Agronomic Impact and Cost Analysis of Natural Rocks and Biological Inoculants in Potato Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Plantation
2.2. Soil Physicochemical Properties
2.3. Evaluation of Vegetative Growth Parameters
2.4. Tuber Yield and Post-Harvest Measurements
2.4.1. Determination of Dry Matter Content (DMC)
2.4.2. Reducing Sugar Content Determination
2.4.3. Starch Content Determination
2.5. Cost–Benefit Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effect of the Fertilization Treatments on Plant Vegetative Growth Parameters
3.2. Effect of the Fertilization Treatments on Tuber Yield and Quality
3.3. Effect of the Fertilization Treatments on Soil Composition Post-Harvest
3.4. Multivariate Analysis of Plant, Yield, and Soil Parameters
3.5. Cost–Benefit Analysis
3.6. Alignment of the Fertilization Treatments with Sustainable Development Goals (SDGs)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Defauw, S.L.; He, Z.; Larkin, R.P.; Mansour, S.A. Sustainable potato production and global food security. In Sustainable Potato Production: Global Case Studies; Springer: Dordrecht, The Netherlands, 2012; pp. 3–19. [Google Scholar]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 22 June 2025).
- Abdellaah, Y.H. An Economic Analysis of Potato Production and Consumption in Egypt: A Case Study of Sohag. J. Sustain. Agric. Sci. 2021, 47, 315–324. [Google Scholar]
- Nasir, M.W.; Toth, Z. Effect of Drought Stress on Potato Production: A Review. Agronomy 2022, 12, 635. [Google Scholar] [CrossRef]
- Potato Production and Consumption. Available online: https://www.potatopro.com/potato-markets/egypt (accessed on 7 August 2025).
- Tameem, M.M.A.S.; Ahmed, D.A.B.; Ahmed, S.A.M.; Rahim, H.O.A.; Hashem, A.A. An Economic Study of the Competitiveness of Egyptian Potato Exports. Middle East J. Agric. Res. 2024, 13, 3. [Google Scholar]
- Rupp, H.; Tauchnitz, N.; Meissner, R. The influence of increasing mineral fertilizer application on nitrogen leaching of arable land and grassland—Results of a long-term lysimeter study. Front. Soil Sci. 2024, 4, 1345073. [Google Scholar] [CrossRef]
- Hopkins, B.G.; Rosen, C.J.; Shiffler, A.K.; Taysom, T.W. Enhanced Efficiency Fertilizers for Improved Nutrient Management: Potato (Solanum tuberosum). Crop. Manag. 2008, 7, 1–16. [Google Scholar] [CrossRef]
- Hochmuth, G.; Weingartner, P.; Hutchinson, C.; Tilton, A.; Jesseman, D. Potato Yield and Tuber Quality Did Not Respond to Phosphorus Fertilization of Soils Testing High in Phosphorus Content. HortTechnology 2002, 12, 420–423. [Google Scholar] [CrossRef]
- Wishart, J.; George, T.S.; Brown, L.K.; Ramsay, G.; Bradshaw, J.E.; White, P.J.; Gregory, P.J. Measuring variation in potato roots in both field and glasshouse: The search for useful yield predictors and a simple screen for root traits. Plant Soil 2013, 368, 231–249. [Google Scholar] [CrossRef]
- Liao, X.; Liu, G.; Hogue, B.; Li, Y.; Nicholson, F. Phosphorus availability and environmental risks in potato fields in North Florida. Soil Use Manag. 2015, 31, 308–312. [Google Scholar] [CrossRef]
- Boutasknit, A.; Ait-El-Mokhtar, M.; Fassih, B.; Ben-Laouane, R.; Wahbi, S.; Meddich, A. Effect of Arbuscular Mycorrhizal Fungi and Rock Phosphate on Growth, Physiology, and Biochemistry of Carob under Water Stress and after Rehydration in Vermicompost-Amended Soil. Metabolites 2024, 14, 202. [Google Scholar] [CrossRef]
- Jaitieng, S.; Sinma, K.; Rungcharoenthong, P.; Amkha, S. Arbuscular mycorrhiza fungi applications and rock phosphate fertilizers enhance available phosphorus in soil and promote plant immunity in robusta coffee. Soil Sci. Plant Nutr. 2021, 67, 97–101. [Google Scholar] [CrossRef]
- Porcel, R.; Zamarreño, Á.M.; García-Mina, J.M.; Aroca, R. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol. 2014, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Ordoñez, Y.M.; Fernandez, B.R.; Lara, L.S.; Rodriguez, A.; Uribe-Vélez, D.; Sanders, I.R.; Aroca, R. Bacteria with Phosphate Solubilizing Capacity Alter Mycorrhizal Fungal Growth Both Inside and Outside the Root and in the Presence of Native Microbial Communities. PLoS ONE 2016, 11, e0154438. [Google Scholar] [CrossRef]
- Hazzoumi, Z.; Azaroual, S.E.; El Mernissi, N.; Zaroual, Y.; Duponnois, R.; Bouizgarne, B.; Kadmiri, I.M. Effect of Arbuscular Mycorrhizal Fungi Isolated from Rock Phosphate Mine and Agricultural Soil on the Improvement of Wheat Plant Growth. Front. Microbiol. 2022, 13, 881442. [Google Scholar] [CrossRef] [PubMed]
- Shaharoona, B.; Naveed, M.; Arshad, M.; Zahir, Z.A. Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl. Microbiol. Biotechnol. 2008, 79, 147–155. [Google Scholar] [CrossRef]
- Aslam, Z.; Yahya, M.; Hussain, H.S.; Tabbasum, S.; Jalaluddin, S.; Khaliq, S.; Yasmin, S. Development of bacteria-based bioorganic phosphate fertilizer enriched with rock phosphate for sustainable wheat production. Front. Microbiol. 2024, 15, 1361574. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, L.; Huang, Y.; Fu, L.; Ma, L.; Chen, K.; Gu, Z. Review on K-Feldspar Mineral Processing for Extracting Metallic Potassium as a Fertilizer Resource. Minerals 2024, 14, 168. [Google Scholar] [CrossRef]
- Nacoon, S.; Jogloy, S.; Riddech, N.; Mongkolthanaruk, W.; Ekprasert, J.; Cooper, J.; Boonlue, S. Combination of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria on growth and production of Helianthus tuberosus under field condition. Sci. Rep. 2021, 11, 6501. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.-A.; Song, J.; Choe, S.; Jang, G.; Kim, Y. Plant growth-promoting rhizobacterium Bacillus megaterium modulates the expression of antioxidant-related and drought-responsive genes to protect rice (Oryza sativa L.) from drought. Front. Microbiol. 2024, 15, 1430546. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Mao, X.; Zhang, M.; Yang, W.; Di, H.J.; Ma, L.; Liu, W.; Li, B. The application of Bacillus megaterium alters soil microbial community composition, bioavailability of soil phosphorus and potassium, and cucumber growth in the plastic shed system of North China. Agric. Ecosyst. Environ. 2021, 307, 107236. [Google Scholar] [CrossRef]
- Sheng, X. Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol. Biochem. 2005, 37, 1918–1922. [Google Scholar] [CrossRef]
- Bhattacharyya, P.N.; Jha, D.K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 2011, 28, 1327–1350. [Google Scholar] [CrossRef] [PubMed]
- World Bank. Commodity Markets Outlook, October 2024. © World Bank. 2024. Available online: http://hdl.handle.net/10986/42219 (accessed on 22 June 2025).
- Mwakiwa, E.; Wineman, A.; Agyei-Holmes, A.; Fall, M.G.; Kirimi, L.; Mpenda, Z.; Mutandwa, E.; Ogunbayo, I.; Tschirley, D. Price shocks and associated policy responses stemming from the Russia-Ukraine War and other global crises: Evidence from six African countries. Glob. Food Secur. 2025, 45, 100861. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 1982; pp. 403–430. [Google Scholar]
- O’Halloran, I.; Cade-Menun, B. Total and Organic Phosphorus. In Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Twine, J.R.; Williams, C.H. The determination of phosphorus in Kjeldahl digests of plant material by automatic analysis. Commun. Soil. Sci. Plant Anal. 1971, 2, 485–489. [Google Scholar] [CrossRef]
- Khasawneh, F.E.; Doll, E.C. The Use of Phosphate Rock for Direct Application to Soils. Adv. Agron. 1979, 30, 159–206. [Google Scholar]
- Wiegand, C.; Gerbermann, A.; Gallo, K.; Blad, B.; Dusek, D. Multisite analyses of spectral-biophysical data for corn. Remote Sens. Environ. 1990, 33, 1–16. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Lloret, P.; MunoZ, F.; Vilajeliu, M. Reflectance assessment of mite effects on apple trees. Int. J. Remote Sens. 1995, 16, 2727–2733. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Gamon, J.A.; Serrano, L.; Surfus, J.S. The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Solovchenko, A.E.; Smagin, A.I.; Gitelson, A.A. Apple flavonols during fruit adaptation to solar radiation: Spectral features and technique for non-destructive assessment. J. Plant Physiol. 2005, 162, 151–160. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Barnes, J.D.; Balaguer, L.; Manrique, E.; Elvira, S.; Davison, A.W. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ. Exp. Bot. 1992, 32, 85–100. [Google Scholar] [CrossRef]
- Gu, D.-D.; Wang, W.-Z.; Hu, J.-D.; Zhang, X.-M.; Wang, J.-B.; Wang, B.-S. Nondestructive Determination of Total Chlorophyll Content in Maize Using Three-Wavelength Diffuse Reflectance. J. Appl. Spectrosc. 2016, 83, 541–547. [Google Scholar] [CrossRef]
- Nielsen, S.S. Phenol-Sulfuric Acid Method for Total Carbohydrates. In Food Analysis Laboratory Manual, 1st ed.; Nielsen, S.S., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 47–53. [Google Scholar]
- Ludwig, T.G.; Goldberg, H.J. The Anthrone Method for the Determination of Carbohydrates in Foods and in Oral Rinsing. J. Dent. Res. 1956, 35, 90–94. [Google Scholar] [CrossRef]
- Obiero, K.; Mboya, J.B.; Ouko, K.O.; Okech, D. Economic feasibility of fish cage culture in Lake Victoria, Kenya. Aquac. Fish Fish. 2022, 2, 484–492. [Google Scholar] [CrossRef]
- Patel, S.; Shapiro, C.; Iqbal, J. Long-term comparison of targeted soil test values and crop removal as a phosphorus fertilization strategy in corn. Agron. J. 2024, 116, 3240–3255. [Google Scholar] [CrossRef]
- Ojeniyi, K.; Ngonidzashe, C.; Devkota, K.; Madukwe, D. Optimizing split-fertilizer applications for enhanced maize yield and nutrient use efficiency in Nigeria’s Middle-belt. Heliyon 2024, 10, e37747. [Google Scholar] [CrossRef] [PubMed]
- R. The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 22 June 2025).
- Khan, I.; Zada, A.; Jia, T.; Hu, X. Effect of the Enhanced Production of Chlorophyll b on the Light Acclimation of Tomato. Int. J. Mol. Sci. 2023, 24, 3377. [Google Scholar] [CrossRef]
- Heikal, N.H.; Rady, M.H.; Merdan, B.A.; El-Abbassi, T.S.; El-Genaidy, M.A.; Azazy, A.M.; Yones, M.S.; Essa, E.E. Early detection of Bactrocera zonata infestation in peach fruit using remote sensing technique and application of nematodes for its control. Kuwait J. Sci. 2024, 51, 100191. [Google Scholar] [CrossRef]
- El Hoseny, M.M.; Dahi, H.F.; El Shafei, A.M.; Yones, M.S. Spectroradiometer and thermal imaging as tools from remote sensing used for early detection of spiny bollworm, Earias insulana (Boisd.) infestation. Int. J. Trop. Insect Sci. 2023, 43, 245–256. [Google Scholar] [CrossRef]
- Mevy, J.-P.; Biryol, C.; Boiteau-Barral, M.; Miglietta, F. The Optical Response of a Mediterranean Shrubland to Climate Change: Hyperspectral Reflectance Measurements during Spring. Plants 2022, 11, 505. [Google Scholar] [CrossRef] [PubMed]
- Garbulsky, M.F.; Peñuelas, J.; Gamon, J.; Inoue, Y.; Filella, I. The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies—A review and meta-analysis. Remote Sens. Environ. 2011, 115, 281–297. [Google Scholar] [CrossRef]
- Filella, I.; Peñuelas, J.; Llorens, L.; Estiarte, M. Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean shrubland submitted to experimental warming and drought. Remote Sens. Environ. 2004, 90, 308–318. [Google Scholar] [CrossRef]
- Zhang, C.; Filella, I.; Liu, D.; Ogaya, R.; Llusià, J.; Asensio, D.; Peñuelas, J. Photochemical Reflectance Index (PRI) for Detecting Responses of Diurnal and Seasonal Photosynthetic Activity to Experimental Drought and Warming in a Mediterranean Shrubland. Remote Sens. 2017, 9, 1189. [Google Scholar] [CrossRef]
- Kupčinskienė, A.; Brazaitytė, A.; Rasiukevičiūtė, N.; Valiuškaitė, A.; Morkeliūnė, A.; Vaštakaitė-Kairienė, V. Vegetation Indices for Early Grey Mould Detection in Lettuce Grown under Different Lighting Conditions. Plants 2023, 12, 4042. [Google Scholar] [CrossRef]
- Anderegg, J.; Yu, K.; Aasen, H.; Walter, A.; Liebisch, F.; Hund, A. Spectral Vegetation Indices to Track Senescence Dynamics in Diverse Wheat Germplasm. Front. Plant Sci 2020, 10, 466315. [Google Scholar] [CrossRef]
- Llorente, B.; Torres-Montilla, S.; Morelli, L.; Florez-Sarasa, I.; Matus, J.T.; Ezquerro, M.; D’Andrea, L.; Houhou, F.; Majer, E.; Picó, B.; et al. Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development. Proc. Natl. Acad. Sci. USA 2020, 117, 21796–21803. [Google Scholar] [CrossRef] [PubMed]
- Polivova, M.; Brook, A.; Polivova, M.; Brook, A. Detailed Investigation of Spectral Vegetation Indices for Fine Field-Scale Phenotyping. In Vegetation Index and Dynamics; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar]
- Zewide, I.; Mohammed, A.; Tulu, S. Effect of Different Rates of Nitrogen and Phosphorus on Yield and Yield Components of Potato (Solanum tuberosum L.) at Masha District, Southwestern Ethiopia. Int. J. Soil Sci. 2012, 7, 146–156. [Google Scholar] [CrossRef]
- Solanki, K.; Choudhary, S.K.; Aakash; Singh, V.; Nath, H.; Anshuman, K. Response of Bacillus megaterium and Bacillus mucilaginosus Strains on Growth and Nutrient Uptake of Soybean. Int. J. Plant Soil Sci. 2023, 35, 267–276. [Google Scholar] [CrossRef]
- Basak, B.B.; Biswas, D.R. Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 2008, 317, 235–255. [Google Scholar] [CrossRef]
- Lu, J.-J.; Xue, A.-Q.; Cao, Z.-Y.; Yang, S.-J.; Hu, X.-F. Diversity of plant growth-promoting Paenibacillus mucilaginosus isolated from vegetable fields in Zhejiang, China. Ann. Microbiol. 2014, 64, 1745–1756. [Google Scholar] [CrossRef]
- Cucci, G.; Lacolla, G. Effects of Different Fertilizing Formulae on Potato. Ital. J. Agron. 2007, 2, 275–279. [Google Scholar] [CrossRef]
- Van Dingenen, J.; Hanzalova, K.; Salem, M.A.A.; Abel, C.; Seibert, T.; Giavalisco, P.; Wahl, V. Limited nitrogen availability has cultivar-dependent effects on potato tuber yield and tuber quality traits. Food Chem. 2019, 288, 170–177. [Google Scholar] [CrossRef]
- Storey, M. The Harvested Crop. In Potato Biology and Biotechnology: Advances and Perspectives; Elsevier: Amsterdam, The Netherlands, 2007; pp. 441–470. [Google Scholar]
- Islam, M.; Naznin, S.; Naznin, A.; Uddin, N.; Amin, N.; Rahman, M.; Tipu, M.M.H.; Alsuhaibani, A.M.; Gaber, A.; Ahmed, S. Dry Matter, Starch Content, Reducing Sugar, Color and Crispiness Are Key Parameters of Potatoes Required for Chip Processing. Horticulturae 2022, 8, 362. [Google Scholar] [CrossRef]
- Brążkiewicz, K.; Pobereżny, J.; Wszelaczyńska, E.; Bogucka, B. Potato starch quality in relation to the treatments and long-term storage of tubers. Sci. Rep. 2025, 15, 1–17. [Google Scholar] [CrossRef]
- Dawwam, G.E.; Elbeltagy, A.; Emara, H.M.; Abbas, I.H.; Hassan, M.M. Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Ann. Agric. Sci. 2013, 58, 195–201. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Nahid, M.; Razzaque, A.; Bhuiyan, M.N.I.B.; Islam, M.A.; Begum, R.; Roy, T.S. Effects of Nitrogen and Potassium on Yield and Quality of Potato (Solanum tuberosum L.) Cultivars. Bangladesh J. Bot. 2023, 52, 267–275. [Google Scholar] [CrossRef]
- Ghimire, S.; Koirala, B.; Devkota, S.; Basnet, G. Economic analysis of commercial banana cultivation and supply chain analysis in Chitwan, Nepal. J. Pharmacogn. Phytochem. 2019, 5, 190–195. [Google Scholar]
- de Moraes Rego, C.R.; Ribeiro Reis, V.R.; Wander, A.E.; Cantanhêde, I.; Costa, J.B.; Muniz, L.C.; Costa, B.; de Herrera, J.L. Cost Analysis of Corn Cultivation in the Setup of the Crop-Livestock-Forest Integration System to Recover Degraded Pastures. J. Agric. Sci. 2017, 9, 168. [Google Scholar] [CrossRef]
- Kishore, N.; Pindi, P.K.; Reddy, S.R. Phosphate-solubilizing microorganisms: A critical review. In Plant Biology and Biotechnology: Plant Diversity, Organization, Function and Improvement; Spinger: Berlin/Heidelberg, Germany, 2015; Volume 1, pp. 307–333. [Google Scholar]
- Farid, I.M. Phosphorus Fractions in some Calcareous Soils of Egypt as Affected by Aging and their Properties. Egypt J. Soil Sci. 2013, 53, 555–566. [Google Scholar]
Element | Form | T1 | T2 | T3 |
---|---|---|---|---|
Nitrogen | Ammonium nitrate | 520 kg | 350 kg | 350 kg |
Potassium | Potassium sulfate (50% K2O) | 175 kg | 175 kg | - |
Potassium feldspar (9% K2O) | - | - | 700 kg | |
Magnesium | Magnesium sulfate | 500 kg | 500 kg | - |
Dolomite | - | - | 1000 kg | |
Phosphate | Single superphosphate (12.5% P2O5) | 700 kg | 700 kg | - |
Rock phosphate | - | - | 1040 kg | |
Phosphoric acid | 17.3 L | 17.3 L | - | |
PGPR | Bacillus megaterium | - | 17.3 L | 17.3 L |
Bacillus mucilaginosus | - | 17.3 L | 17.3 L | |
Azotobacter | - | 17.3 L | 17.3 L |
Element | Before Plantation | Post-Harvest | ||
---|---|---|---|---|
T1 | T2 | T3 | ||
Nitrogen (N) | 3.00 | 3.13 | 2.80 | 2.65 |
Phosphorus (P) | 10.00 | 16.00 | 16.33 | 14.33 |
Total Phosphorus (%) | 0.13 | 0.11 | 0.11 | 0.14 |
Potassium (K) | 395.88 | 425.00 | 412.33 | 407.00 |
Iron (Fe) | 2.91 | 2.93 | 2.77 | 2.69 |
Zinc (Zn) | 1.40 | 1.37 | 1.36 | 1.37 |
Manganese (Mn) | 0.17 | 0.54 | 0.45 | 0.41 |
Copper (Cu) | 0.16 | 0.36 | 0.30 | 0.31 |
Description | T1 (Cost per ha) (USD) | T2 (Cost per ha) (USD) | T3 (Cost per ha) (USD) | |
---|---|---|---|---|
Fixed Cost | Land rent | $633.20 | $633.20 | $633.20 |
Machinery and equipment | $234.00 | $234.00 | $234.00 | |
Variable Cost | Seed tubers | $2553.20 | $2553.20 | $2553.20 |
Irrigation | $106.40 | $106.40 | $106.40 | |
Labor force | $531.90 | $531.90 | $531.90 | |
Indirect expenses | $53.20 | $53.20 | $53.20 | |
Fertilizers (T1) | $868.10 | - | - | |
Fertilizers + PGPR (T2) | - | $894.50 | - | |
Fertilizers + PGPR (T3) | - | - | $300.00 | |
Total Operating Cost (TOC) | $4980.00 | $5006.40 | $4411.90 | |
Expected Revenue | ||||
Yield per ha | 37.20 | 34.10 | 42.00 | |
Price per ton | $ 200.00 | $ 200.00 | $ 200.00 | |
Total Revenue | $7440.00 | $6820.00 | $8400.00 | |
Profitability | ||||
Gross Profit | $2460.00 | $1813.60 | $3988.10 | |
Net Profit | $2460.00 | $1813.60 | $3988.10 | |
Benefit–Cost Ratio (BCR) | 1.49 | 1.36 | 1.90 |
Treatment | P Sources | Total P2O5 (kg ha−1) | Fertilizers + PGPR (Cost per ha) | P2O5 (Cost per kg) | Adjusted TOC (USD/ha) | Net Profit (USD/ha) | ROI (%) |
---|---|---|---|---|---|---|---|
T1 | SSP + H3PO4 | 102.2 | $868.1 | $8.4 | 474.50 | 246.6 | 51.97% |
T2 | SSP + H3PO4 | 102.2 | $894.5 | $8.4 | 472.01 | 181.95 | 38.55% |
T3 | Rock Phosphate | 260.0 | $300.00 | $1.15 | 411.93 | 327.41 | 79.48% |
Year | T1 (SSP) | (SSP + Acid) | T3 (Rock + PGPR) |
---|---|---|---|
2024 | 51.97% | 38.55% | 79.48% |
2025 | 46. 77% | 34.70% | 71.53% |
2026 | 42.09% | 31.23% | 64.38% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, A.A.; Badr, A.A.; Fouad, W.M. Agronomic Impact and Cost Analysis of Natural Rocks and Biological Inoculants in Potato Production. Sustainability 2025, 17, 8648. https://doi.org/10.3390/su17198648
Youssef AA, Badr AA, Fouad WM. Agronomic Impact and Cost Analysis of Natural Rocks and Biological Inoculants in Potato Production. Sustainability. 2025; 17(19):8648. https://doi.org/10.3390/su17198648
Chicago/Turabian StyleYoussef, AboBakr A., Amal A. Badr, and Walid M. Fouad. 2025. "Agronomic Impact and Cost Analysis of Natural Rocks and Biological Inoculants in Potato Production" Sustainability 17, no. 19: 8648. https://doi.org/10.3390/su17198648
APA StyleYoussef, A. A., Badr, A. A., & Fouad, W. M. (2025). Agronomic Impact and Cost Analysis of Natural Rocks and Biological Inoculants in Potato Production. Sustainability, 17(19), 8648. https://doi.org/10.3390/su17198648