Harnessing ESG Sustainability Uncertainty, Financial Development and Information Technology for Energy Transition
Abstract
1. Introduction
2. Theoretical Context and Literature Review
2.1. Theoretical Context
2.2. Empirical Review
3. Data and Method
3.1. Data
3.2. Empirical Method
4. Findings and Discussion
4.1. Descriptive Statistics and Correlation
4.2. Nonlinearity and Normality Test Result
4.3. Unit Root Test Result
4.4. QQARDL Analysis Results
5. Conclusions and Policy Pathways
5.1. Conclusions
5.2. Policy Pathways
5.3. Managerial Implications
5.4. Future Research Directions Toward Sustainability
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- EIA. Energy Information Association. United States. 2024. Available online: https://www.eia.gov/todayinenergy/detail.php?id=48396 (accessed on 4 March 2024).
- UNFCCC. United Nations Framework Convention on Climate Change. Norway’s Updated Nationally Determined Contribution (NDC) 2020. 2024. Available online: https://unfccc.int/sites/default/files/NDC/2022-06/Norway_updatedNDC_2020%20%28Updated%20submission%29.pdf (accessed on 4 January 2025).
- Riaz, M.H.; Islam, S.; Ahmed, Z.; Khan, M.; Roshid, M.M.; Dhar, B.K.; Uddin, M.S. Nonlinear effects of ICT-trade openness on sustainable energy transition in Bangladesh. Energy Policy 2025, 206, 114784. [Google Scholar] [CrossRef]
- Usman, A.; Ozturk, I.; Ullah, S.; Hassan, A. Does ICT have symmetric or asymmetric effects on CO2 emissions? Evidence from selected Asian economies. Technol. Soc. 2021, 67, 101692. [Google Scholar] [CrossRef]
- Masanet, E.; Shehabi, A.; Lei, N.; Smith, S.; Koomey, J. Recalibrating global data center energy-use estimates. Science 2020, 367, 984–986. [Google Scholar] [CrossRef]
- Andrae, A.S.G.; Edler, T. On Global Electricity Usage of Communication Technology: Trends to 2030. Challenges 2015, 6, 117–157. [Google Scholar] [CrossRef]
- Belkhir, L.; Elmeligi, A. Assessing ICT global emissions footprint: Trends to 2040 & recommendations. J. Clean. Prod. 2018, 177, 448–463. [Google Scholar] [CrossRef]
- Destek, M.A.; Radulescu, M.; Özkan, O.; Balsalobre-Lorente, D. The hidden cost of renewable energy: A quantile view for environmental management on critical metals. J. Environ. Manag. 2025, 389, 126089. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Cheung, A. Climate policy uncertainty and energy transition: Evidence from prefecture-level cities in China. Energy Econ. 2024, 139, 107938. [Google Scholar] [CrossRef]
- Prempeh, K.B. The impact of financial development on renewable energy consumption: New insights from Ghana. Future Bus. J. 2023, 9, 6. [Google Scholar] [CrossRef]
- Wei, D.; Wu, H. Impact of financial development on the development of the renewable energy industry of China. J. Clim. Financ. 2023, 5, 100023. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, X.; Gao, Y. The Impact of Financial Development on Renewable Energy Consumption: A Multidimensional Analysis Based on Global Panel Data. Int. J. Environ. Res. Public Health 2023, 20, 3124. [Google Scholar] [CrossRef]
- Yang, F.; Wang, C. Clean energy, emission trading policy, and CO2 emissions: Evidence from China. Energy Environ. 2023, 34, 1657–1673. [Google Scholar] [CrossRef]
- Zuo, Q.; Majeed, M.T. Does trade policy uncertainty hurt renewable energy-related sustainable development goals in China? Heliyon 2024, 10, e35215. [Google Scholar] [CrossRef]
- Abbasi, K.R.; Adedoyin, F.F.; Abbas, J.; Hussain, K. The impact of energy depletion and renewable energy on CO2 emissions in Thailand: Fresh evidence from the novel dynamic ARDL simulation. Renew. Energy 2021, 180, 1439–1450. [Google Scholar] [CrossRef]
- Usman, O.; Iortile, I.B.; Ike, G.N. Enhancing sustainable electricity consumption in a large ecological reserve–based country: The role of democracy, ecological footprint, economic growth, and globalisation in Brazil. Environ. Sci Pollut. Res. 2020, 27, 13370–13383. [Google Scholar] [CrossRef]
- Javed, A.; Shabir, M.; Rao, F.; Uddin, M.S. Effect of green technological innovation and financial development on green energy transition in N-11 countries: Evidence from the novel Method of Moments Quantile Regression. Renew. Energy 2025, 242, 122435. [Google Scholar] [CrossRef]
- Işık, C.; Ongan, S.; Islam, H. Driving Energy Transition Through Artificial Intelligence: Integrating Economic, Environmental, Social, and Governance (ECON-ESG) Factors in OECD Countries. J. Knowl. Econ. 2025, 5, 1829–1840. [Google Scholar] [CrossRef]
- Özkan, O.; Naimoğlu, M.; Dam, M.M. The Impact of ESG-Related, Financial, and Geopolitical Uncertainties on the Renewable Energy Transition in the United States. Bus. Strategy Environ. 2025, 34, 7864–7877. [Google Scholar] [CrossRef]
- Achuo, E.; Kakeu, P.; Asongu, S. Financial development, human capital and energy transition: A global comparative analysis. Int. J. Energy Sect. Manag. 2024, ahead-of-print. [Google Scholar] [CrossRef]
- Adebayo, T.; Özkan, O.; Eweade, B.S.; Uzun Ozsahin, D. Effects of energy security and financial development on load capacity factor in the USA: A wavelet kernel-based regularized least squares approach. Clean Techn. Environ. Policy 2025, 27, 4215–4232. [Google Scholar] [CrossRef]
- Nathaniel, S.P.; Yalçiner, K.; Bekun, F.V. Assessing the environmental sustainability corridor: Linking natural resources, renewable energy, human capital, and ecological footprint in BRICS. Resour. Policy 2021, 70, 101924. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, M.-C.; Chang, T.; Wong, W.-K.; Li, F. Which Factors Determine CO2 Emissions in China? Trade Openness, Financial Development, Coal Consumption, Economic Growth or Urbanization: Quantile Granger Causality Test. Energies 2022, 15, 2450. [Google Scholar] [CrossRef]
- Destek, M.A.; Sinha, A. Renewable, non-renewable energy consumption, economic growth, trade openness and ecological footprint: Evidence from organisation for economic Co-operation and development countries. J. Clean. Prod. 2020, 242, 118537. [Google Scholar] [CrossRef]
- Zhao, Y.; Ramzan, M.; Brika, S.K.; Eweade, B.S. Uncertainty in climate and ESG policies: Implications for renewable energy investments. Appl. Econ. 2025, 2, 1–15. [Google Scholar] [CrossRef]
- Zhang, Z.; Feng, Y.; Zhou, H.; Chen, L.; Liu, Y. The Impact of Climate Policy Uncertainty on the ESG Performance of Enterprises. Systems 2024, 12, 495. [Google Scholar] [CrossRef]
- Doğan, M.; Şahin, S.; Kaplan, E.A. The role of environmental technologies in carbon decoupling: A pathway to zero emissions in Turkiye. J. Environ. Manag. 2025, 3, 3–20. [Google Scholar]
- Jamil, M.; Ahmed, F.; Debnath, G.C.; Bojnec, Š. Transition to Renewable Energy Production in the United States: The Role of Monetary, Fiscal, and Trade Policy Uncertainty. Energies 2022, 15, 4527. [Google Scholar] [CrossRef]
- Gao, Y.; Hafeez, M.; Kouki, F.; Sher, F.; Akbar, M.W. Unraveling the impact of financial stress and trade policy uncertainty on advancing renewable energy transition in the USA. Energy Environ. 2024, 7, 0958305X241262504. [Google Scholar] [CrossRef]
- Gyamfi, B.A.; Ofori, E.K.; Onifade, S.T.; Alharthi, M.; Prah, S.; Elheddad, M. Ecological-linked technology, institutional quality and environmental sustainability: Evidence from E7 economies. Energy Environ. 2025, 5, 20–34. [Google Scholar] [CrossRef]
- Wen, Y.; Shabbir, M.S.; Haseeb, M.; Kamal, M.; Anwar, A.; Khan, M.F.; Malik, S. The dynamic effect of information and communication technology and renewable energy on CO2 emission: Fresh evidence from panel quantile regression. Front. Environ. Sci. 2022, 10, 953035. [Google Scholar] [CrossRef]
- Shahbaz, M.; Wang, J.; Dong, K.; Zhao, J. The impact of digital economy on energy transition across the globe: The mediating role of government governance. Renew. Sustain. Energy Rev. 2022, 166, 112620. [Google Scholar] [CrossRef]
- Pata, U.K.; Kartal, M.T.; Kılıç Depren, S. The Role of Information and Communication Technologies and Energy-Related Research and Development Investments in Energy Transition: Evidence from the United States of America by Machine Learning Algorithm. Energy Technol. 2024, 12, 2301199. [Google Scholar] [CrossRef]
- Saqib, N.; Usman, M.; Mahmood, H.; Abbas, S.; Ahmad, F.; Mihai, D.; Mallek, R.S. The moderating role of technological innovation and renewable energy on CO2 emission in O.E.C.D. countries: Evidence from panel quantile regression approach. Econ. Res.-Ekon. Istraživanja 2023, 36, 2168720. [Google Scholar] [CrossRef]
- Ozkan, O.; Uche, E.; Nwani, C.; Okere, K.I. Critical minerals volatility under ESG uncertainty: Implications for the clean energy transition. Resour. Policy 2025, 108, 105678. Available online: https://ideas.repec.org//a/eee/jrpoli/v108y2025ics030142072500220x.html (accessed on 12 September 2025). [CrossRef]
- Zhang, T.; Xu, H.-C.; Zhou, W.-X. The impact of external uncertainties on the extreme return connectedness between food, fossil energy, and clean energy markets. arXiv 2025, arXiv:2503.06603. [Google Scholar] [CrossRef]
- Doğan, D.; Söylemez, Y.; Doğan, Ş.; Akça, N. The Impact of Financial Development on Renewable Energy Consumption: Evidence from RECAI Countries. Sustainability 2025, 17, 6381. [Google Scholar] [CrossRef]
- Olanrewaju, V.O.; Gyamfi, B.A.; Ozsahin, I.; Adebayo, T.S. Achieving SDGs 7, 8, and 13: Balancing policy uncertainty with renewable energy demand. Environ. Sci. Eur. 2025, 37, 97. [Google Scholar] [CrossRef]
- Investing. Market Data. 2025. Available online: https://www.investing.com/ (accessed on 6 May 2025).
- PU. Policy Uncertainty. 2023. Available online: https://www.policyuncertainty.com/us_monthly.html (accessed on 2 March 2023).
- WDI. World Development Indicator. 2025. Available online: https://data.worldbank.org/country/nigeria (accessed on 1 January 2025).
- Jordan, S.; Philips, A.Q. Cointegration Testing and Dynamic Simulations of Autoregressive Distributed Lag Models. Stata J. 2018, 18, 902–923. [Google Scholar] [CrossRef]
- Li, T.-H. Quantile Fourier Transform, Quantile Series, and Nonparametric Estimation of Quantile Spectra. arXiv 2024, arXiv:2211.05844. [Google Scholar] [CrossRef]
- Olanrewaju, V.O.; Adebayo, T.S.; Uzun, B. Navigating the impact of ESG sustainability uncertainty on fossil fuel prices: Evidence from wavelet cross-quantile regression. Appl. Econ. 2025, 5, 1–17. [Google Scholar] [CrossRef]
- Mohammed, K.S.; Pata, U.K.; Serret, V.; Kartal, M.T. The role of renewable energy and carbon dioxide emissions on the ESG market in European Union. Manag. Decis. Econ. 2024, 45, 5146–5158. [Google Scholar] [CrossRef]
- Charfeddine, L.; Kahia, M. Do information and communication technology and renewable energy use matter for carbon dioxide emissions reduction? Evidence from the Middle East and North Africa region. J. Clean. Prod. 2021, 327, 129410. [Google Scholar] [CrossRef]
- Haldar, A.; Sethi, N. Environmental effects of Information and Communication Technology—Exploring the roles of renewable energy, innovation, trade and financial development. Renew. Sustain. Energy Rev. 2022, 153, 111754. [Google Scholar] [CrossRef]
- Lee, C.-C.; Chen, M.-P.; Yuan, Z. Is information and communication technology a driver for renewable energy? Energy Econ. 2023, 124, 106786. [Google Scholar] [CrossRef]
- Saeed Meo, M.; Eweade, B.S.; Adebayo, T.S.; Özkan, O. Examining the effects of solar energy Innovations, information and communication technology and financial globalization on environmental quality in the united States via Quantile-On-Quantile KRLS analysis. Sol. Energy 2024, 272, 112450. [Google Scholar] [CrossRef]
- Alam, M.M.; Murad, M.W. The impacts of economic growth, trade openness and technological progress on renewable energy use in organization for economic co-operation and development countries. Renew. Energy 2020, 145, 382–390. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E.; Menyah, K.; Wolde-Rufael, Y. On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth. Ecol. Econ. 2010, 69, 2255–2260. [Google Scholar] [CrossRef]
- Ashfaq, S.; Liangrong, S.; Waqas, F.; Gulzar, S.; Mujtaba, G.; Nasir, R.M. Renewable energy and green economic growth nexus: Insights from simulated dynamic ARDL. Gondwana Res. 2024, 127, 288–300. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Güngör, H.; Adebayo, T.S. Consumption-based carbon emissions, renewable energy consumption, financial development and economic growth in Chile. Bus. Strategy Environ. 2022, 31, 1123–1137. [Google Scholar] [CrossRef]
- Adams, S.; Kaffo Fotio, H. Economic integration and environmental quality: Accounting for the roles of financial development, industrialization, urbanization and renewable energy. J. Environ. Plan. Manag. 2024, 67, 688–713. [Google Scholar] [CrossRef]
- Salahuddin, M.; Alam, K.; Ozturk, I.; Sohag, K. The effects of electricity consumption, economic growth, financial development and foreign direct investment on CO2 emissions in Kuwait. Renew. Sustain. Energy Rev. 2018, 81, 2002–2010. [Google Scholar] [CrossRef]
- Alola, A.A. The dynamics of crude oil price and the real estate market in Saudi Arabia: A Markov-switching approach. J. Public Aff. 2021, 21, e2178. [Google Scholar] [CrossRef]
- Alola, A.A. Carbon emissions and the trilemma of trade policy, migration policy and health care in the US. Carbon Manag. 2019, 10, 209–218. [Google Scholar] [CrossRef]
Author(s) | Period | Nation(s) | Method(s) | Result(s) |
---|---|---|---|---|
ESG Sustainability Uncertainty (ESG) and Energy Transition (ET) | ||||
[19] | 2002–2023 | USA | Quantile Analysis | ESG ↑↓ ET |
[9] | 2001–2023 | China | Panel Analysis | ESG ↑↓ ET |
[35] | 2002–2024 | Global | QQR | ESG ↓ ET |
[26] | 2011–2022 | China (A-share firms) | Fixed Effects Panel Model | ESG ↓ ET |
[25] | 2002–2024 | USA | Kernel Regularized Quantile Regression | ESG ↑↓ ET |
[36] | 2000–2024 | USA | ARDL | ESG ↑↓ ET |
Financial Development and Energy Transition (ET) | ||||
[10] | 1990–2019 | Ghana | FMOLS & DOLS | FD ↑ ET |
[11] | 2000–2021 | Global | Panel regression | FD ↑ ET |
[37] | 1991–2021 | RECAI countries | Panel regression | FD ↑ ET |
[12] | 2000–2022 | OECD countries | Nonlinear panel data methods | FD ↑↓ ET |
[17] | 2000–2021 | N-11 (Next-11) emerging nations | Regression models | FD ↑↓ ET |
Trade Policy Uncertainty (TPU) and Energy Transition (ET) | ||||
[14] | 2000–2023 | China | Panel Asymmetric Effects | TPU ↓ ET |
[28] | 2000–2021 | United States | Panel regression | TPU ↓ ET |
[29] | 1995–2021 | United States | Nonlinear analysis | TPU ↓ ET |
[38] | 1987–2024 | United States | Multi-frequency quantile regression | TPU ↓↑ ET |
Information Communication Technology (IT) and Energy Transition (ET) | ||||
[31] | 1990–2018 | MINT | Quantile Regression | IT ↑ ET |
[32] | 2000–2020 | Global sample | Panel regression | IT ↑ ET |
[3] | 1991–2023 | Bangladesh | QARDL | IT ↑ ET |
[34] | 2000–2020 | OECD countries | Panel quantile regression | IT ↑ ET |
[33] | 1995–2020 | China | QARDL | IT ↑ ET |
EG | IT | ET | TPU | ESG | FD | |
---|---|---|---|---|---|---|
Minimum | 10.8250 | 5.3310 | 5.7470 | 2.9310 | 2.3530 | 3.8230 |
Maximum | 11.1420 | 8.4140 | 6.6110 | 7.0520 | 4.6180 | 4.1010 |
Mean | 10.9660 | 6.5500 | 6.2280 | 4.2190 | 3.2650 | 3.9550 |
Median | 10.9380 | 6.2370 | 6.3130 | 4.0600 | 3.2280 | 3.9470 |
Stdev | 0.0850 | 0.8630 | 0.2530 | 0.9860 | 0.3980 | 0.0580 |
Skewness | 0.4620 | 0.6120 | −0.4980 | 1.0960 | 0.4570 | 0.7770 |
Kurtosis | 2.1910 | 2.0960 | 1.8860 | 3.6950 | 3.5790 | 3.3930 |
Jarque-Bera | 5.7250 | 8.7760 | 8.4670 | 20.0370 | 4.4310 | 9.7330 |
Probability | 0.0570 * | 0.0120 ** | 0.0150 ** | 0.0000 *** | 0.1090 | 0.0080 * |
ET | IT | ESG | FD | TPU | EG | |
---|---|---|---|---|---|---|
M2 | 33.286 *** | 30.797 *** | 7.6401 *** | 17.034 *** | 10.174 *** | 31.947 *** |
M3 | 35.568 *** | 32.234 *** | 6.6638 *** | 17.397 *** | 10.676 *** | 33.517 *** |
M4 | 38.269 *** | 34.309 *** | 6.7724 *** | 18.150 *** | 11.552 *** | 35.621 *** |
M5 | 42.577 *** | 37.611 *** | 6.8657 *** | 19.689 *** | 12.372 *** | 39.053 *** |
M6 | 48.341 *** | 42.369 *** | 7.0889 *** | 21.746 *** | 13.209 *** | 43.951 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Wang, X. Harnessing ESG Sustainability Uncertainty, Financial Development and Information Technology for Energy Transition. Sustainability 2025, 17, 8575. https://doi.org/10.3390/su17198575
Jiang Y, Wang X. Harnessing ESG Sustainability Uncertainty, Financial Development and Information Technology for Energy Transition. Sustainability. 2025; 17(19):8575. https://doi.org/10.3390/su17198575
Chicago/Turabian StyleJiang, Yiyun, and Xiufeng Wang. 2025. "Harnessing ESG Sustainability Uncertainty, Financial Development and Information Technology for Energy Transition" Sustainability 17, no. 19: 8575. https://doi.org/10.3390/su17198575
APA StyleJiang, Y., & Wang, X. (2025). Harnessing ESG Sustainability Uncertainty, Financial Development and Information Technology for Energy Transition. Sustainability, 17(19), 8575. https://doi.org/10.3390/su17198575