Research on the Impact of Enterprise Artificial Intelligence on Supply Chain Resilience: Empirical Evidence from Chinese Listed Companies
Abstract
1. Introduction
2. Theoretical Analysis and Hypothesis Formulation
2.1. Enterprise Artificial Intelligence and Supply Chain Resilience
2.2. The Mediating Role of Information Transparency on Enterprise Artificial Intelligence and Supply Chain Resilience
2.3. The Mediating Role of Dynamic Capabilities on Enterprise Artificial Intelligence and Supply Chain Resilience
2.4. The Moderating Role of Digital Governance on Enterprise Artificial Intelligence and Supply Chain Resilience
3. Research Methodology
3.1. Construction of the Evaluation System for Supply Chain Resilience
3.2. Sample Selection and Data Sources
3.3. Variable Definition and Index Construction
3.3.1. Dependent Variable: Supply Chain Resilience (SCR)
3.3.2. Independent Variable: Enterprise Artificial Intelligence (AI)
3.3.3. Mediating Variable: Information Transparency (DA) and Dynamic Capabilities
3.3.4. Moderating Variable: Digital Governance (DG)
3.3.5. Control Variables
3.4. Model Design
4. Empirical Results and Analysis
4.1. Descriptive Statistics
4.2. Benchmark Regression Analysis
4.3. Robustness Tests
4.3.1. Replace Independent Variables
4.3.2. Replace the Dependent Variable
4.4. Endogeneity Test
4.4.1. Heckman Two-Stage Procedure
4.4.2. Increasing the Interaction Fixed Effect
4.4.3. Lagged Explanatory Variable
4.5. Analysis of Mediating Effect
4.6. Analysis of Regulatory Effect
5. Heterogeneity Analysis
5.1. Industry Characteristics
5.2. Enterprise Life Cycle
5.3. Supply Chain Status
6. Discussion and Conclusions
6.1. Discussion
6.2. Theoretical and Practical Implications
6.3. Policy Implications
6.4. Limitations and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soni, U.; Jain, V.; Kumar, S. Measuring supply chain resilience using a deterministic modeling approach. Comput. Ind. Eng. 2014, 74, 11–25. [Google Scholar] [CrossRef]
- Brusset, X. Does supply chain visibility enhance agility? Int. J. Prod. Econ. 2016, 171, 46–59. [Google Scholar] [CrossRef]
- Shi, D.; Li, X.; Li, D. How Can Intelligent Supply Chain lmprove Enterprise Performance: Study on Supply Chain Optimization Resilience Perspective. Chin. J. Manag. Sci. 2025, 33, 325–334. [Google Scholar]
- Siagian, H.; Tarigan, Z.J.H.; Jie, F. Supply Chain Integration Enables Resilience, Flexibility, and Innovation to Improve Business Performance in COVID-19 Era. Sustainability 2021, 13, 4669. [Google Scholar] [CrossRef]
- Bag, S.; Wood, L.C.; Xu, L.; Dhamija, P.; Kayikci, Y. Big data analytics as an operational excellence approach to enhance sustainable supply chain performance. Resour. Conserv. Recycl. 2020, 153, 104559. [Google Scholar] [CrossRef]
- Ceptureanu, E.G.; Ferraro, G.; Ceptureanu, S.I.; Lazar, R.; Florescu, M.; Matei, A. Impact of artificial intelligence and blockchain on supply chain resilience under influence of change management. Soft Comput. 2025, 29, 3617–3625. [Google Scholar] [CrossRef]
- Baryannis, G.; Validi, S.; Dani, S.; Antoniou, G. Supply chain risk management and artificial intelligence: State of the art and future research directions. Int. J. Prod. Res. 2018, 57, 2179–2202. [Google Scholar] [CrossRef]
- Shi, X.; Peng, B.; Hou, J. The impact of key digital transformation technologies on supply chain resilience: A meta-analysis. Technol. Anal. Strateg. 2025, 1–18. [Google Scholar] [CrossRef]
- Zamani, E.D.; Smyth, C.; Gupta, S.; Dennehy, D. Artificial intelligence and big data analytics for supply chain resilience: A systematic literature review. Ann. Oper. Res. 2022, 327, 605–632. [Google Scholar] [CrossRef]
- Ralston, P.; Blackhurst, J. Industry 4.0 and resilience in the supply chain: A driver of capability enhancement or capability loss? Int. J. Prod. Res. 2020, 58, 5006–5019. [Google Scholar] [CrossRef]
- Belhadi, A.; Mani, V.; Kamble, S.S.; Khan, S.A.R.; Verma, S. Artificial intelligence-driven innovation for enhancing supply chain resilience and performance under the effect of supply chain dynamism: An empirical investigation. Ann. Oper. Res. 2021, 333, 627–652. [Google Scholar] [CrossRef]
- Yue, X.; Kang, M.; Zhang, Y. The impact of artificial intelligence usage on supply chain resilience in manufacturing firms: A moderated mediation model. J. Manuf. Technol. Manag. 2025, 36, 759–776. [Google Scholar] [CrossRef]
- Tang, H.; Wu, K.; Zhou, J. Smarter supply chains, stronger resilience? The impact of AI on preparation, response, and recovery. Econ. Lett. 2025, 254, 112488. [Google Scholar] [CrossRef]
- Beta, K.; Nagaraj, S.S.; Weerasinghe, T.D.B. The role of artificial intelligence on supply chain resilience. J. Enterp. Inf. Manag. 2025, 38, 950–973. [Google Scholar] [CrossRef]
- Fosso Wamba, S.; Akter, S. Understanding supply chain analytics capabilities and agility for data-rich environments. Int. J. Oper. Prod. Manag. 2019, 39, 887–912. [Google Scholar] [CrossRef]
- Sahaym, A.; Vithayathil, J.; Sarker, S.; Sarker, S.; Bjørn-Andersen, N. Value Destruction in Information Technology Ecosystems: A Mixed-Method Investigation with Interpretive Case Study and Analytical Modeling. Inf. Syst. Res. 2023, 34, 508–531. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, F.; Guo, J.; Hu, G.; Song, Y. Can artificial intelligence technology improve companies’ capacity for green innovation? Evidence from listed companies in China. Energy Econ. 2025, 143, 108280. [Google Scholar] [CrossRef]
- Paschen, J.; Kietzmann, J.; Kietzmann, T.C. Artificial intelligence (AI) and its implications for market knowledge in B2B marketing. J. Bus. Ind. Mark. 2019, 34, 1410–1419. [Google Scholar] [CrossRef]
- Shi, F.; Yang, Y.; Yuan, Y.; Jia, J. Marketing Transformation in the Age of Artificial Intelligence. Chin. J. Manag. Sci. 2025, 33, 111–123. [Google Scholar]
- Cooper, R.G. The AI transformation of product innovation. Ind. Mark. Manag. 2024, 119, 62–74. [Google Scholar] [CrossRef]
- Chen, L.; Pelger, M.; Zhu, J. Deep Learning in Asset Pricing. Manag. Sci. 2024, 70, 714–750. [Google Scholar] [CrossRef]
- Trusov, M.; Ma, L.; Jamal, Z. Crumbs of the Cookie: User Profiling in Customer-Base Analysis and Behavioral Targeting. Mark. Sci. 2016, 35, 405–426. [Google Scholar] [CrossRef]
- Li, P.; Castelo, N.; Katona, Z.; Sarvary, M. Frontiers: Determining the Validity of Large Language Models for Automated Perceptual Analysis. Mark. Sci. 2024, 43, 254–266. [Google Scholar] [CrossRef]
- Goli, A.; Singh, A. Frontiers: Can Large Language Models Capture Human Preferences? Mark. Sci. 2024, 43, 709–722. [Google Scholar] [CrossRef]
- Chatterjee, S.; Rana, N.P.; Tamilmani, K.; Sharma, A. The effect of AI-based CRM on organization performance and competitive advantage: An empirical analysis in the B2B context. Ind. Market. Manag. 2021, 97, 205–219. [Google Scholar] [CrossRef]
- Helo, P.; Hao, Y. Artificial intelligence in operations management and supply chain management: An exploratory case study. Prod. Plan. Control 2021, 33, 1573–1590. [Google Scholar] [CrossRef]
- Toorajipour, R.; Sohrabpour, V.; Nazarpour, A.; Oghazi, P.; Fischl, M. Artificial intelligence in supply chain management: A systematic literature review. J. Bus. Res. 2021, 122, 502–517. [Google Scholar] [CrossRef]
- Wang, C.L.; Ahmed, P.K. Dynamic capabilities: A review and research agenda. Int. J. Manag. Rev. 2007, 9, 31–51. [Google Scholar] [CrossRef]
- Abourokbah, S.H.; Mashat, R.M.; Salam, M.A. Role of Absorptive Capacity, Digital Capability, Agility, and Resilience in Supply Chain Innovation Performance. Sustainability 2023, 15, 3636. [Google Scholar] [CrossRef]
- Han, H.; Trimi, S. Towards a data science platform for improving SME collaboration through Industry 4.0 technologies. Technol. Forecast. Soc. 2022, 174, 121242. [Google Scholar] [CrossRef]
- Du, Y.; Xu, J.; Yuan, X. How public digital governance system affects firms’ digital technology innovation performance: Base on open innovation perspective. Technol. Soc. 2025, 83, 103001. [Google Scholar] [CrossRef]
- Zhao, N.; Hong, J.; Lau, K.H. Impact of supply chain digitalization on supply chain resilience and performance: A multi-mediation model. Int. J. Prod. Econ. 2023, 259, 108817. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Yang, S.; Yang, S.; Zhang, J. An Empirical Study of the Bullwhip Effect in China. Prod. Oper. Manag. 2014, 23, 537–551. [Google Scholar] [CrossRef]
- Han, Y.; Chong, W.K.; Li, D. A systematic literature review of the capabilities and performance metrics of supply chain resilience. Int. J. Prod. Res. 2020, 58, 4541–4566. [Google Scholar] [CrossRef]
- Martin, R. Regional economic resilience, hysteresis and recessionary shocks. J. Econ. Geogr. 2011, 12, 1–32. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, Y. The Impact Mechanism of AI Technology on Enterprise Innovation Resilience. Sustainability 2025, 17, 5169. [Google Scholar] [CrossRef]
- Liu, X.; Ma, C.-Q.; Ren, Y.-S. ESG reactions to fintech: The role of cross-border capital flows. Res. Int. Bus. Finance 2025, 76, 102834. [Google Scholar] [CrossRef]
- Yang, G.; Nie, Y.; Li, H.; Wang, H. Digital transformation and low-carbon technology innovation in manufacturing firms: The mediating role of dynamic capabilities. Int. J. Prod. Econ. 2023, 263, 108969. [Google Scholar] [CrossRef]
- National Bureau of Statistics. Classification of Strategic Emerging Industries (2012) (Trial). Available online: https://gdzd.stats.gov.cn/fgzd/zdbz/201309/t20130905_133172.html (accessed on 23 September 2025).
- Dickinson, V. Cash Flow Patterns as a Proxy for Firm Life Cycle. Account. Rev. 2011, 86, 1969–1994. [Google Scholar] [CrossRef]
- Wang, M.; Pan, X. Drivers of Artificial Intelligence and Their Effects on Supply Chain Resilience and Performance: An Empirical Analysis on an Emerging Market. Sustainability 2022, 14, 16836. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, H.; Qiu, R.; Yu, L. How Does Artificial Intelligence Shape Supply Chain Resilience? The Moderating Role of the CEOs’ Sports Experience. Systems 2025, 13, 190. [Google Scholar] [CrossRef]
- Le, T.T.; Behl, A. Linking Artificial Intelligence and Supply Chain Resilience: Roles of Dynamic Capabilities Mediator and Open Innovation Moderator. IEEE Trans. Eng. Manag. 2024, 71, 8577–8590. [Google Scholar] [CrossRef]
Target Layer | First-Level Indicators | Secondary Indicators | Specific Indicators | Weight | Attributes |
---|---|---|---|---|---|
Supply Chain Resilience | Supply Chain Prevention Capability | supply chain transparency | The proportion of the transaction volume of large suppliers and customers with clear disclosure names to the total transaction volume of the top five suppliers and customers. | 0.293 | + |
supplier concentration | Ratio of top five suppliers’ purchases to total annual purchases | 0.015 | − | ||
customer concentration | Ratio of top five customers’ sales to total annual sales | 0.015 | − | ||
Supply and demand matching degree | Log(abs(Net inventory value − L.Net inventory value)/L.Net inventory value) | 0.019 | − | ||
Supply Chain Resistance Capability | Financial strength | Logarithm of total assets | 0.030 | + | |
Human capital | Proportion of people with bachelor’s degree or above | 0.062 | + | ||
Precipitated redundancy resources | The ratio of management cost to operating income | 0.064 | + | ||
Technical support | Proportion of technical personnel | 0.070 | + | ||
Supply Chain Resilience Capability | Financial relationship | The ratio of accounts receivable to operating income is logarithm | 0.040 | − | |
Recovery speed | turnover of inventory | 0.370 | + | ||
Performance volatility | SIi,t = (Inxi,t − Inxi,t−1) − (InXi,t − InXi,t−1) | 0.019 | + |
Code | Definition | |
---|---|---|
Dependent Variable | SCR | As mentioned above |
Independent variables | AI | ln(word frequency + 1) |
Mediating Variable | DA | The number of tracking analysis of research papers |
IC | ln(R&D investment) | |
AC | R&D expenditure/operating income | |
YC | The coefficient of variation of the three main expenditures of R&D, capital and advertising | |
Moderating variable | DG | Information benefiting people policy |
Control variables | Lev | total liabilities/total assets |
OC | The proportion of the second to fifth largest shareholder/the proportion of the largest shareholder | |
MO | The number of shares held by directors and supervisors/the total number of shares | |
SOE | State-owned enterprises are assigned a value of 1, otherwise it is 0. | |
ROA | Net profit/total assets | |
ZSCORE | ZScore model | |
RGR | (Current operating income − previous operating income)/previous operating income | |
Industry | Industry dummy variable | |
Year | Year dummy variable |
Number | Mean | S.D. | Min | Max | |
---|---|---|---|---|---|
SCR | 10,489 | 0.151 | 0.070 | 0.068 | 0.455 |
AI | 10,489 | 1.120 | 1.363 | 0.000 | 4.836 |
DA | 10,489 | 20.560 | 24.543 | 1.000 | 118.000 |
IC | 10,489 | 9.123 | 1.385 | 5.255 | 12.933 |
AC | 10,489 | 0.056 | 0.058 | 0.000 | 0.310 |
YC | 10,489 | −1.060 | 0.317 | −1.732 | −0.258 |
DG | 10,489 | 0.551 | 0.497 | 0.000 | 1.000 |
Lev | 10,489 | 0.398 | 0.190 | 0.056 | 0.897 |
OC | 10,489 | 0.774 | 0.590 | 0.034 | 2.773 |
MO | 10,489 | 16.722 | 19.978 | 0.000 | 67.760 |
SOE | 10,489 | 0.257 | 0.437 | 0.000 | 1.000 |
ROA | 10,489 | 0.046 | 0.057 | −0.265 | 0.192 |
ZSCORE | 10,489 | 5.395 | 5.847 | −0.082 | 36.305 |
RGR | 10,489 | 0.309 | 0.676 | −0.666 | 4.997 |
(1) SCR | (2) SCR | |
---|---|---|
AI | 0.0034 *** (0.001) | 0.0035 *** (0.001) |
Lev | −0.0049 (0.007) | |
OC | 0.0020 (0.002) | |
MO | −0.0001 (0.000) | |
SOE | 0.0073 ** (0.003) | |
ROA | −0.0481 *** (0.016) | |
ZSCORE | 0.0010 *** (0.000) | |
RGR | 0.0022 (0.002) | |
Industry | YES | YES |
Year | YES | YES |
Cons | 0.1476 *** (0.002) | 0.1431 *** (0.004) |
N | 10,489 | 10,489 |
R2 | 0.256 | 0.264 |
Replace Explanatory Variables | Replace the Explained Variable | |||
---|---|---|---|---|
(1) SCR | (2) SCR | (3) SCR | (4) SCR | |
AI | 0.0030 *** (0.001) | 0.0023 *** (0.001) | −5.3176 ** (2.416) | 0.0880 *** (0.010) |
Lev | −0.0044 (0.007) | −0.0118 * (0.007) | −16.5932 (18.354) | −0.0953 (0.063) |
OC | 0.0021 (0.002) | 0.0022 (0.002) | 1.8699 (3.911) | 0.0422 *** (0.016) |
MO | −0.0001 (0.000) | −0.0000 (0.000) | 0.2521 (0.159) | 0.0010 ** (0.000) |
SOE | 0.0073 ** (0.003) | 0.0055 ** (0.003) | −8.8623 (8.019) | 0.1138 *** (0.026) |
ROA | −0.0480 *** (0.016) | −0.0531 *** (0.017) | −371.2694 *** (67.902) | −0.7445 *** (0.159) |
ZSCORE | 0.0010 *** (0.000) | 0.0011 *** (0.000) | 3.0215 *** (0.666) | 0.0176 *** (0.002) |
RGR | 0.0023 (0.002) | 0.0026 (0.002) | 30.6700 *** (4.532) | 0.1389 *** (0.013) |
Industry | YES | YES | YES | YES |
Year | YES | YES | YES | YES |
Cons | 0.1439 *** (0.004) | 0.1350 *** (0.005) | 155.5298 *** (11.620) | −0.2459 *** (0.040) |
N | 10,489 | 9345 | 10,489 | 10,489 |
R2 | 0.264 | 0.272 | 0.381 | 0.622 |
Heckman Two-Stage Procedure | Interactive Fixed Effects | Lagged Explanatory Variable | ||
---|---|---|---|---|
(1) AI | (2) SCR | (3) SCR | (4) SCR | |
AI | 0.0032 *** (0.001) | 0.0037 *** (0.001) | ||
IV | 0.6754 *** (0.041) | |||
IMR | −0.0065 (0.005) | |||
L.AI | 0.0024 * (0.001) | |||
Lev | 0.3483 *** (0.115) | −0.0043 (0.007) | −0.0065 (0.007) | −0.0101 (0.009) |
OC | 0.0540 ** (0.026) | 0.0018 (0.002) | 0.0021 (0.002) | 0.0006 (0.002) |
MO | −0.0009 (0.001) | −0.0001 (0.000) | −0.0001 (0.000) | 0.0000 (0.000) |
SOE | 0.0257 (0.040) | 0.0061 ** (0.003) | 0.0072 ** (0.003) | 0.0064 * (0.004) |
ROA | 0.5325 * (0.306) | −0.0505 *** (0.017) | −0.0557 *** (0.018) | −0.0435 ** (0.021) |
ZSCORE | 0.0024 (0.004) | 0.0011 *** (0.000) | 0.0010 *** (0.000) | 0.0007 ** (0.000) |
RGR | 0.0658 ** (0.027) | 0.0020 (0.002) | 0.0024 (0.002) | 0.0017 (0.002) |
Industry | YES | YES | YES | YES |
Year | YES | YES | YES | YES |
Year # Industry | NO | NO | YES | NO |
Cons | −1.1472 (1.390) | 0.1483 *** (0.007) | 0.1440 *** (0.005) | 0.1522 *** (0.006) |
N | 10,310 | 10,310 | 10,489 | 5970 |
R2 | 0.251 | 0.310 | 0.291 |
(1) DA | (2) SCR | (3) IC | (4) SCR | (5) AC | (6) SCR | (7) YC | (8) SCR | |
---|---|---|---|---|---|---|---|---|
AI | 2.0671 *** (0.368) | 0.0033 *** (0.001) | 0.1814 *** (0.018) | 0.0029 *** (0.001) | 0.0042 *** (0.001) | 0.0028 *** (0.001) | 0.0169 *** (0.004) | 0.0035 *** (0.001) |
DA | 0.0001 * (0.000) | |||||||
IC | 0.0031 *** (0.001) | |||||||
AC | 0.1616 *** (0.029) | |||||||
YC | 0.0006 (0.003) | |||||||
Lev | 32.6038 *** (2.562) | −0.0074 (0.007) | 2.0823 *** (0.147) | −0.0114 (0.007) | −0.0491 *** (0.005) | 0.0030 (0.007) | −0.0840 *** (0.032) | −0.0049 (0.007) |
OC | 2.1462 *** (0.668) | 0.0019 (0.002) | 0.0820 ** (0.034) | 0.0018 (0.002) | 0.0031 ** (0.001) | 0.0015 (0.002) | 0.0022 (0.008) | 0.0020 (0.002) |
MO | −0.0409 * (0.021) | −0.0001 (0.000) | −0.0075 *** (0.001) | −0.0000 (0.000) | 0.0001 *** (0.000) | −0.0001 * (0.000) | 0.0004 (0.000) | −0.0001 (0.000) |
SOE | −2.1827 * (1.146) | 0.0075 *** (0.003) | 0.4201 *** (0.061) | 0.0060 ** (0.003) | −0.0010 (0.002) | 0.0075 *** (0.003) | 0.0240 * (0.013) | 0.0073 ** (0.003) |
ROA | 162.2967 *** (7.438) | −0.0604 *** (0.017) | 4.0800 *** (0.342) | −0.0609 *** (0.017) | −0.1960 *** (0.017) | −0.0165 (0.017) | 0.0480 (0.074) | −0.0482 *** (0.016) |
ZSCORE | 0.4714 *** (0.077) | 0.0010 *** (0.000) | −0.0066 (0.004) | 0.0011 *** (0.000) | 0.0019 *** (0.000) | 0.0007 *** (0.000) | 0.0020 ** (0.001) | 0.0010 *** (0.000) |
RGR | −0.6327 (0.593) | 0.0023 (0.002) | −0.0658 ** (0.029) | 0.0024 (0.002) | 0.0052 *** (0.001) | 0.0014 (0.001) | 0.0033 (0.007) | 0.0022 (0.002) |
Industry | YES | YES | YES | YES | YES | YES | YES | YES |
Year | YES | YES | YES | YES | YES | YES | YES | YES |
Cons | −5.0010 *** (1.592) | 0.1435 *** (0.004) | 7.9128 *** (0.089) | 0.1184 *** (0.008) | 0.0636 *** (0.003) | 0.1328 *** (0.005) | −1.0738 *** (0.021) | 0.1438 *** (0.005) |
N | 10,489 | 10,489 | 10,489 | 10,489 | 10,489 | 10,489 | 10,489 | 10,489 |
R2 | 0.203 | 0.265 | 0.406 | 0.267 | 0.507 | 0.273 | 0.226 | 0.264 |
Variable | (1) SCR |
---|---|
AI | 0.0029 *** (0.001) |
DG | 0.0032 (0.002) |
AI × DG | 0.0037 ** (0.002) |
Lev | −0.0051 (0.007) |
OC | 0.0022 (0.002) |
MO | −0.0001 (0.000) |
SOE | 0.0073 ** (0.003) |
ROA | −0.0466 *** (0.016) |
ZSCORE | 0.0010 *** (0.000) |
RGR | 0.0022 (0.002) |
Industry | YES |
Year | YES |
Cons | 0.1462 *** (0.004) |
N | 10,489 |
R2 | 0.266 |
High-Tech Industry | Non-High-Tech Industries | Manufacturing Industry | Non-Manufacturing Industry | |
---|---|---|---|---|
(1) SCR | (2) SCR | (3) SCR | (4) SCR | |
AI | 0.0040 *** (0.001) | 0.0020 (0.002) | 0.0043 *** (0.001) | 0.0022 (0.002) |
Lev | −0.0025 (0.008) | −0.0065 (0.013) | −0.0003 (0.007) | −0.0168 (0.016) |
OC | 0.0036 * (0.002) | −0.0013 (0.003) | 0.0052 *** (0.002) | −0.0052 (0.004) |
MO | −0.0001 (0.000) | −0.0001 (0.000) | −0.0000 (0.000) | −0.0002 (0.000) |
SOE | 0.0060 * (0.003) | 0.0098 * (0.006) | 0.0093 *** (0.003) | 0.0021 (0.007) |
ROA | −0.0651 *** (0.019) | 0.0063 (0.032) | −0.0642 *** (0.018) | −0.0039 (0.035) |
ZSCORE | 0.0011 *** (0.000) | 0.0010 * (0.001) | 0.0007 *** (0.000) | 0.0023 *** (0.001) |
RGR | 0.0039 ** (0.002) | −0.0005 (0.002) | 0.0064 *** (0.002) | −0.0021 (0.002) |
Industry | YES | YES | YES | YES |
Year | YES | YES | YES | YES |
Cons | 0.1391 *** (0.005) | 0.1482 *** (0.009) | 0.1243 *** (0.004) | 0.1927 *** (0.012) |
N | 7274 | 3215 | 7545 | 2944 |
R2 | 0.260 | 0.279 | 0.112 | 0.214 |
Growth Period | Maturity Period | Decline Period | Chain Master Enterprise | Non-Chain Master Enterprise | |
---|---|---|---|---|---|
(1) SCR | (2) SCR | (3) SCR | (4) SCR | (5) SCR | |
AI | 0.0034 ** (0.002) | 0.0034 ** (0.001) | 0.0029 ** (0.001) | 0.0044 * (0.002) | 0.0033 *** (0.001) |
Lev | 0.0043 (0.013) | −0.0092 (0.009) | −0.0081 (0.011) | −0.0119 (0.018) | −0.0059 (0.007) |
OC | 0.0021 (0.003) | 0.0033 (0.002) | −0.0002 (0.003) | −0.0078 * (0.004) | 0.0042 ** (0.002) |
MO | 0.0001 (0.000) | −0.0001 (0.000) | −0.0002 ** (0.000) | 0.0000 (0.000) | −0.0001 (0.000) |
SOE | 0.0086 (0.006) | 0.0056 (0.004) | 0.0055 (0.004) | −0.0035 (0.005) | 0.0093 *** (0.003) |
ROA | −0.1342 *** (0.034) | −0.0606 *** (0.022) | 0.0173 (0.026) | −0.1301 *** (0.041) | −0.0442 ** (0.018) |
ZSCORE | 0.0013 *** (0.000) | 0.0006 ** (0.000) | 0.0014 *** (0.000) | 0.0017 ** (0.001) | 0.0010 *** (0.000) |
RGR | 0.0046 * (0.003) | 0.0011 (0.002) | 0.0015 (0.002) | 0.0019 (0.004) | 0.0027 * (0.002) |
Industry | YES | YES | YES | YES | YES |
Year | YES | YES | YES | YES | YES |
Cons | 0.1320 *** (0.008) | 0.1479 *** (0.006) | 0.1475 *** (0.007) | 0.1645 *** (0.013) | 0.1398 *** (0.005) |
N | 2269 | 4089 | 4131 | 1913 | 8576 |
R2 | 0.296 | 0.303 | 0.277 | 0.367 | 0.259 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; Zhang, X. Research on the Impact of Enterprise Artificial Intelligence on Supply Chain Resilience: Empirical Evidence from Chinese Listed Companies. Sustainability 2025, 17, 8576. https://doi.org/10.3390/su17198576
Lin L, Zhang X. Research on the Impact of Enterprise Artificial Intelligence on Supply Chain Resilience: Empirical Evidence from Chinese Listed Companies. Sustainability. 2025; 17(19):8576. https://doi.org/10.3390/su17198576
Chicago/Turabian StyleLin, Lijie, and Xiangyu Zhang. 2025. "Research on the Impact of Enterprise Artificial Intelligence on Supply Chain Resilience: Empirical Evidence from Chinese Listed Companies" Sustainability 17, no. 19: 8576. https://doi.org/10.3390/su17198576
APA StyleLin, L., & Zhang, X. (2025). Research on the Impact of Enterprise Artificial Intelligence on Supply Chain Resilience: Empirical Evidence from Chinese Listed Companies. Sustainability, 17(19), 8576. https://doi.org/10.3390/su17198576