Impacts of Long-Term Treated Wastewater Irrigation and Rainfall on Soil Chemical and Microbial Indicators in Semi-Arid Calcareous Soils
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Treated Wastewater Quality
3.2. Alterations in Soil’s Physical Properties Resulting from Long-Term TWW and Rainfall
3.2.1. Soil Texture
3.2.2. Bulk Density (BD)
3.3. Salinity Dynamics Under Long-Term TWW Irrigation and Rainfall Event
3.3.1. Sodium
3.3.2. Chloride
3.3.3. Electrical Conductivity
3.3.4. Exchangeable Sodium Percentage
3.3.5. Sodium Adsorption Ratio
3.4. Soil Fertility Responses to TWW Irrigation and Rainfall in Semi-Arid Conditions
3.4.1. Soil pH
3.4.2. Organic Matter
3.4.3. Total Nitrogen
3.4.4. Calcium and Magnesium
3.5. Soil Microbial Dynamics Under Long-Term TWW Irrigation and Rainfall Events
3.5.1. Total Coliforms
3.5.2. Fecal Coliforms
3.5.3. Escherichia coli
4. Conclusions
- In Mafraq (silt loam): Salinity indicators declined strongly under TWW irrigation, with rainfall enhancing leaching. Regression fits were consistently high (R2 = 0.82–0.99), showing predictable leaching responses.
- In Ramtha (silty clay loam): Salinity indicators increased gradually with irrigation, reflecting slower leaching and higher retention due to clay. Regression fits were extremely strong (R2 = 0.91–0.99), confirming stable accumulation trends.
- In Mafraq, fertility indicators showed strong regression responses (R2 = 0.73–0.99) and sharper nutrient losses after rainfall, especially for Ca2+ and Mg2+. While in Ramtha, regression relationships were weaker (R2 = 0.27–0.96), reflecting soil buffering, higher OM stability, and the slower leaching of base cations.
- Rainfall reduced Na+ by 70%, Cl− by 86%, EC by 73%, the ESP by 28%, and the SAR by 30, confirming a strong leaching effect of salts.
- Moreover, in Mafraq the pH increased with the irrigation duration, rising from 7.35 to 8.20 after rainfall, with strong regression fits (R2 = 0.83–0.96), while in Ramtha, the pH also increased, reaching 8.40, but regression relationships were weaker (R2 = 0.39–0.62), reflecting greater buffering in clay soils.
- The total nitrogen declined sharply by 54%, from 0.58% to 0.27%, confirming the high mobility of nitrogen and its susceptibility to rainfall-induced leaching in semi-arid soils.
- In Mafraq before rainfall, the control had a significantly lower BD (1.05 g/cm3) than irrigated plots (1.20–1.25 g/cm3), indicating that long-term TWW irrigation increased compaction relative to rainfed conditions. After rainfall, the BD increased slightly in Mafraq (1.25–1.30 g/cm3), suggesting surface sealing and compaction from the raindrop impact.
- Rainfall reduced microbial loads sharply, with TCs and FCs decreasing by more than 96%. The sharp post-rainfall decline in TCs and FCs observed in this study underscores the critical role of extreme storm events, such as the high-intensity rainfall that occurred prior to sampling, in accelerating microbial scouring and leaching processes in semi-arid soils irrigated with TWW.
- The five-year treatment consistently demonstrated the most equitable enhancements, characterized by elevated OM, moderate EC levels, and appropriate ESPs.
- The findings indicate that TWW may serve as a sustainable irrigation supply in semi-arid areas when there is adequate monitoring and a consideration of the soil type and meteorological circumstances.
- The adoption of moderate TWW irrigation periods (5 years) appears most sustainable, balancing soil fertility, salinity, and microbial safety.
- The regular monitoring of soil salinity and fertility parameters is essential to prevent long-term degradation.
- Rainfall patterns must be integrated into irrigation scheduling and risk assessments, as they strongly influence both leaching and nutrient depletion.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hajjar, T.; Mohtar, R.H.; Abou Jaoude, L.; Yanni, S.F. Treated Wastewater Reuse for Irrigation in a Semi-Arid Region. Sci. Total Environ. 2025, 966, 178579. [Google Scholar] [CrossRef]
- Hamdan, M.; Abu-Awwad, A.; Abu-Madi, M. Willingness of Farmers to Use Treated Wastewater for Irrigation in the West Bank, Palestine. Int. J. Water Resour. Dev. 2022, 38, 497–517. [Google Scholar] [CrossRef]
- Bouteska, A.; Sharif, T.; Bhuiyan, F.; Abedin, M.Z. Impacts of the Changing Climate on Agricultural Productivity and Food Security: Evidence from Ethiopia. J. Clean. Prod. 2024, 449, 141793. [Google Scholar] [CrossRef]
- Bank, W. The Little Data Book on Financial Inclusion 2012; World Bank Publications: Washington, DC, USA, 2012; ISBN 978-0-8213-9509-7. [Google Scholar]
- Fragaszy, S.R.; Jedd, T.; Wall, N.; Knutson, C.; Fraj, M.B.; Bergaoui, K.; Svoboda, M.; Hayes, M.; McDonnell, R. Drought Monitoring in the Middle East and North Africa (MENA) Region: Participatory Engagement to Inform Early Warning Systems. Bull. Am. Meteorol. Soc. 2020, 101, E1148–E1173. [Google Scholar] [CrossRef]
- Abu-Awwad, A.M. Wastewater Treatment and Its Reuse in Jordan. JJAS 2021, 17, 211–223. [Google Scholar] [CrossRef]
- Aksoy, H.; Dahamsheh, A. Artificial Neural Network Models for Forecasting Monthly Precipitation in Jordan. Stoch. Environ. Res. Risk Assess 2009, 23, 917–931. [Google Scholar] [CrossRef]
- Beithou, N.; Qandil, A.; Khalid, M.B.; Horvatinec, J.; Ondrasek, G. Review of Agricultural-Related Water Security in Water-Scarce Countries: Jordan Case Study. Agronomy 2022, 12, 1643. [Google Scholar] [CrossRef]
- Haddad, M.; Worqlul, A.W.; Strohmeier, S.; Abu Hammour, D.; Mahasneh, L.; Haddad, N. Suitability Mapping of Micro and Meso Scale Rain Water Harvesting for Vegetation-Based Restoration in Arid Degraded Areas of Jordan. Catena 2024, 246, 108461. [Google Scholar] [CrossRef]
- Hadadin, N.; Qaqish, M.; Akawwi, E.; Bdour, A. Water Shortage in Jordan—Sustainable Solutions. Desalination 2010, 250, 197–202. [Google Scholar] [CrossRef]
- Ofori, S.; Di Leto, Y.; Smrčková, Š.; Lopez Marin, M.A.; Gallo, G.; Růžičková, I.; Wanner, J. Treated Wastewater Reuse for Crop Irrigation: A Comprehensive Health Risk Assessment. Environ. Sci. Adv. 2025, 4, 252–269. [Google Scholar] [CrossRef]
- Al-Addous, M.; Bdour, M.; Alnaief, M.; Rabaiah, S.; Schweimanns, N. Water Resources in Jordan: A Review of Current Challenges and Future Opportunities. Water 2023, 15, 3729. [Google Scholar] [CrossRef]
- Shannag, H.K.; Al-Mefleh, N.K.; Freihat, N.M. Reuse of Wastewaters in Irrigation of Broad Bean and Their Effect on Plant-Aphid Interaction. Agric. Water Manag. 2021, 257, 107156. [Google Scholar] [CrossRef]
- Chaganti, V.N.; Ganjegunte, G.; Niu, G.; Ulery, A.; Flynn, R.; Enciso, J.M.; Meki, M.N.; Kiniry, J.R. Effects of Treated Urban Wastewater Irrigation on Bioenergy Sorghum and Soil Quality. Agric. Water Manag. 2020, 228, 105894. [Google Scholar] [CrossRef]
- Batoukhteh, F.; Darzi-Naftchali, A.; Motevali, A.; Karandish, F.; Berger, M. Evaluating the Sustainability of Wheat Irrigation Systems: Using Life Cycle Assessment to Monitor the Water-Energy-Food-Environment Nexus. Agric. Water Manag. 2025, 315, 109521. [Google Scholar] [CrossRef]
- Obijianya, C.C.; Yakamercan, E.; Karimi, M.; Veluru, S.; Simko, I.; Eshkabilov, S.; Simsek, H. Agricultural Irrigation Using Treated Wastewater: Challenges and Opportunities. Water 2025, 17, 2083. [Google Scholar] [CrossRef]
- Heyde, B.J.; Braun, M.; Soufi, L.; Lüneberg, K.; Gallego, S.; Amelung, W.; Axtmann, K.; Bierbaum, G.; Glaeser, S.P.; Grohmann, E.; et al. Transition from Irrigation with Untreated Wastewater to Treated Wastewater and Associated Benefits and Risks. npj Clean Water 2025, 8, 6. [Google Scholar] [CrossRef]
- Guedes, P.; Martins, C.; Couto, N.; Silva, J.; Mateus, E.P.; Ribeiro, A.B.; Pereira, C.S. Irrigation of Soil with Reclaimed Wastewater Acts as a Buffer of Microbial Taxonomic and Functional Biodiversity. Sci. Total Environ. 2022, 802, 149671. [Google Scholar] [CrossRef]
- Abou Jaoude, L.; Kamaleddine, F.; Bou Said, R.; Mohtar, R.H.; Dbaibo, R.; Yanni, S.F. Treated Wastewater Reuse and Its Impact on Soil Properties and Potato and Corn Growth. Sci. Total Environ. 2025, 958, 178130. [Google Scholar] [CrossRef]
- Felix, V.J.L.; de Sousa Medeiros, S.; Macedo, R.S.; Sousa, C.d.S.; da Silva Souza, R.F.; da Silva Fraga, V.; Bakker, A.P.; Santos, R.V.d.; de Oliveira Dias, B.; Campos, M.C.C. Treated Wastewater Affects the Fertility and Geochemistry of Degraded Soil in the Brazilian Semi-Arid Region. Agronomy 2025, 15, 721. [Google Scholar] [CrossRef]
- Gao, Y.; Shao, G.; Wu, S.; Xiaojun, W.; Lu, J.; Cui, J. Changes in Soil Salinity under Treated Wastewater Irrigation: A Meta-Analysis. Agric. Water Manag. 2021, 255, 106986. [Google Scholar] [CrossRef]
- Ababsa, N.; Kribaa, M.; Tamrabet, L.; Addad, D.; Hallaire, V.; Ouldjaoui, A. Long-Term Effects of Wastewater Reuse on Hydro Physicals Characteristics of Grassland Grown Soil in Semi-Arid Algeria. J. King Saud Univ.-Sci. 2020, 32, 1004–1013. [Google Scholar] [CrossRef]
- Alnaimy, M.A.; Shahin, S.A.; Vranayova, Z.; Zelenakova, M.; Abdel-Hamed, E.M.W. Long-Term Impact of Wastewater Irrigation on Soil Pollution and Degradation: A Case Study from Egypt. Water 2021, 13, 2245. [Google Scholar] [CrossRef]
- Shakhatreh, Y.; Kafawin, O.; Ceccarelli, S.; Saoub, H. Selection of Barley Lines for Drought Tolerance in Low-Rainfall Areas. J. Agron. Crop Sci. 2001, 186, 119–127. [Google Scholar] [CrossRef]
- Odeh, T.; Mohammad, A. Wise Water Resources Management under the Increasing Number of Refugees in the Third Poorest Water Resources Country (Jordan)–A Suggested Future Spatial Plan for Water Resources Investments. IJSDP 2020, 20, 235–238. [Google Scholar] [CrossRef]
- Al-Bakri, J.T. Crop Mapping for Azraq and Ramtha Areas. In A Report for the Advanced on-Job Training on the Use of Remote Sensing in Crop Mapping and Evapotranspiration; MWI: Amman, Jordan, 2014. [Google Scholar] [CrossRef]
- Awawdeh, M.; Obeidat, M.; Zaiter, G. Groundwater Vulnerability Assessment in the Vicinity of Ramtha Wastewater Treatment Plant, North Jordan. Appl. Water Sci. 2015, 5, 321–334. [Google Scholar] [CrossRef]
- Obeidat, M.M.; Awawdeh, M.; Al-Mughaid, H. Impact of a Domestic Wastewater Treatment Plant on Groundwater Pollution, North Jordan. Rev. Mex. Cienc. Geológicas 2013, 30, 371–384. [Google Scholar]
- Al-Mefleh, N.K.; AlAyyash, S.M.; Bani Khaled, F.A. Water Management Problems and Solutions in a Residential Community of Al-Mafraq City, Jordan. Water Supply 2019, 19, 1371–1380. [Google Scholar] [CrossRef]
- Sqour, S.; Rjoub, A.; Tarrad, M. Urban Planning, Urbanization, Urban Growth in Mafraq City, Jordan. Archit. Res. 2016, 6, 116–122. [Google Scholar] [CrossRef]
- Al Qudah, A.; Rusan, M.J.; Al-Qinna, M.I.; Abdulla, F.A. Climate Change Vulnerability Assessment for Selected Agricultural Responses at Yarmouk River Basin Area, Jordan. Mitig. Adapt. Strateg. Glob. Change 2021, 26, 3. [Google Scholar] [CrossRef]
- Mohammad Rusan, M.J.; Hinnawi, S.; Rousan, L. Long Term Effect of Wastewater Irrigation of Forage Crops on Soil and Plant Quality Parameters. Desalination 2007, 215, 143–152. [Google Scholar] [CrossRef]
- Friedel, J.K.; Langer, T.; Siebe, C.; Stahr, K. Effects of Long-Term Waste Water Irrigation on Soil Organic Matter, Soil Microbial Biomass and Its Activities in Central Mexico. Biol. Fertil. Soils 2000, 31, 414–421. [Google Scholar] [CrossRef]
- Christou, A.; Eliadou, E.; Michael, C.; Hapeshi, E.; Fatta-Kassinos, D. Assessment of Long-Term Wastewater Irrigation Impacts on the Soil Geochemical Properties and the Bioaccumulation of Heavy Metals to the Agricultural Products. Environ. Monit. Assess. 2014, 186, 4857–4870. [Google Scholar] [CrossRef] [PubMed]
- Richards, L.A. (Ed.) Diagnosis and Improvement of Saline and Alkali Soils; U.S. Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle Size Analysis by Hydrometer: A Simplified Method for Routine Textural Analysis and a Sensitivity Test of Measurement Parameters. Soil Sci. Soc. Am. J. 1979, 43, 1004–1007. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk Density. In Methods of Soil Analysis; SSSA Book Series; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1986; pp. 363–375. ISBN 978-0-89118-864-3. [Google Scholar]
- Peech, M. Hydrogen-Ion Activity. In Methods of Soil Analysis; Agronomy Monographs; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1965; pp. 914–926. ISBN 978-0-89118-204-7. [Google Scholar]
- Bower, C.A.; Wilcox, L.V. Soluble Salts. In Methods of Soil Analysis; Agronomy Monographs; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1965; pp. 933–951. ISBN 978-0-89118-204-7. [Google Scholar]
- Berry, J.W. Improved Method of Flame Photometry | Analytical Chemistry. Available online: https://pubs.acs.org/doi/pdf/10.1021/i560149a005 (accessed on 6 July 2025).
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis; Agronomy Monographs; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1982; pp. 539–579. ISBN 978-0-89118-977-0. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen—Total. In Methods of Soil Analysis; Agronomy Monographs; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1982; pp. 595–624. ISBN 978-0-89118-977-0. [Google Scholar]
- Rich, C.I. Soil Chemical Analysis. Agron. J. 1958, 50, 288. [Google Scholar] [CrossRef]
- Tucker, B.B.; Kurtz, L.T. Calcium and Magnesium Determinations by EDTA Titrations. Soil Sci. Soc. Am. J. 1961, 25, 27–29. [Google Scholar] [CrossRef]
- Turco, R.F.; Kennedy, A.C.; Jawson, M.D. Microbial Indicators of Soil Quality. In Defining Soil Quality for a Sustainable Environment; SSSA Special Publications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1994; pp. 73–90. ISBN 978-0-89118-930-5. [Google Scholar]
- Cochran, W.G. The Comparison of Percentages in Matched Samples. Biometrika 1950, 37, 256–266. [Google Scholar] [CrossRef]
- Foth, H.D. Fundamentals of Soil Science; Wiley: Hoboken, NJ, USA, 1978; ISBN 978-0-471-26792-8. [Google Scholar]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E. Methods of Soil Analysis; Soil Science Society of America; American Society of Agronomy: Madison, WI, USA, 1996. [Google Scholar]
- American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Mazahrih, N.T.; Albalawneh, A.; Bani Hani, N.; Khadra, R.; Abo Dalo, A.; Al-Omari, Y.; Alomari, B.; Abu Hammad, M.; Martin, I.; Fahd, K.; et al. Impact of Reclaimed Wastewater on Alfalfa Production under Different Irrigation Methods. Water Pract. Technol. 2024, 19, 2226–2236. [Google Scholar] [CrossRef]
- Hasan, H.; Shloul, T.; Alomari, B.; Alhadidi, L.; Mazahreh, N. Phytoremediation Ability of Panicum Maximum and Salicornia Europaea Irrigated with Treated Wastewater for Salt Elements in the Soil. J. Saudi Soc. Agric. Sci. 2024, 23, 451–457. [Google Scholar] [CrossRef]
- Jordan Institution for Standards and Metrology (JISM). Jordanian Standard JS 893:2006—Water: Reclaimed Domestic Wastewater; JISM: Amman, Jordan, 2006. [Google Scholar]
- Ibrahim, M.N. Effluent Quality Assessment of Selected Wastewater Treatment Plant in Jordan for Irrigation Purposes: Water Quality Index Approach. J. Ecol. Eng. 2019, 20, 222–233. [Google Scholar] [CrossRef]
- Pescod, M.B. Wastewater Treatment and Use in Agriculture; FAO Irrigation and Drainage Paper 47; FAO: Rome, Italy, 1992. [Google Scholar]
- Baillie, I.C. Soil Survey Staff 1999, Soil Taxonomy. Soil Use Manag. 2001, 17, 57–60. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 14th ed.; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2016. [Google Scholar]
- Lado, M.; Bar-Tal, A.; Azenkot, A.; Assouline, S.; Ravina, I.; Erner, Y.; Fine, P.; Dasberg, S.; Ben-Hur, M. Changes in Chemical Properties of Semiarid Soils under Long-Term Secondary Treated Wastewater Irrigation. Soil Sci. Soc. Am. J. 2012, 76, 1358–1369. [Google Scholar] [CrossRef]
- Al-Karaki, G.N.; Al-Omoush, M. Wheat Response to Phosphogypsum and Mycorrhizal Fungi in Alkaline Soil. Available online: https://www.tandfonline.com/doi/abs/10.1081/PLN-120002966 (accessed on 2 July 2025).
- Sdiri, W.; AlSalem, H.S.; Al-Goul, S.T.; Binkadem, M.S.; Ben Mansour, H. Assessing the Effects of Treated Wastewater Irrigation on Soil Physico-Chemical Properties. Sustainability 2023, 15, 5793. [Google Scholar] [CrossRef]
- Usaborisut, P.; Ampanmanee, J. Compaction Properties of Silty Soils in Relation to Soil Texture, Moisture Content and Organic Matter. Am. J. Agric. Biol. Sci. 2015, 10, 178–185. [Google Scholar] [CrossRef]
- Schiettecatte, W.; Jin, K.; Yao, Y.; Cornelis, W.M.; Lu, J.; Wu, H.; Verbist, K.; Cai, D.; Gabriels, D.; Hartmann, R. Influence of Simulated Rainfall on Physical Properties of a Conventionally Tilled Loess Soil. Catena 2005, 64, 209–221. [Google Scholar] [CrossRef]
- Natsheh, B. Impact of Short Term Irrigation with Different Water Types on Some Chemical and Physical Soil Properties. Open J. Soil Sci. 2021, 11, 389–401. [Google Scholar] [CrossRef]
- Qadir, M.; Ghafoor, A.; Murtaza, G. Amelioration Strategies for Saline Soils: A Review. Land Degrad. Dev. 2000, 11, 501–521. [Google Scholar] [CrossRef]
- Hillel, D. Introduction to Environmental Soil Physics; Elsevier: Amsterdam, Switzerland, 2004. [Google Scholar]
- Dahmouni, M.; Hoermann, G.; Hachicha, M. The Effect of Short-Term Irrigation of TWW on the State of Soils, Groundwater and Vegetation in the Cebala Borj-Touil Area (Tunisia). Eurasian Soil Sci. 2022, 55, 269–281. [Google Scholar] [CrossRef]
- Balasubramaniam, T.; Shen, G.; Esmaeili, N.; Zhang, H. Plants’ Response Mechanisms to Salinity Stress. Plants 2023, 12, 2253. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Sun, H.; Li, X.; Sun, L.; Li, W. Leaching Characteristics of Exogenous Cl− in Rain-Fed Potato Fields and Residual Estimation Model Validation. Plants 2025, 14, 2171. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Huang, P.; Hu, C.; Gao, F.; Liu, Y.; Li, Z.; Cui, B. Response of Soil Microenvironment and Crop Growth to Cyclic Irrigation Using Reclaimed Water and Brackish Water. Plants 2023, 12, 2285. [Google Scholar] [CrossRef]
- Holloway, J.; Maurer, A.; Pitts, R.W.; Brown-Martin, D.; Coggs-Jones, P.; Maistelman, M.; Buestrin, T.H.; Minkel-Dumit, N.; Stelter, E.; Delagrave, J.; et al. 2024 Annual Report; Southeastern Wisconsin Regional Planning Commission: Pewaukee, WI, USA, 2024. [Google Scholar]
- Paz, A.M.; Amezketa, E.; Canfora, L.; Castanheira, N.; Falsone, G.; Goncalves, M.C.; Gould, I.; Hristov, B.; Mastrorilli, M.; Ramos, T.; et al. Salt-Affected Soils: Field-Scale Strategies for Prevention, Mitigation, and Adaptation to Salt Accumulation. Ital. J. Agron. 2023, 18, 2166. [Google Scholar] [CrossRef]
- Hagage, M.; Abdulaziz, A.M.; Elbeih, S.F.; Hewaidy, A.G.A. Monitoring Soil Salinization and Waterlogging in the Northeastern Nile Delta Linked to Shallow Saline Groundwater and Irrigation Water Quality. Sci. Rep. 2024, 14, 27838. [Google Scholar] [CrossRef]
- Xiao, C.; Zhang, F.; Li, Y.; Fan, J.; Xu, X.; Liu, X. Optimal Drip Irrigation Leaching Amount and Times Enhance Seed Cotton Yield and Its Stability by Improving Soil Chemical Environment and Source-Sink Relationship. Field Crops Res. 2024, 317, 109531. [Google Scholar] [CrossRef]
- Rezapour, S.; Nouri, A.; Jalil, H.M.; Hawkins, S.A.; Lukas, S.B. Influence of Treated Wastewater Irrigation on Soil Nutritional-Chemical Attributes Using Soil Quality Index. Sustainability 2021, 13, 1952. [Google Scholar] [CrossRef]
- Chauhan, A.; Jain, A.; Kolton, M.; Pathak, A. Impacts of Long-Term Irrigation of Municipally-Treated Wastewater to the Soil Microbial and Nutrient Properties. Sci. Total Environ. 2025, 959, 178143. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Kartha, S.A. Effect of Different pHs and Liquid-to-Solid Ratios on Leaching Behavior of Heavy Metals from Landfill-Mined-Soil-like-Fractions. J. Environ. Manag. 2025, 376, 124421. [Google Scholar] [CrossRef]
- Bolan, N.; Srivastava, P.; Rao, C.S.; Satyanaraya, P.V.; Anderson, G.C.; Bolan, S.; Nortjé, G.P.; Kronenberg, R.; Bardhan, S.; Abbott, L.K.; et al. Chapter Two—Distribution, Characteristics and Management of Calcareous Soils. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2023; Volume 182, pp. 81–130. [Google Scholar]
- Gharaibeh, M.A.; Ghezzehei, T.A.; Albalasmeh, A.A.; Alghzawi, M.Z. Alteration of Physical and Chemical Characteristics of Clayey Soils by Irrigation with Treated Waste Water. Geoderma 2016, 276, 33–40. [Google Scholar] [CrossRef]
- Lv, P.; Sun, S.; Zhao, X.; Li, Y.; Zhao, S.; Zhang, J.; Hu, Y.; Guo, A.; Yue, P.; Zuo, X. Effects of Altered Precipitation Patterns on Soil Nitrogen Transformation in Different Landscape Types during the Growing Season in Northern China. Catena 2023, 222, 106813. [Google Scholar] [CrossRef]
- Cregger, M.A.; McDowell, N.G.; Pangle, R.E.; Pockman, W.T.; Classen, A.T. The Impact of Precipitation Change on Nitrogen Cycling in a Semi-Arid Ecosystem. Funct. Ecol. 2014, 28, 1534–1544. [Google Scholar] [CrossRef]
- Lukac, M.; Godbold, D.L. Soil Ecology in Northern Forests: A Belowground View of a Changing World; Cambridge University Press: Cambridge, UK, 2011; ISBN 978-1-139-50086-9. [Google Scholar]
- Li, J.; Benti, G.; Wang, D.; Yang, Z.; Xiao, R. Effect of Alteration in Precipitation Amount on Soil Microbial Community in a Semi-Arid Grassland. Front. Microbiol. 2022, 13, 842446. [Google Scholar] [CrossRef]
- Muscarella, S.M.; Alduina, R.; Badalucco, L.; Capri, F.C.; Di Leto, Y.; Gallo, G.; Laudicina, V.A.; Paliaga, S.; Mannina, G. Water Reuse of Treated Domestic Wastewater in Agriculture: Effects on Tomato Plants, Soil Nutrient Availability and Microbial Community Structure. Sci. Total Environ. 2024, 928, 172259. [Google Scholar] [CrossRef]
Class | Levels | Values |
---|---|---|
Replicates | 4 | 1, 2, 3, 4 |
Time | 2 | Before rainfall, after rainfall |
Location | 2 | Mafraq, Ramtha |
Treatment | 4 | 10 years, 5 years, 2 years, control |
Depth | 3 | 0–30 cm, 30–60 cm, 60–90 cm |
Parameter | Unit | Ramtha WWTP Effluent | Mafraq WWTP Effluent | Jordanian Standards (JS 893:2006) | FAO |
---|---|---|---|---|---|
pH | - | 7.95 | 7.91 | 6–9 | 6.5–8.4 |
EC | dS m−1 | 2.29 | 1.95 | - | <3 (no restriction), 3–9 (slight to moderate restriction), >9 (severe restriction) |
Ca+2 | mg L−1 | 28.50 | 80 | 230 | - |
Mg+2 | mg L−1 | 69.90 | 37 | 100 | - |
Na+ | mg L−1 | 314.94 | 245 | 230 | ≤200 (slight), 200–400 (moderate), >400 (severe) |
TN | mg L−1 | 98 | 53 | 100 | - |
Cl− | mg L−1 | 490.30 | 320 | 400 | ≤140 (slight), 140–350 (moderate), >350 (severe) |
COD | mg L−1 | 93 | 118 | 500 | - |
BOD5 | mg L−1 | 21.2 | 20 | 300 | - |
TSS | mg L−1 | 39 | 30 | 300 | - |
TDS | mg L−1 | 1553 | 1257 | 1500 | 2000 |
E. coli | MPN/100 mL | 8.8 × 106 | 2.95 × 105 | - | - |
Location | Treatment | Depths (cm) | Before Rain | After Rain |
---|---|---|---|---|
Mafraq | 10 years | 0–30, 30–60, and 60–90 | Silt Loam | Silt Loam |
5 years | 0–30, 30–60, and 60–90 | Silt Loam | Silt Loam | |
2 years | 0–30, 30–60, and 60–90 | Silt Loam | Silt Loam | |
Control | 0–30, 30–60, and 60–90 | Silt Loam | Silt Loam | |
Ramtha | 10 years | 0–30, 30–60, and 60–90 | Silty Clay Loam | Silty Clay Loam |
5 years | 0–30, 30–60, and 60–90 | Silty Clay Loam | Silty Clay Loam | |
2 years | 0–30, 30–60, and 60–90 | Silty Clay Loam | Silty Clay Loam | |
Control | 0–30, 30–60, and 60–90 | Silty Clay Loam | Silty Clay Loam |
Location | Bulk Density Estimate (g/cm3) (Mean ± SE) | Letter Group |
---|---|---|
Mafraq | 1.2167 ± 0.01426 | a |
Ramtha | 1.1446 ± 0.01426 | b |
Time | BD (g/cm3) (Mean ± SE) | Na+ (ppm) (Mean ± SE) | Cl− (ppm) (Mean ± SE) | EC (dS/m) (Mean ± SE) | ESP (%) (Mean ± SE) | SAR (Mean ± SE) |
---|---|---|---|---|---|---|
Before rain | 1.1565 ± 0.01426 b | 1279.21 ± 113.05 a | 4107.65 ± 433.11 a | 6.5200 ± 0.6600 a | 2.5167 ± 0.05438 a | 12.1740 ± 0.2841 a |
After rain | 1.2048 ± 0.01426 a | 373.96 ± 113.05 b | 563.19 ± 433.11 b | 1.7408 ± 0.6600 b | 1.8051 ± 0.05438 b | 8.5608 ± 0.2841 b |
Location | Treatment | Na+ (ppm) (Mean ± SE) | Cl− (ppm) (Mean ± SE) | EC (dS/m) (Mean ± SE) | ESP (%) (Mean ± SE) | SAR (Mean ± SE) |
---|---|---|---|---|---|---|
Mafraq | 10 years | 403.29 ± 230.96 b | 283.26 ± 697.10 b | 1.8018 ± 1.5362 b | 1.8716 ± 0.1088 b | 8.8758 ± 0.5682 b |
5 years | 328.70 ± 230.96 b | 276.60 ± 697.10 b | 1.3490 ± 1.5362 b | 1.5553 ± 0.1088 b | 7.3504 ± 0.5682 b | |
2 years | 421.23 ± 230.96 b | 312.10 ± 697.10 b | 1.9308 ± 1.5362 b | 1.7492 ± 0.1088 b | 8.2825 ± 0.5682 b | |
Control | 3877.43 ± 230.96 a | 8469.71 ± 697.10 a | 22.2967 ± 1.5362 a | 4.3380 ± 0.1088 a | 21.4212 ± 0.5682 a | |
Ramtha | 10 years | 537.14 ± 230.96 a | 414.91 ± 697.10 a | 1.8425 ± 1.5362 a | 2.7111 ± 0.1088 a | 12.9926 ± 0.5682 a |
5 years | 472.63 ± 230.96 a | 392.72 ± 697.10 a | 1.6716 ± 1.5362 a | 2.3331 ± 0.1088 a | 11.1246 ± 0.5682 a | |
2 years | 403.32 ± 230.96 a | 337.99 ± 697.10 a | 1.5715 ± 1.5362 a | 1.7243 ± 0.1088 b | 8.1647 ± 0.5682 b | |
Control | 168.93 ± 230.96 b | 80.6146 ± 697.10 a | 0.5794 ± 1.5362 a | 1.0047 ± 0.1088 c | 4.7275 ± 0.5682 c |
Time | Soil pH (Mean ± SE) | OM (%) (Mean ± SE) | TN (%) (Mean ± SE) | Ca2+ (ppm) (Mean ± SE) | Mg2+ (ppm) (Mean ± SE) |
---|---|---|---|---|---|
Before rain | 7.3486 ± 0.02410 b | 1.6093 ± 0.03006 a | 0.5781 ± 0.02197 a | 320.64 ± 33.3128 a | 190.19 ± 22.9975 a |
After rain | 8.2993 ± 0.02410 a | 1.3693 ± 0.03006 b | 0.2660 ± 0.02197 b | 101.04 ± 33.3128 b | 39.001 ± 22.9975 b |
Time | TC (MPN g−1) (Mean ± SE) | FC (MPN g−1) (Mean ± SE) |
---|---|---|
Before rain | 691.35 ± 46.7414 a | 135.81 ± 25.4885 a |
After rain | 25.9156 ± 46.7414 b | 0.3062 ± 25.4885 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, E.; Abu-Awwad, A. Impacts of Long-Term Treated Wastewater Irrigation and Rainfall on Soil Chemical and Microbial Indicators in Semi-Arid Calcareous Soils. Sustainability 2025, 17, 8663. https://doi.org/10.3390/su17198663
Hasan E, Abu-Awwad A. Impacts of Long-Term Treated Wastewater Irrigation and Rainfall on Soil Chemical and Microbial Indicators in Semi-Arid Calcareous Soils. Sustainability. 2025; 17(19):8663. https://doi.org/10.3390/su17198663
Chicago/Turabian StyleHasan, Eiman, and Ahmad Abu-Awwad. 2025. "Impacts of Long-Term Treated Wastewater Irrigation and Rainfall on Soil Chemical and Microbial Indicators in Semi-Arid Calcareous Soils" Sustainability 17, no. 19: 8663. https://doi.org/10.3390/su17198663
APA StyleHasan, E., & Abu-Awwad, A. (2025). Impacts of Long-Term Treated Wastewater Irrigation and Rainfall on Soil Chemical and Microbial Indicators in Semi-Arid Calcareous Soils. Sustainability, 17(19), 8663. https://doi.org/10.3390/su17198663