Groundwater Fluoride Prediction for Sustainable Water Management: A Comparative Evaluation of Machine Learning Approaches Enhanced by Satellite Embeddings
Abstract
1. Introduction
- Can ML models, trained exclusively on publicly available geospatial data and novel satellite embeddings, accurately predict groundwater fluoride risk without relying on traditional hydrochemical inputs?
- How do the performances of RF, SVM, and ANN models compare in this new predictive framework, and what is the quantifiable benefit of incorporating satellite embeddings?
- What are the dominant environmental and anthropogenic drivers of fluoride distribution in the Datong Basin, as revealed by the most effective predictive model?
2. Study Area Setting
3. Materials and Methods
3.1. Predictor Variables and Data Preparation
3.1.1. Target Variable: Groundwater Fluoride Concentration
3.1.2. Predictor Variable Datasets
3.1.3. Determination of the Most Relevant Input Variables
3.2. Model Development
3.2.1. ANN
3.2.2. RF
3.2.3. SVM
3.2.4. Model Validation
3.2.5. Feature Importance Analysis
4. Results
4.1. Model Evaluation and Comparison
4.2. Variables Influencing Fluoride Distribution
4.3. Predicted Spatial Distribution of Groundwater Fluoride
5. Discussion
5.1. Interpretation of Model Performance
5.2. Hydrogeological Significance of Key Drivers
5.3. Implications of the Predicted Spatial Distribution
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Margat, J.; Van der Gun, J. Groundwater Around the World: A Geographic Synopsis; CRC Press: Boca Raton, USA, 2013; pp. 148–149. [Google Scholar]
- Beyene, G.; Aberra, D.; Fufa, F. Evaluation of the suitability of groundwater for drinking and irrigation purposes in Jimma Zone of Oromia, Ethiopia. Groundw. Sustain. Dev. 2019, 9, 100216. [Google Scholar] [CrossRef]
- United Nations Educational, Scientific and Cultural Organization (UNESCO). The United Nations World Water Development Report 2022: Groundwater: Making the Invisible Visible; Technical report; UNESCO: Paris, France, 2022. [Google Scholar]
- Nazari, S.; Reinecke, R.; Moosdorf, N. Global estimates of groundwater withdrawal trends and uncertainties. Environ. Res. Lett. 2025, 20, 094043. [Google Scholar] [CrossRef]
- Gleeson, T.; Alley, W.M.; Allen, D.M.; Sophocleous, M.A.; Zhou, Y.; Taniguchi, M.; VanderSteen, J. Towards sustainable groundwater use: Setting long-term goals, backcasting, and managing adaptively. Groundwater 2012, 50, 19–26. [Google Scholar]
- Shaikh, M.; Birajdar, F. Groundwater and ecosystems: Understanding the critical interplay for sustainability and conservation. EPRA Int. J. Multidiscip. Res. 2024, 10, 181–186. [Google Scholar]
- World Health Organization. World Health Statistics 2025: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2025; pp. 38–39. [Google Scholar]
- Kimambo, V.; Bhattacharya, P.; Mtalo, F.; Mtamba, J.; Ahmad, A. Fluoride occurrence in groundwater systems at global scale and status of defluoridation-state of the art. Groundw. Sustain. Dev. 2019, 9, 100223. [Google Scholar] [CrossRef]
- Fawell, J.K.; Bailey, K. Fluoride in Drinking-Water; World Health Organization: Geneva, Switzerland, 2006; pp. 2–3. [Google Scholar]
- Ayoob, S.; Gupta, A.K. Fluoride in drinking water: A review on the status and stress effects. Crit. Rev. Environ. Sci. Technol. 2006, 36, 433–487. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011; pp. 41–42. [Google Scholar]
- Su, C.; Wang, Y.; Xie, X.; Li, J. Aqueous geochemistry of high-fluoride groundwater in Datong Basin, Northern China. J. Geochem. Explor. 2013, 135, 79–92. [Google Scholar] [CrossRef]
- Podgorski, J.E.; Labhasetwar, P.; Saha, D.; Berg, M. Prediction modeling and mapping of groundwater fluoride contamination throughout India. Environ. Sci. Technol. 2018, 52, 9889–9898. [Google Scholar] [CrossRef]
- Nafouanti, M.B.; Li, J.; Mustapha, N.A.; Uwamungu, P.; Al-Alimi, D. Prediction on the fluoride contamination in groundwater at the Datong Basin, Northern China: Comparison of random forest, logistic regression and artificial neural network. Appl. Geochem. 2021, 132, 105054. [Google Scholar] [CrossRef]
- Nafouanti, M.B.; Li, J.; Nyakilla, E.E.; Mwakipunda, G.C.; Mulashani, A. A novel hybrid random forest linear model approach for forecasting groundwater fluoride contamination. Environ. Sci. Pollut. Res. 2023, 30, 50661–50674. [Google Scholar] [CrossRef]
- Rafique, T.; Naseem, S.; Bhanger, M.I.; Usmani, T.H. Fluoride ion contamination in the groundwater of Mithi sub-district, the Thar Desert, Pakistan. Environ. Geol. 2008, 56, 317–326. [Google Scholar] [CrossRef]
- Tekle-Haimanot, R.; Melaku, Z.; Kloos, H.; Reimann, C.; Fantaye, W.; Zerihun, L.; Bjorvatn, K. The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley. Sci. Total Environ. 2006, 367, 182–190. [Google Scholar]
- Borgnino, L.; Garcia, M.; Bia, G.; Stupar, Y.; Le Coustumer, P.; Depetris, P. Mechanisms of fluoride release in sediments of Argentina’s central region. Sci. Total Environ. 2013, 443, 245–255. [Google Scholar]
- Zhang, Z.; Liu, J.; Xiao, Z.; Liu, F.; Wang, Z.; Chen, S.; Zhang, J.; Xia, Y.; Jiang, W.; Ning, H. Spatial distribution, controlling factors, and health risk assessment of groundwater fluoride in the Chahanur Basin, Inner Mongolia, China. Environ. Earth Sci. 2025, 84, 400. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Zhu, C.; Xue, X.; Qian, K.; Xie, X.; Wang, Y. Hydrogeochemical processes controlling the mobilization and enrichment of fluoride in groundwater of the North China Plain. Sci. Total Environ. 2020, 730, 138877. [Google Scholar] [CrossRef]
- Sun, D.; Li, J.; Li, H.; Liu, Q.; Zhao, S.; Huang, Y.; Wu, Q.; Xie, X. Evolution of groundwater salinity and fluoride in the deep confined aquifers of Cangzhou in the North China plain after the South-to-North Water Diversion Project. Appl. Geochem. 2022, 147, 105485. [Google Scholar]
- Cao, W.; Zhang, Z.; Fu, Y.; Zhao, L.; Ren, Y.; Nan, T.; Guo, H. Prediction of arsenic and fluoride in groundwater of the North China Plain using enhanced stacking ensemble learning. Water Res. 2024, 259, 121848. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hou, J.; Zhou, J.; Yu, J.; Zhang, J.; Zhao, J. Hydrogeochemical Processes and Sustainability Challenges of Arsenic-and Fluoride-Contaminated Groundwater in Arid Regions: Evidence from the Tarim Basin, China. Sustainability 2025, 17, 7971. [Google Scholar]
- Li, L.; Wang, Y.; Wu, Y.; Li, J. Major geochemical controls on fluoride enrichment in groundwater: A case study at Datong Basin, northern China. J. Earth Sci. 2013, 24, 976–986. [Google Scholar] [CrossRef]
- Feng, F.; Jia, Y.; Yang, Y.; Huan, H.; Lian, X.; Xu, X.; Xia, F.; Han, X.; Jiang, Y. Hydrogeochemical and statistical analysis of high fluoride groundwater in northern China. Environ. Sci. Pollut. Res. 2020, 27, 34840–34861. [Google Scholar] [CrossRef]
- Wang, X.; Weerasinghe, R.N.N.; Su, C.; Wang, M.; Jiang, J. Origin and Enrichment Mechanisms of Salinity and Fluoride in Sedimentary Aquifers of Datong Basin, Northern China. Int. J. Environ. Res. Public Health 2023, 20, 1832. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Wang, Y.; Xie, X.; Zhu, Y. An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin, Northern China. Environ. Sci. Processes Impacts 2015, 17, 791–801. [Google Scholar]
- Li, J.; Wang, Y.; Xie, X.; Su, C. Hierarchical cluster analysis of arsenic and fluoride enrichments in groundwater from the Datong basin, Northern China. J. Geochem. Explor. 2012, 118, 77–89. [Google Scholar] [CrossRef]
- Sridhar, C.; Thirumurugan, M.; Subramani, T.; Gopinathan, P. Global distribution and sources of uranium and fluoride in groundwater: A comprehensive review. J. Geochem. Explor. 2025, 270, 107665. [Google Scholar]
- Chaudhuri, R.; Sahoo, S.; Debsarkar, A.; Hazra, S. Fluoride Contamination in Groundwater—A Review. In Geospatial Practices in Natural Resources Management; Springer International Publishing: Cham, Switzerland, 2024; pp. 331–354. [Google Scholar]
- Shaji, E.; Sarath, K.; Santosh, M.; Krishnaprasad, P.; Arya, B.; Babu, M.S. Fluoride contamination in groundwater: A global review of the status, processes, challenges, and remedial measures. Geosci. Front. 2024, 15, 101734. [Google Scholar]
- Jacks, G.; Bhattacharya, P.; Chaudhary, V.; Singh, K. Controls on the genesis of some high-fluoride groundwaters in India. Appl. Geochem. 2005, 20, 221–228. [Google Scholar] [CrossRef]
- Edmunds, W.M.; Smedley, P.L. Fluoride in natural waters. In Essentials of Medical Geology: Revised Edition; Springer: Berlin/Heidelberg, Germany, 2012; pp. 311–336. [Google Scholar]
- Amini, M.; Mueller, K.; Abbaspour, K.C.; Rosenberg, T.; Afyuni, M.; Møller, K.N.; Sarr, M.; Johnson, C.A. Statistical modeling of global geogenic fluoride contamination in groundwaters. Environ. Sci. Technol. 2008, 42, 3662–3668. [Google Scholar] [CrossRef] [PubMed]
- Chaney, R.L. Food safety issues for mineral and organic fertilizers. Adv. Agron. 2012, 117, 51–116. [Google Scholar]
- Rapantova, N.; Grmela, A.; Vojtek, D.; Halir, J.; Michalek, B. Ground water flow modelling applications in mining hydrogeology. Mine Water Environ. 2007, 26, 264–270. [Google Scholar] [CrossRef]
- Alagha, J.S.; Said, M.A.M.; Mogheir, Y. Modeling of nitrate concentration in groundwater using artificial intelligence approach—a case study of Gaza coastal aquifer. Environ. Monit. Assess. 2014, 186, 35–45. [Google Scholar] [CrossRef]
- Haggerty, R.; Sun, J.; Yu, H.; Li, Y. Application of machine learning in groundwater quality modeling-A comprehensive review. Water Res. 2023, 233, 119745. [Google Scholar] [CrossRef]
- Nadiri, A.A.; Fijani, E.; Tsai, F.T.C.; Asghari Moghaddam, A. Supervised committee machine with artificial intelligence for prediction of fluoride concentration. J. Hydroinf. 2013, 15, 1474–1490. [Google Scholar] [CrossRef]
- Sajedi-Hosseini, F.; Malekian, A.; Choubin, B.; Rahmati, O.; Cipullo, S.; Coulon, F.; Pradhan, B. A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Sci. Total Environ. 2018, 644, 954–962. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, T.; Sarkar, S.; Sen, S.; Mukherjee, A. Application of machine learning in delineating groundwater contamination at present times and in climate change scenarios. Curr. Opin. Environ. Sci. Health 2024, 39, 100554. [Google Scholar] [CrossRef]
- Hosseini, F.S.; Choubin, B.; Bagheri-Gavkosh, M.; Karimi, O.; Taromideh, F.; Mako, C. Susceptibility assessment of groundwater nitrate contamination using an ensemble machine learning approach. Groundwater 2023, 61, 510–516. [Google Scholar]
- Baghapour, M.A.; Fadaei Nobandegani, A.; Talebbeydokhti, N.; Bagherzadeh, S.; Nadiri, A.A.; Gharekhani, M.; Chitsazan, N. Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran. J. Environ. Health Sci. Eng. 2016, 14, 13. [Google Scholar] [CrossRef]
- Charulatha, G.; Srinivasalu, S.; Uma Maheswari, O.; Venugopal, T.; Giridharan, L. Evaluation of ground water quality contaminants using linear regression and artificial neural network models. Arabian J. Geosci. 2017, 10, 128. [Google Scholar] [CrossRef]
- Beerala, A.K.; Gobinath, R.; Shyamala, G.; Manvitha, S. Water quality prediction using statistical tool and machine learning algorithm. In Waste Management: Concepts, Methodologies, Tools, and Applications; IGI Global Scientific Publishing: Hershey, PA, USA, 2020; pp. 609–623. [Google Scholar]
- Rodriguez-Galiano, V.F.; Luque-Espinar, J.A.; Chica-Olmo, M.; Mendes, M.P. Feature selection approaches for predictive modelling of groundwater nitrate pollution: An evaluation of filters, embedded and wrapper methods. Sci. Total Environ. 2018, 624, 661–672. [Google Scholar] [CrossRef]
- Knoll, L.; Breuer, L.; Bach, M. Nation-wide estimation of groundwater redox conditions and nitrate concentrations through machine learning. Environ. Res. Lett. 2020, 15, 064004. [Google Scholar] [CrossRef]
- Saghebian, S.M.; Sattari, M.T.; Mirabbasi, R.; Pal, M. Ground water quality classification by decision tree method in Ardebil region, Iran. Arabian J. Geosci. 2014, 7, 4767–4777. [Google Scholar] [CrossRef]
- Park, Y.; Ligaray, M.; Kim, Y.M.; Kim, J.H.; Cho, K.H.; Sthiannopkao, S. Development of enhanced groundwater arsenic prediction model using machine learning approaches in Southeast Asian countries. Desalin. Water Treat. 2016, 57, 12227–12236. [Google Scholar]
- Liu, J.; Gu, J.; Li, H.; Carlson, K.H. Machine learning and transport simulations for groundwater anomaly detection. J. Comput. Appl. Math. 2020, 380, 112982. [Google Scholar] [CrossRef]
- Isazadeh, M.; Biazar, S.M.; Ashrafzadeh, A. Support vector machines and feed-forward neural networks for spatial modeling of groundwater qualitative parameters. Environ. Earth Sci. 2017, 76, 610. [Google Scholar] [CrossRef]
- Singh, G.; Mehta, S. Prediction of geogenic source of groundwater fluoride contamination in Indian states: A comparative study of different supervised machine learning algorithms. J. Water Health 2024, 22, 1387–1408. [Google Scholar] [CrossRef]
- Agrawal, A.; Petersen, M.R. Detecting arsenic contamination using satellite imagery and machine learning. Toxics 2021, 9, 333. [Google Scholar] [CrossRef]
- Tollefson, J. Google AI model creates maps of Earth ‘at any place and time’. Nature 2025, 644, 313. [Google Scholar] [PubMed]
- Brown, C.F.; Kazmierski, M.R.; Pasquarella, V.J.; Rucklidge, W.J.; Samsikova, M.; Zhang, C.; Shelhamer, E.; Lahera, E.; Wiles, O.; Ilyushchenko, S.; et al. AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data. arXiv 2025, arXiv:2507.22291. [Google Scholar] [CrossRef]
- Zhao, S.; Li, J.; Xue, X.; Sun, D.; Liu, W.; Zhu, C.; Yang, Y.; Xie, X. Molecular characteristics of natural organic matter in the groundwater system with geogenic iodine contamination in the Datong Basin, Northern China. Chemosphere 2023, 333, 138834. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Wang, Y.; Li, J.; Wu, Y.; Duan, M. Soil geochemistry and groundwater contamination in an arsenic-affected area of the Datong Basin, China. Environ. Earth Sci. 2014, 71, 3455–3464. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Xie, X. Spatial occurrence and geochemistry of soil salinity in Datong basin, northern China. J. Soils Sediments 2014, 14, 1445–1455. [Google Scholar] [CrossRef]
- Qian, K.; Sun, H.; Li, J.; Xie, X. Strontium isotopes as tracers for water-rocks interactions of groundwater to delineate iodine enrichment in aquifer of Datong Basin, northern China. Appl. Geochem. 2023, 158, 105783. [Google Scholar] [CrossRef]
- Guo, H.; Wang, Y. Hydrogeochemical processes in shallow quaternary aquifers from the northern part of the Datong Basin, China. Appl. Geochem. 2004, 19, 19–27. [Google Scholar] [CrossRef]
- Yi, Q.; Cheng, Y.p.; Zhang, J.k. Analysis on the salt content characteristics of southern saline-alkali soil in Datong Basin and its causes. J. Groundw. Sci. Eng 2014, 2, 63–72. [Google Scholar] [CrossRef]
- Biedunkova, O.; Kuznietsov, P. Liquid Ion Chromatographic Determination of Soluble Ions in Water: Comparison of Greenness and Comprehensive Assessment of Irrigation Suitability. Water Air Soil Pollut. 2025, 236, 315. [Google Scholar] [CrossRef]
- Gheyas, I.A.; Smith, L.S. Feature subset selection in large dimensionality domains. Pattern Recognit. 2010, 43, 5–13. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The elements of statistical learning: Data mining, inference, and prediction; Springer New York: New York, USA, 2009. [Google Scholar]
- Probst, P.; Wright, M.N.; Boulesteix, A.L. Hyperparameters and tuning strategies for random forest. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1301. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification; Technical report; Department of Computer Science, National Taiwan University: Taipei, Taiwan, 2003. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Goutte, C.; Gaussier, E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In Proceedings of the European Conference on Information Retrieval, Santiago de Compostela, Spain, 21–23 March 2025; Springer: Berlin/Heidelberg, Germany, 2005; pp. 345–359. [Google Scholar]
- Calle, M.L.; Urrea, V. Stability of Random Forest importance measures. Briefings Bioinf. 2011, 12, 86–89. [Google Scholar] [CrossRef]
- Khalil, A.; Almasri, M.N.; McKee, M.; Kaluarachchi, J.J. Applicability of statistical learning algorithms in groundwater quality modeling. Water Resour. Res. 2005, 41, W05010. [Google Scholar] [CrossRef]
- Ouedraogo, I.; Defourny, P.; Vanclooster, M. Application of random forest regression and comparison of its performance to multiple linear regression in modeling groundwater nitrate concentration at the African continent scale. Hydrol. J. 2019, 27, 1081–1098. [Google Scholar] [CrossRef]
- Tesoriero, A.J.; Gronberg, J.A.; Juckem, P.F.; Miller, M.P.; Austin, B.P. Predicting redox-sensitive contaminant concentrations in groundwater using random forest classification. Water Resour. Res. 2017, 53, 7316–7331. [Google Scholar] [CrossRef]
- Al-Mukhtar, M. Random forest, support vector machine, and neural networks to modelling suspended sediment in Tigris River-Baghdad. Environ. Monit. Assess. 2019, 191, 673. [Google Scholar] [CrossRef] [PubMed]
- Adamowski, J.; Chan, H.F. A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 2011, 407, 28–40. [Google Scholar] [CrossRef]
- Pi, K.; Wang, Y.; Xie, X.; Su, C.; Ma, T.; Li, J.; Liu, Y. Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, northern China. J. Hazard. Mater. 2015, 300, 652–661. [Google Scholar] [CrossRef]
Embedding-Enhanced Models | Conventional Models | ||
---|---|---|---|
Variables | ANOVA F-Value | Variables | ANOVA F-Value |
surface elevation | 29.1081 | surface elevation | 29.1081 |
pollution | 16.1294 | pollution | 16.1294 |
population | 13.1675 | population | 13.1675 |
evaporation | 12.9844 | evaporation | 12.9844 |
vertical distance to rivers | 12.9710 | vertical distance to rivers | 12.9710 |
distance to Sanggan river | 12.0708 | distance to Sanggan river | 12.0708 |
satellite embedding A38 | 27.2939 | vadose zone soil | 9.9553 |
satellite embedding A33 | 25.7531 | precipitation | 9.4695 |
satellite embedding A34 | 21.4152 | hydraulic conductivity | 6.9283 |
satellite embedding A41 | 20.5796 | distance to urban area | 4.8268 |
satellite embedding A25 | 18.6943 | groundwater table elevation | 4.3817 |
satellite embedding A23 | 17.9126 | horizontal distance to rivers | 3.4892 |
satellite embedding A14 | 13.4771 | soil organic carbon | 3.1402 |
satellite embedding A20 | 12.2590 | bulk density | 2.4634 |
satellite embedding A11 | 11.5991 | air temperature | 2.0761 |
No. | Embedding-Enhanced Models | Conventional Models | ||||
---|---|---|---|---|---|---|
RF | ANN | SVM | RF | ANN | SVM | |
Accuracy | 0.75 | 0.72 | 0.77 | 0.71 | 0.65 | 0.70 |
Precision | 0.69 | 0.80 | 0.71 | 0.65 | 0.61 | 0.65 |
Recall | 0.74 | 0.47 | 0.79 | 0.71 | 0.50 | 0.65 |
Specificity | 0.76 | 0.91 | 0.76 | 0.71 | 0.76 | 0.73 |
F1 score | 0.71 | 0.59 | 0.75 | 0.68 | 0.55 | 0.65 |
ROC-AUC | 0.80 | 0.77 | 0.82 | 0.78 | 0.74 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Zhong, R.; Yang, Y. Groundwater Fluoride Prediction for Sustainable Water Management: A Comparative Evaluation of Machine Learning Approaches Enhanced by Satellite Embeddings. Sustainability 2025, 17, 8505. https://doi.org/10.3390/su17188505
Wei Y, Zhong R, Yang Y. Groundwater Fluoride Prediction for Sustainable Water Management: A Comparative Evaluation of Machine Learning Approaches Enhanced by Satellite Embeddings. Sustainability. 2025; 17(18):8505. https://doi.org/10.3390/su17188505
Chicago/Turabian StyleWei, Yunbo, Rongfu Zhong, and Yun Yang. 2025. "Groundwater Fluoride Prediction for Sustainable Water Management: A Comparative Evaluation of Machine Learning Approaches Enhanced by Satellite Embeddings" Sustainability 17, no. 18: 8505. https://doi.org/10.3390/su17188505
APA StyleWei, Y., Zhong, R., & Yang, Y. (2025). Groundwater Fluoride Prediction for Sustainable Water Management: A Comparative Evaluation of Machine Learning Approaches Enhanced by Satellite Embeddings. Sustainability, 17(18), 8505. https://doi.org/10.3390/su17188505