A Study on the Impact of Data Elements on Green Total Factor Productivity in China’s Logistics Industry
Abstract
1. Introduction
2. Theoretical Analysis and Research Hypothesis
2.1. The Direct Impact of Data Elements on GTFP in the Logistics Industry
2.2. Intrinsic Reasons for Data Elements to Improve GTFP in the Logistics Industry
3. Research Design
3.1. Methodology
3.1.1. GTFP Calculation Model for Logistics Industry
- Super-efficiency SBM model
- Malmquist dynamic index model
3.1.2. The Test Model of the Impact of Data Elements on GTFP in Logistics Industry
3.2. Variable Measurement
3.2.1. Explained Variable
- Input indicators and data description
- Output indicators and data description
3.2.2. Explanatory Variables
- Data element transportation level
- Data element resource processing and asset trading level
- The ability of data element value transformation and scenario application
- Data element development potential
3.2.3. Control Variables
3.3. Data Sources
4. Results and Discussions
4.1. Test Results
4.1.1. Spatial Autocorrelation Test
4.1.2. Endogeneity Test
4.1.3. Multicollinearity Test
4.1.4. Lagrange Multiplier Test (LM Test)
4.1.5. Hausman Test
4.1.6. Likelihood Ratio Test (LR Test)
4.1.7. Robustness Test
4.2. Discussions of Empirical Results
4.2.1. Impact Mechanism Analysis
4.2.2. Decomposition Effect Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, J.L. Research on the Impact of FDI on the Green Total Factor Productivity of China’s Logistics Industry. Master’s Thesis, Jinan University, Jinan, China, 2020. [Google Scholar] [CrossRef]
- Miller, H.G.; Mork, P. From data to decisions: A value chain for big data. It Professional 2013, 15, 57–59. [Google Scholar] [CrossRef]
- Kretschmer, T. Information and communication technologies and productivity growth: A survey of the literature. OECD Digit. Econ. Pap. 2012, 195, 5–20. [Google Scholar] [CrossRef]
- Farboodi, M.; Veldkamp, L. Long Run Growth of Financial Technology; NBER Working Paper; National Bureau of Economic Research: Cambridge, MA, USA, 2017. [Google Scholar] [CrossRef]
- Chadefaux, T. Early warning signals for war in the news. J. Peace Res. 2014, 51, 5–18. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, W.W.; Mu, J.B.; Cheng, X.R. Optimizing Supply Chain Financial Strategies Based on Data Elements in the China’s Retail Industry: Towards Sustainable Development. Sustainability 2025, 17, 2207. [Google Scholar] [CrossRef]
- Liu, Y.; Zuo, Y.X. Can the Input of Data Elements Improve Manufacturing Productivity? Effect Measurement and Path Analysis. IEEE Trans. Eng. Manag. 2024, 71, 15320–15332. [Google Scholar] [CrossRef]
- Zhang, S.; Han, W.; Wu, X. The causal impact of data elements on corporate green transformation: Evidence from China. Systems 2025, 13, 515. [Google Scholar] [CrossRef]
- Wang, W.; Xiao, D. Marketization of data elements and enterprise green governance performance: A quasi-natural experiment based on data trading platforms. Manag. Decis. Econ. 2025, 46, 1686–1700. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, X.; Gao, W. The Impact of data element marketization on green total factor energy efficiency: Empirical evidence from China. Sustainability 2025, 17, 4099. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Sun, X.L. The temporal-spatial evolution and motivation analysis of green total factor productivity in Chinese logistics industry. Soft Sci. 2018, 32, 77–81+114. [Google Scholar] [CrossRef]
- Li, J.; Liu, L. Research on spatiotemporal difference and spatial convergence of green total factor productivity in interprovincial logistics industry. Resour. Environ. Yangtze Basin 2020, 29, 799–812. [Google Scholar]
- Xin, L. Research on the Dynamic Evolution and Influencing Factors of Green TFP of Logistics Industry in Provinces Along the Belt and Road. Master’s Thesis, Shandong Normal University, Jinan, China, 2019. [Google Scholar]
- Li, M.; Wang, J. Spatial-temporal evolution and influencing factors of total factor productivity in China’s logistics industry under low-carbon constraints. Environ. Sci. Pollut. Res. 2022, 29, 883–900. [Google Scholar] [CrossRef]
- Lei, X.; Liang, X.; Chen, X.; Ding, H.H. Exploring the development of green total factor productivity in logistics: Evidence from Beijing–Tianjin–Hebei region. Singap. Econ. Rev. 2024, 1–18. [Google Scholar] [CrossRef]
- Liang, Z.; Chiu, Y.-h.; Li, X.; Guo, Q.; Yun, Y. Study on the Effect of Environmental Regulation on the Green Total Factor Productivity of Logistics Industry from the Perspective of Low Carbon. Sustainability 2020, 12, 175. [Google Scholar] [CrossRef]
- Liu, H.H.; Chen, X.L.; Wang, X.F. Research on the threshold effect of urbanization and logistics green total factor productivity. Rev. Econ. Manag. 2020, 36, 123–132. [Google Scholar] [CrossRef]
- Tatarczak, A.; Grela, G. A Coalition formation ramework for horizontal supply chain collaboration. LogForum 2024, 20, 357–372. [Google Scholar] [CrossRef]
- Richey, R.G.; Chowdhury, S.; Davis-Sramek, B.; Giannakis, M.; Dwivedi, Y.K. Artificial intelligence in logistics and supply chain management: A primer and roadmap for research. J. Bus. Logist. 2023, 44, 532–549. [Google Scholar] [CrossRef]
- Singhdong, P.; Suthiwartnarueput, K.; Pornchaiwiseskul, P. Factors influencing digital transformation of logistics service providers: A case study in Thailand. J. Asian Financ. Econ. Bus. (JAFEB) 2021, 8, 241–251. [Google Scholar] [CrossRef]
- Burinskiene, A.; Daskevic, D. The investigation on the application of digital technologies for logistics business competitiveness. Teh. Glas. 2024, 18, 626–637. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Z.; He, B. Empowerment of Digital Technology for the Resilience of the Logistics Industry: Mechanisms and Paths. Systems 2024, 12, 278. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q. Impact of the Digital Economy on the Carbon Emissions of China’s Logistics Industry. Sustainability 2022, 14, 8641. [Google Scholar] [CrossRef]
- Jia, F.; Zeng, S.; Gao, X. Can the digital economy empower the transportation sector to improve green total factor productivity? Int. J. Sustain. Transp. 2024, 18, 871–886. [Google Scholar] [CrossRef]
- Duan, L.H. The relationship between digital factor resource endowment and the expansion and quality improvement of commerce and circulation industry—An analysis based on provincial panel data. J. Commer. Econ. 2022, 17, 29–32. [Google Scholar]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Norris, M.; Zhang, Z.Y. Productivity growth, technical progress, and efficiency change in industrialized countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Wang, Y.Q.; Zhang, S.H. DEA evaluation of economic development efficiency of cities in Henan Province. Econ. Res. Guide 2011, 15, 57–59. [Google Scholar]
- Wang, M.Y.; Wang, J.W.; Zhu, H.L. Measurement and spatial characteristics of intensification level of China’s circulation industry. China Bus. Mark. 2021, 35, 19–28. [Google Scholar] [CrossRef]
- Xue, J.B.; Wang, Z. A research on the capital calculation of 17 industries of China. Stat. Res. 2007, 7, 49–54. [Google Scholar] [CrossRef]
- Hu, C.L. Measurement, Analysis and Application of Capital Stock and Capital-Labour Elasticity of Substitution. Master’s Thesis, Dongbei University of Finance and Economics, Dalian, China, 2014. [Google Scholar]
- Yang, Y.B. The estimation of China’s physical capital stock: 1980–2018. Shanghai J. Econ. 2020, 8, 32–45. [Google Scholar] [CrossRef]
- Hall, R.E.; Jones, C.I. Why do some countries produce so much more output per worker than others? Q. J. Econ. 1999, 114, 83–116. [Google Scholar] [CrossRef]
- Gu, N.H.; Li, J.F. An empirical analysis on the regional disparity of technical efficiency realized in China’s service industries. Econ. Res. J. 2006, 114, 46–56. [Google Scholar]
- Zhang, S.H.; Yu, Y.Z.; Yang, X.Z. Estimation of China’s urban fixed capital stock and productivity convergence analysis: 1988–2015. China Soft Sci. 2021, 7, 74–86. [Google Scholar]
- Yao, J.; Zhuang, Y.L. Ownership structure, logistics environment and efficiency of China’s logistics industry. Res. Financ. Econ. Issues 2013, 3, 115–122. [Google Scholar]
- Lu, M. Research on Green Total Factor Productivity and Influencing Aspects of China’s Logistics Industry. Master’s Thesis, Huaqiao University, Xiamen, China, 2016. [Google Scholar]
- Fan, L. The Theoretical Model and Empirical Research on Green Total Factor Productivity and Cost Efficiency of China’s Logistics Industry. Master’s Thesis, South China University of Technology, Guangzhou, China, 2016. [Google Scholar]
- Xu, X.C.; Hu, Y.R.; Zhang, M.H. Research on measurement of digital economy growth and data as production factor. Bull. Chin. Acad. Sci. 2022, 37, 1410–1417. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.D.; Xiao, W. A Novel production factor: A study on forming conditions and operation mechanism of data. J. Zhejiang Univ. (Humanit. Soc. Sci.) 2022, 52, 5–15. [Google Scholar]
- Yang, Q.Y.; Xia, Y.K. The formation mechanism, influencing factors and implementation path of data factor value. Libr. Inf. 2023, 2, 12–22. [Google Scholar]
- Ma, L.S. Research on the Measurement of Development Level of Data Element and its Interaction with Traditional Production Factors. Master’s Thesis, Jiangxi University of Finance and Economics, Nanchang, China, 2022. [Google Scholar] [CrossRef]
- Dong, Y.; He, W.; Qiu, L.Y.; Sun, Z.Y. Evaluation and prediction of environmental suitability of data factor flows in China. Stat. Decis. 2023, 39, 56–60. [Google Scholar] [CrossRef]
- Liu, P. A study on the effect and mechanism of data factors on green ecological efficiency. Econ. Surv. 2023, 40, 136–148. [Google Scholar] [CrossRef]
- Xiong, Y. The value of data elements and the high quality development of the real economy. J. Tech. Econ. Manag. 2023, 7, 79–84. [Google Scholar]
- Peng, Y.; Li, S.M. Green economy transition effects of innovation and low-carbon policies—Based on the environmental perspective of data element flows. Contemp. Econ. Manag. 2023, 45, 69–79. [Google Scholar] [CrossRef]
- He, J.S.; Wang, J.F.; Xu, L. Research on the efficiency and influencing factors of green logistics in three bay-area city clusters under the constraint of carbon emission. Railw. Transp. Econ. 2021, 43, 30–36. [Google Scholar] [CrossRef]
- Liu, C.L.; Guan, M.M. Spatial evolution of Chinese logistics industry efficiency under low carbon constraints and it’s influencing factors. Geogr. Sci. 2017, 37, 1805–1814. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Zhao, Y.P.; Guo, C.Y.; Xin, Z.W. Research on the Impact of Digital-Real Integration on Logistics Industrial Transformation and Upgrading under Green Economy. Sustainability 2024, 16, 6173. [Google Scholar] [CrossRef]
- Guo, Y.X.; Mao, H.Y.; Ding, H.P.; Wu, X.; Liu, Y.J.; Liu, H.J.; Zhou, S.L. Data-Driven Coordinated Development of the Digital Economy and Logistics Industry. Sustainability 2022, 14, 8963. [Google Scholar] [CrossRef]
- Ptashchenko, O.; Zyma, O.; Kazak, O.; Naumenko, M.; Puzrakov, A. Digital Transformation in Logistics: Driving Sustainable Growth in International Commerce. Eur. J. Sustain. Dev. 2025, 14, 980. [Google Scholar] [CrossRef]
- Luo, R.; Wang, Q.M. Does digitalization promote the green and high-quality development of logistics industry in the Yellow River Basin of China? Pol. J. Environ. Stud. 2023, 32, 2749–2761. [Google Scholar] [CrossRef]
Energy Type | Average Low Calorific Value | Carbon Emission Coefficient | Carbon Oxidation Factor | Converted Standard Coal Coefficient |
---|---|---|---|---|
Raw coal | 20,908 kJ/kg | 25.8 kgC/GJ | 0.94 | 0.7143 kgC/kg |
Gasoline | 43,070 kJ/kg | 18.9 kgC/GJ | 0.98 | 1.4714 kgC/kg |
Kerosene | 43,070 kJ/kg | 19.6 kgC/GJ | 0.98 | 1.4714 kgC/kg |
Diesel | 42,652 kJ/kg | 20.2 kgC/GJ | 0.98 | 1.4571 kgC/kg |
Fuel oil | 41,816 kJ/kg | 21.1 kgC/GJ | 0.98 | 1.4286 kgC/kg |
Liquefied petroleum gas | 50,179 kJ/kg | 17.2 kgC/GJ | 0.98 | 1.7143 kgC/kg |
Natural gas | 15.3 kgC/GJ | 0.99 |
Variable name | Notation | Representation Indicator |
---|---|---|
Government norms | GOVN | The proportion of local general public budget expenditure to the local GDP |
Open to the outside world | OPEN | The proportion of total import and export trade to GDP |
Foreign direct investment | FDI | The proportion of total foreign investment to GDP |
Logistics industry gathering | GATH | Location entropy |
Urbanization rate | CITY | The proportion of urban population in the total population of the region |
Industry structure | INS | The proportion of the tertiary industry in GDP |
Industrialization level | IND | The proportion of the secondary industry in GDP |
Logistics strength | LOGS | The ratio of total logistics turnover to regional GDP |
Transport structure | STRU | The proportion of road transport in total turnover |
Year | Global Moran Index | z-Value | p-Value |
---|---|---|---|
2014 | 0.132 | 1.558 | 0.060 * |
2015 | 0.125 | 1.495 | 0.067 * |
2016 | 0.133 | 1.573 | 0.058 * |
2017 | 0.131 | 1.561 | 0.059 * |
2018 | 0.109 | 1.374 | 0.085 * |
2019 | 0.104 | 1.332 | 0.091 * |
2020 | 0.095 | 1.245 | 0.107 |
2021 | 0.100 | 1.282 | 0.100 * |
Stage 1 | Stage 2 | |
---|---|---|
DA | GTFP | |
DA | 2.4743 *** | |
(3.57) | ||
L.DA | 0.9470 *** | |
(45.16) | ||
GOVN | 0.0627 | −2.6627 ** |
(1.23) | (−1.99) | |
OPEN | −0.0358 | −0.6444 |
(−0.91) | (−1.01) | |
FDI | −0.0001 | 0.0298 |
(−0.30) | (1.51) | |
GATH | 0.0153 | 0.3085 |
(1.21) | (1.01) | |
CITY | −0.0077 | 0.4752 |
(−0.13) | (0.23) | |
INS | 0.2413 *** | 7.0232 *** |
(3.52) | (2.73) | |
IND | 0.1554 | 8.3442 ** |
(1.67) | (2.18) | |
LOGS | −0.0104 | 0.5601 |
(−1.00) | (0.73) | |
STRU | −0.0168 * | 1.5859 *** |
(−1.70) | (4.47) | |
N | 210 | 210 |
R2 | 0.9609 | 0.4862 |
Kleibergen-Paap rk LM | 18.1211 *** | |
Kleibergen-Paap rk Wald F | 785.9942 > 16.38 |
Variable Name | Notation | VIF | 1/VIF |
---|---|---|---|
Data elements | DA | 2.59 | 0.387 |
Government norms | GOVN | 1.91 | 0.523 |
Open to the outside world | OPEN | 5.16 | 0.194 |
Foreign direct investment | FDI | 1.57 | 0.636 |
Logistics industry gathering | GATH | 2.10 | 0.477 |
Urbanization rate | CITY | 4.43 | 0.226 |
Industry structure | INS | 8.30 | 0.121 |
Industrialization level | IND | 4.65 | 0.215 |
Logistics strength | LOGS | 2.46 | 0.407 |
Transport structure | STRU | 2.41 | 0.415 |
Mean VIF | 3.56 |
GTFP | Statistic | p-Value |
---|---|---|
Spatial error model | ||
Moran’s I | 5.272 | 0.000 *** |
Lagrange multiplier | 20.049 | 0.000 *** |
Robust Lagrange multiplier | 6.591 | 0.010 *** |
Spatial lag model | ||
Lagrange multiplier | 13.798 | 0.000 *** |
Robust Lagrange multiplier | 0.340 | 0.560 |
ECH | Statistic | p-Value |
---|---|---|
Spatial error model | ||
Moran’s I | 5.719 | 0.000 *** |
Lagrange multiplier | 24.097 | 0.000 *** |
Robust Lagrange multiplier | 0.152 | 0.696 |
Spatial lag model | ||
Lagrange multiplier | 29.808 | 0.000 *** |
Robust Lagrange multiplier | 5.864 | 0.015 ** |
TCH | Statistic | p-Value |
---|---|---|
Spatial error model | ||
Moran’s I | 6.801 | 0.000 *** |
Lagrange multiplier | 35.415 | 0.000 *** |
Robust Lagrange multiplier | 2.767 | 0.096 * |
Spatial lag model | ||
Lagrange multiplier | 34.448 | 0.000 *** |
Robust Lagrange multiplier | 1.800 | 0.180 |
Explained Variable | Chi2 Statistic | p-Value |
---|---|---|
GTFP | 190.36 | 0.0000 *** |
ECH | 495.09 | 0.0000 *** |
TCH | 64.35 | 0.0000 *** |
Explained Variable | LR chi2 Statistic | p-Value | |
---|---|---|---|
GTFP | : SDM can be degraded to SAR | 82.97 | 0.0000 *** |
: SDM can be degraded to SEM | 82.58 | 0.0000 *** | |
ECH | : SDM can be degraded to SAR | 48.26 | 0.0000 *** |
: SDM can be degraded to SEM | 48.33 | 0.0000 *** | |
TCH | : SDM can be degraded to SAR | 20.33 | 0.0263 ** |
: SDM can be degraded to SEM | 21.31 | 0.0190 ** |
Explained Variable | Fixed Effect Type | |
---|---|---|
GTFP | Time fixed | 0.3656 |
Individual fixed | 0.0130 | |
Mixed fixed | 0.0671 | |
ECH | Time fixed | 0.2852 |
Individual fixed | 0.0083 | |
Mixed fixed | 0.0062 | |
TCH | Time fixed | 0.5082 |
Individual fixed | 0.0221 | |
Mixed fixed | 0.0068 |
GTFP | |
---|---|
DA | 1.6075 *** (4.83) |
GOVN | −0.5887 ** (−2.01) |
OPEN | −0.1506 (−0.50) |
FDI | 0.0338 *** (4.33) |
GATH | 0.5462 *** (4.31) |
CITY | 1.0860 ** (2.10) |
INS | −0.8228 (−0.80) |
IND | −0.7003 (−1.02) |
LOGS | 0.3071 (1.29) |
STRU | 0.0075 (0.04) |
W*DA | 5.9952 *** (2.79) |
W*GOVN | −23.3927 * (−1.91) |
W*OPEN | −1.6753 (−1.28) |
W*FDI | −0.0672 (−0.25) |
W*GATH | 6.3486 *** (3.49) |
W*CITY | 8.8039 (0.71) |
W*INS | −29.5115 (−1.01) |
W*IND | −26.1765 (−0.91) |
W*LOGS | −4.2523 (−1.56) |
W*STRU | −1.5661 (−0.72) |
0.0042 (0.02) | |
0.2501 |
GTFP | ECH | TCH | |
---|---|---|---|
DA | 1.0968 *** (2.95) | −0.9992 * (−1.72) | 2.2814 *** (8.30) |
GOVN | −1.0062 *** (−3.16) | −1.4385 *** (−2.88) | 0.1657 (0.70) |
OPEN | 0.1442 (0.52) | −0.5587 (−1.29) | 0.3169 (1.54) |
FDI | 0.0295 *** (3.65) | 0.0608 *** (4.81) | −0.0099 * (−1.67) |
GATH | 0.4947 *** (3.82) | 0.2523 (1.25) | 0.3556 *** (3.72) |
CITY | 1.6328 *** (2.81) | 2.4350 *** (2.68) | −0.5232 (−1.22) |
INS | 0.0779 (0.10) | 3.3723 *** (2.81) | −1.9970 *** (−3.51) |
IND | 1.2305 * (1.79) | 1.3266 (1.24) | −0.6166 (−1.20) |
LOGS | 0.5958 ** (2.48) | −0.1889 (−0.51) | 0.3189 * (1.78) |
STRU | 0.1993 (1.16) | 0.2197 (0.81) | −0.1221 (−0.94) |
W*DA | 1.7273 *** (3.04) | 1.3378 (1.59) | 1.1307 ** (2.42) |
W*GOVN | 2.35 *** (3.96) | 2.6909 *** (2.91) | −0.2016 (2.42) |
W*OPEN | 2.3043 *** (5.06) | 2.6905 *** (3.78) | −0.3140 (−0.93) |
W*FDI | 0.0622 * (1.86) | 0.0572 (1.09) | 0.0083 (0.34) |
W*GATH | 0.7072 *** (3.09) | 0.9138 *** (2.60) | 0.2685 (1.53) |
W*CITY | −2.8939 *** (−2.88) | −2.6631 * (−1.65) | −0.5602 (−0.76) |
W*INS | −8.4058 *** (−4.67) | −6.9626 ** (−2.54) | −2.0256 (−1.54) |
W*IND | −5.9939 *** (−3.83) | −1.2171 (−0.5) | −3.2119 *** (−2.79) |
W*LOGS | −0.1686 (−0.26) | 0.6396 (0.63) | −0.7630 * (−1.60) |
W*STRU | 1.8829 *** (3.62) | 2.3109 *** (2.80) | −0.7452 * (−1.90) |
(W*y) | 0.0564 (0.66) | −0.0419 (−0.44) | −0.3006 *** (−3.22) |
0.3656 | 0.2852 | 0.5082 |
Direct Effect | Indirect Effect | Total Effect | |
---|---|---|---|
DA | 1.1331 *** (2.94) | 1.8600 *** (3.04) | 2.9931 *** (3.52) |
GOVN | −0.9857 *** (−3.23) | 2.4477 *** (3.69) | 1.4620 ** (1.99) |
OPEN | 0.1885 (0.69) | 2.4407 *** (4.70) | 2.6392 *** (4.48) |
FDI | 0.0304 *** (3.81) | 0.0679 * (1.89) | 0.0983 *** (2.60) |
GATH | 0.5114 *** (3.97) | 0.7538 *** (3.22) | 1.2652 *** (5.15) |
CITY | 1.6041 *** (2.84) | −2.9344 *** (−2.87) | −1.3303 (−1.29) |
INS | −0.0739 (−0.09) | −8.6489 *** (−4.93) | −8.7229 *** (−4.74) |
IND | 1.1103 (1.53) | −6.0793 *** (−3.81) | −4.9690 *** (−3.05) |
LOGS | 0.6033 ** (2.48) | −0.1302 (−0.19) | 0.4731 (0.60) |
STRU | 0.2387 (1.36) | 2.0449 *** (3.70) | 2.2837 *** (3.51) |
ECH | TCH | |||||
---|---|---|---|---|---|---|
Direct Effect | Indirect Effect | Total Effect | Direct Effect | Indirect Effect | Total Effect | |
DA | −0.9936 * (−1.67) | 1.3236 (1.54) | 0.3299 (0.27) | 2.2626 *** (8.13) | 0.3613 * (1.79) | 2.6239 *** (5.79) |
GOVN | −1.4874 *** (−3.11) | 2.7299 *** (2.84) | 1.2425 (1.20) | 0.1739 (0.74) | −0.1821 (−0.46) | −0.0083 (−0.02) |
OPEN | −0.5702 (−1.34) | 2.6416 *** (3.60) | 2.0714 *** (2.61) | 0.3540 ** (1.70) | −0.3421 (−1.11) | 0.0119 (0.04) |
FDI | 0.0601 *** (4.82) | 0.0536 (1.05) | 0.1137 ** (2.17) | −0.0107 * (−1.76) | 0.0100 (0.48) | −0.0007 (−0.04) |
GATH | 0.2542 (1.24) | 0.8489 ** (2.50) | 1.1031 *** (3.18) | 0.3508 *** (3.47) | 0.1205 (0.86) | 0.4713 *** (3.68) |
CITY | 2.4754 *** (2.77) | −2.6747 * (−1.75) | −0.1993 (−0.14) | −0.4882 (−1.10) | −0.3137 (−0.49) | −0.8019 (−1.51) |
INS | 3.3852 *** (2.73) | −6.6604 *** (−2.64) | −3.2752 (−1.30) | −1.9460 *** (−3.19) | −1.0899 (−1.01) | −3.0360 *** (−3.10) |
IND | 1.2730 (1.11) | −1.0450 (−0.45) | 0.2279 (0.10) | −0.4599 (−0.81) | −2.4530 ** (−2.46) | −2.9129 *** (−3.31) |
LOGS | −0.1837 (−0.49) | 0.6401 (0.67) | 0.4564 (0.42) | 0.3817 ** (2.17) | −0.7158 * (−1.85) | −0.3341 (−0.79) |
STRU | 0.2117 (0.81) | 2.3017 *** (2.96) | 2.5134 *** (2.79) | −0.0669 (−0.55) | −0.5584 * (−1.76) | −0.6252 * (−1.76) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, P.; Lu, C.; Xu, J.; Zhang, J. A Study on the Impact of Data Elements on Green Total Factor Productivity in China’s Logistics Industry. Sustainability 2025, 17, 8624. https://doi.org/10.3390/su17198624
Dai P, Lu C, Xu J, Zhang J. A Study on the Impact of Data Elements on Green Total Factor Productivity in China’s Logistics Industry. Sustainability. 2025; 17(19):8624. https://doi.org/10.3390/su17198624
Chicago/Turabian StyleDai, Panqian, Chenglin Lu, Jing Xu, and Jingjia Zhang. 2025. "A Study on the Impact of Data Elements on Green Total Factor Productivity in China’s Logistics Industry" Sustainability 17, no. 19: 8624. https://doi.org/10.3390/su17198624
APA StyleDai, P., Lu, C., Xu, J., & Zhang, J. (2025). A Study on the Impact of Data Elements on Green Total Factor Productivity in China’s Logistics Industry. Sustainability, 17(19), 8624. https://doi.org/10.3390/su17198624