- Andrés-Mañas, J.A.; Ruiz-Aguirre, A.; Acién, F.G.; Zaragoza, G. Assessment of a pilot system for seawater desalination based on vacuum multi-effect membrane distillation with enhanced heat recovery. Desalination 2018, 443, 110–121. [Google Scholar] [CrossRef]
- Alawad, S.M.; Shamet, O.; Lawal, D.; Khalifa, A.E.; Kotb, M. The optimum location of vapor compressor in multistage vacuum membrane distillation system. Therm. Sci. Eng. Prog. 2024, 56, 103089. [Google Scholar] [CrossRef]
- Su, W.; Li, J.; Lu, Z.; Jin, X.; Zhang, J.; Liu, Z.; Zhang, X. Performance analysis and optimization of a solar assisted heat pump-driven vacuum membrane distillation system for liquid desiccant regeneration. Energy Convers. Manag. 2024, 301, 118047. [Google Scholar] [CrossRef]
- Huang, J.; He, Y.; Shen, Z. Joule heating membrane distillation enhancement with multi-level thermal concentration and heat recovery. Energy Convers. Manag. 2021, 238, 114111. [Google Scholar] [CrossRef]
- Si, Z.; Li, Z.; Zhuang, X.; Zhou, D. Experimental investigation on the hybrid system of mechanical vapor recompression and hollow fiber vacuum membrane distillation applied for wastewater treatment. J. Environ. Manag. 2024, 350, 119633. [Google Scholar] [CrossRef]
- Soumbati, Y.; Bouatou, I.; Abushaban, A.; Belmabkhout, Y.; Necibi, M.C. Review of membrane distillation for desalination applications: Advanced modeling, specific energy consumption, and water production cost. J. Water Process Eng. 2025, 71, 107296. [Google Scholar] [CrossRef]
- Aytaç, E.; Khayet, M. A deep dive into membrane distillation literature with data analysis, bibliometric methods, and machine learning. Desalination 2023, 553, 116482. [Google Scholar] [CrossRef]
- He, W.; Huang, G.; Markides, C.N. Synergies and potential of hybrid solar photovoltaic-thermal desalination technologies. Desalination 2023, 552, 116424. [Google Scholar] [CrossRef]
- Lisboa, K.M.; de Moraes, D.B.; Naveira-Cotta, C.P.; Cotta, R.M. Analysis of the membrane effects on the energy efficiency of water desalination in a direct contact membrane distillation (DCMD) system with heat recovery. Appl. Therm. Eng. 2021, 182, 116063. [Google Scholar] [CrossRef]
- Li, J.; Si, Z.; Yang, Y. Parametric investigation of a vacuum membrane distillation system driven by mechanical vapor recompression. Desalination Water Treat. 2022, 273, 43–54. [Google Scholar] [CrossRef]
- Lin, B.; Malmali, M. Energy and exergy analysis of multi-stage vacuum membrane distillation integrated with mechanical vapor compression. Sep. Purif. Technol. 2023, 306, 122568. [Google Scholar] [CrossRef]
- Miladi, R.; Frikha, N.; Gabsi, S. Modeling and energy analysis of a solar thermal vacuum membrane distillation coupled with a liquid ring vacuum pump. Renew. Energy 2021, 164, 1395–1407. [Google Scholar] [CrossRef]
- Miladi, R.; Frikha, N.; Gabsi, S. Energetic and economic optimization of an autonomous PV/T vacuum membrane distillation unit. Euro-Mediterr. J. Environ. Integr. 2025, 10, 3165–3177. [Google Scholar] [CrossRef]
- Miladi, R.; Frikha, N.; Gabsi, S. Energetic performance analysis of seawater desalination with a solar membrane distillation. Energy Convers. Manag. 2019, 185, 143–154. [Google Scholar] [CrossRef]
- Khalifa, A.; Kotb, M.; Alawad, S.M. Energy-efficient and cost-effective water desalination using membrane distillation with air-cooled dehumidifier bank. Energy Convers. Manag. X 2025, 25, 100844. [Google Scholar] [CrossRef]
- Alawad, S.M.; Shamet, O.; Lawal, D.; Antar, M.A.; Zubair, S.M.; Khalifa, A.E.; Ben Mansour, R.; Al-Shehri, A.; Aljundi, I.H. Zero liquid discharge of desalination brine via innovative membrane distillation system coupled with a crystallizer. Results Eng. 2025, 25, 103417. [Google Scholar] [CrossRef]
- Jawed, A.S.; Nassar, L.; Hegab, H.M.; van der Merwe, R.; Al Marzooqi, F.; Banat, F.; Hasan, S.W. Recent developments in solar-powered membrane distillation for sustainable desalination. Heliyon 2024, 10, e31656. [Google Scholar] [CrossRef]
- Elboughdiri, N.; Cosma, R.; Amari, A.; Spalevic, V.; Dudic, B.; Skataric, G. Evaluating the feasibility of direct contact membrane distillation and nanofiltration in ground water treatment through a techno-economic analysis. Appl. Water Sci. 2024, 14, 130. [Google Scholar] [CrossRef]
- Tavakkoli, S.; Lokare, O.R.; Vidic, R.D.; Khanna, V. A techno-economic assessment of membrane distillation for treatment of Marcellus shale produced water. Desalination 2017, 416, 24–34. [Google Scholar] [CrossRef]
- Zoromba, M.S.; Abdel-Aziz, M.H.; Attar, A.; Bassyouni, M.; Elhenawy, Y. Performance enhancement in air gap membrane distillation using heat recovery configurations. Results Eng. 2024, 24, 103391. [Google Scholar] [CrossRef]
- Isawi, H.; Abdelaziz, M.O.; Zeed, D.A.; El-Kholy, R.A.; El-Noss, M.; Said, M.M.; El-Aassar, A.-H.M.; Shawky, H.A. Semi industrial continuous flow photoreactor for wastewater purification in some polluted areas: Design, Manufacture, and Socio-economic impacts. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100544. [Google Scholar] [CrossRef]
- Mejbri, S.; Zhani, K. Experimental and economic analysis of a permeate gap solar-driven membrane distillation system. Desalination Water Treat. 2020, 202, 112–120. [Google Scholar] [CrossRef]
- Soliman, A.M.; Mabrouk, A.; Eldean, M.A.S.; Fath, H.E.S. Techno-economic analysis of the impact of working fluids on the concentrated solar power combined with multi-effect distillation (CSP-MED). Desalination Water Treat. 2021, 210, 1–21. [Google Scholar] [CrossRef]
- Choi, J.; Cho, J.; Shin, J.; Cha, H.; Jung, J.; Song, K.G. Performance and economic analysis of a solar membrane distillation pilot plant under various operating conditions. Energy Convers. Manag. 2022, 268, 115991. [Google Scholar] [CrossRef]
- Triki, Z.; Fergani, Z.; Bouaziz, M.N. Exergoeconomic and exergoenvironmental evaluation of a solar-energy-integrated vacuum membrane distillation system for seawater desalination. Desalination Water Treat. 2021, 225, 380–391. [Google Scholar] [CrossRef]
- Agence Nationale Pour La Maîtrise De L’énergie. Available online: https://www.anme.tn (accessed on 1 August 2025).
- Pranto, M.M.H.; Bari, Y.A.; Mourshed, M.; Kibria, M.G. A comprehensive analysis of the PVT-integrated solar desalination technologies: Present condition, challenges and way forward. Energy Nexus 2025, 19, 100479. [Google Scholar] [CrossRef]
- Madhuri, R.V.S.; Said, Z.; Ihsanullah, I.; Sathyamurthy, R. Solar energy-driven desalination: A renewable solution for climate change mitigation and advancing sustainable development goals. Desalination 2025, 602, 118575. [Google Scholar] [CrossRef]
Configuration 1 | Configuration 2 | Configuration 3 | Configuration 4 | |
---|---|---|---|---|
Total energy (kW) | (1) [25] | |||
Thermal energy (kW) | (2) [25] | (3) [25] | ||
Electrical energy (kW) | (4) [12] | (5) [26] | (6) [23] | |
Circulation pump power (kW) | (7) [27] | |||
Vacuum pump power (kW) | (8) [27] | (9) [25] | Calculated using Equation (8) | |
Heat pump power (kW) and Mechanical vapor compressor power (kW) | (10) (11) (12) [26] | (13) (14) [23] |
Value | References | |
---|---|---|
Data and assumptions | ||
Plant life | 20 years | [31,35,36,37] |
Availability of the unit | 90% | [23,36] |
Annual interest rate (i) | 5% | [31,35,36,37] |
Equipment costs | ||
Membrane | PVDF 300 $/m2 | [38] |
Solar thermal collector | ; : Solar collector area (m2) | [36] |
Solar PV collector | Panel: 144 $/m2 Inverter DC-AC: 432$ Regulator, support and cables, etc.: 450$ | Supplier: WS.Energy photovoltaïque, Sousse, Tunisia |
Heat exchanger | (Plate heat exchanger) | [19] |
Condenser/Evaporator | (Shell and tube) | [12,31] |
Pump | [36,38] | |
Compressor | Supplier: Shandong Huadong Blower Co., Ltd., Jinan, China | |
Preheater | Supplier: ELEDIS, Sfax, Tunisia |
Configuration 1: Solar VMD Using Condenser | Configuration 2: Solar VMD Using LRVP | Configuration 3: Solar VMD Using HP | Configuration 4: Solar VMD Using MVC | |
---|---|---|---|---|
Membrane | Type: Hollow fiber PVDF Total area: 4 m2 | |||
Solar thermal collector field | Type: Flat solar collector | |||
Total area: 70 m2 | Total area: 85 m2 | Total area: 27 m2 | - | |
Heat exchangers | Type: Plate heat exchanger with titanium coating | |||
Power: 29 kW Total area: 1.07 m | (1) Power: 35 kW Total area: 1.23 m2 (2) Power: 2.28 kW Total area: 0.1 m2 | Power: 11 kW Total area: 0.54 m2 | - | |
Condenser | Type: Shell and tube with titanium coating | |||
Power: 50 kW Total area: 2.91 m2 | - | - | (1) Power: 38 kW Total area: 0.6 m (2) Power: 12 kW Total area: 0.4 m2 | |
Heat pump | - | - | 𝓟eff = 12 kW | - |
Compressor | - | - | - | Power: 0.7 kW |
Circulating pump | Power: 0.3 kW | Power: 0.45 kW | ||
Vacuum pump | Type: dry screw Power: 1 kW | Type: Liquid ring vacuum pump Power: 0.5 kW | Type: dry screw Power: 1 kW | Type: dry screw Power: 1 kW |
Photovoltaic sensor field | 6 PV panel 330 Wc Total power: 2 kWc Total panel area: 6 × 1.6 = 9.6 m2 | 3 PV panel 330 Wc Total power: 0.73 kWc Total panel area: 3 × 1.6 = 4.8 m2 | 108 PV panel 330 Wc Total power: 35.5 kWc Total panel area: 108 × 1.6 = 172.8 m2 | 34 PV panel 330 Wc Total power: 11 kWc Total panel area: 34 × 1.6 = 54.4 m2 |
Operational Parameters | Values and Specifications |
---|---|
Solar radiation (W/m2) | 985 |
Feed temperature (°C) | 80 |
Feed flow (kg/h) | 2000 |
Salinity (g/kg) | 35 (seawater) |
Vacuum pressure (Pa) | 7000 |
Membrane | Type: Hollow fibers Material: PVDF Number of fibers: 806 Module length: 1.129 m Inner diameter: 1.4 mm Thickness of the membrane: 0.4 mm Pore radius: 0.1 μm Permeability at 20 °C: 6.6·10−6 s·mol0.5/m·kg0.5 Tortuosity: 2.1 Total area: 4 m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miladi, R.; Hadrich, B.; Frikha, N.; Gabsi, S. Comparative Analysis of Energy Recovery Configurations for Solar Vacuum Membrane Distillation. Sustainability 2025, 17, 8688. https://doi.org/10.3390/su17198688
Miladi R, Hadrich B, Frikha N, Gabsi S. Comparative Analysis of Energy Recovery Configurations for Solar Vacuum Membrane Distillation. Sustainability. 2025; 17(19):8688. https://doi.org/10.3390/su17198688
Chicago/Turabian StyleMiladi, Rihab, Bilel Hadrich, Nader Frikha, and Slimane Gabsi. 2025. "Comparative Analysis of Energy Recovery Configurations for Solar Vacuum Membrane Distillation" Sustainability 17, no. 19: 8688. https://doi.org/10.3390/su17198688
APA StyleMiladi, R., Hadrich, B., Frikha, N., & Gabsi, S. (2025). Comparative Analysis of Energy Recovery Configurations for Solar Vacuum Membrane Distillation. Sustainability, 17(19), 8688. https://doi.org/10.3390/su17198688