Nutritional Quality of the “Algarrobo” Neltuma pallida Fruit and Its Relationship with Soil Properties and Vegetation Indices in the Dry Forests of Northern Peru
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Analysis and Sampling
2.2.1. Soil Sampling
2.2.2. Evaluation of the Carob Nutritional Quality
2.3. Multispectral Data Collection and Processing
2.4. Generation of Protein and Ether Extract Prediction Equations
2.5. Statistical Analysis
3. Results
3.1. Analysis of Soil Physicochemical Properties, Fruit Quality, and Vegetation Indices
3.1.1. Soil Physicochemical Properties
3.1.2. Presence of Metals in Soil
3.1.3. Nutritional Quality of Carob
3.1.4. Vegetation Index Analysis
3.2. Relationship of Soil Physicochemical Properties and Vegetation Indices with the Protein and Ether Extract Content of Carob Fruit
3.2.1. Principal Component Analysis
3.2.2. Correlation of Proteins and Ether Extract with Soil Physicochemical Properties and Vegetation Indices
3.3. Predictive Modeling and Key Factor Analysis
4. Discussion
4.1. Soil Physicochemical Characterization
4.2. Potential for Heavy Metal Pollution in the Soil Where the Carob Tree Grows
4.3. Proximal Composition of Carob
4.4. Carob Vegetation Indices
4.5. Forecasting of the Protein and Ether Extract Content from Soil Physicochemical Properties
4.6. Prediction of Protein and Ether Extract Content from Vegetation Indices
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quiroga, J.A.; Roa, H.Y.; Melo, O.; Fernández, F. Estructura de fragmentos de bosque seco tropical en el sur del departamento del Tolima, Colombia. Bol. Cient. Mus. Hist. Nat. Univ. Caldas 2019, 23, 31–51. [Google Scholar] [CrossRef]
- Padrón, E.; Padrón, E.; Navarro Cerrillo, R.M. Aboveground Biomass in Prosopis Pallida (Humb. and Bonpl. Ex Willd.) H. B. K. Ecosystems Using Landsat 7 ETM Images. Rev. Chil. Hist. Nat. 2007, 80, 43–53. Available online: https://www.biodiversitylibrary.org/part/116663 (accessed on 20 March 2025). [CrossRef]
- Servicio Nacional Forestal y de Fauna Silvestre (SERFOR). Avances sobre la investigación de Algarrobo—Prosopis (Fabaceae) en la Costa Norte del Perú. SERFOR-Institucional 2021, 71, 317–324. [Google Scholar]
- Cuentas Romero, M.A.; Salazar Toledo, A.Í. De la especie al ecosistema; del ecosistema a la sociedad: Revalorizando el algarrobo (ProsoPis Pallida) y el reto de su conservación en Lambayeque y en la costa norte del Perú. Espacio Desar. 2017, 30, 129–159. [Google Scholar] [CrossRef]
- Depenthal, J.; Meitzner Yoder, L.S. Community Use and Knowledge of Algarrobo (Prosopis Pallida) and Implications for Peruvian Dry Forest Conservation. Rev. Ambientales. 2018, 52, 49–70. [Google Scholar] [CrossRef]
- Dostert, N.; Dostert, N.; Weigend, M.; Roque, J.; Cano, A.; La Torre Acuy, M.I.; Brokamp, G.; Flores, D. Siete Especies de Plantas Vasculares de Importancia Económica en el Perú: Fichas botánicas. Arnaldoa 2015, 20, 359–432. [Google Scholar]
- Silva, M.; Martinez, M.J.; Coirini, R.; Brunetti, M.A.; Balzarini, M.; Karlin, U. Valoración Nutritiva Del Fruto Del Algarrobo Blanco (Prosopis Chilensis) Bajo Distintos Tipos de Almacenamiento. Multequina 2000, 9, 65–74. [Google Scholar]
- Servicio Nacional Forestal y de Fauna Silvestre (SERFOR). En El Día de La Algarrobina, Serfor Hace Un Llamado Para Articular Esfuerzos Frente a La Tala Ilegal Indiscriminada Del Algarrobo—Noticias—Servicio Nacional Forestal y de Fauna Silvestre—Plataforma Del Estado Peruano. Available online: https://www.gob.pe/institucion/serfor/noticias/1126293-en-el-dia-de-la-algarrobina-serfor-hace-un-llamado-para-articular-esfuerzos-frente-a-la-tala-ilegal-indiscriminada-del-algarrobo (accessed on 11 April 2025).
- Grados, N.; Cruz, G.; Albán, L.; Felker, P. Peruvian Prosopis Pallida: Its Potential to Provide Human and Livestock Food for Tropical Arid Lands of the World. In Prosopis as a Heat Tolerant Nitrogen Fixing Desert Food Legume: Prospects for Economic Development in Arid Lands; Puppo, M.C., Felker, P., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 241–251. ISBN 978-0-12-823320-7. [Google Scholar] [CrossRef]
- Giombolini, K.J.; Chambers, K.J.; Schlegel, S.A.; Dunne, J.B. Testing the Local Reality: Does the Willamette Valley Growing Region Produce Enough to Meet the Needs of the Local Population? A Comparison of Agriculture Production and Recommended Dietary Requirements. Agric. Hum. Values 2011, 28, 247–262. [Google Scholar] [CrossRef]
- Scheelbeek, P.F.D.; Moss, C.; Kastner, T.; Alae-Carew, C.; Jarmul, S.; Green, R.; Taylor, A.; Haines, A.; Dangour, A.D. United Kingdom’s Fruit and Vegetable Supply Is Increasingly Dependent on Imports from Climate-Vulnerable Producing Countries. Nat. Food 2020, 1, 705–712. [Google Scholar] [CrossRef]
- Jiang, Y.; Zeng, Q.; Wei, J.; Jiang, J.; Li, Y.; Chen, J.; Yu, H. Growth, Fruit Yield, Photosynthetic Characteristics, and Leaf Microelement Concentration of Two Blueberry Cultivars under Different Long-Term Soil pH Treatments. Agronomy 2019, 9, 357. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-Organic Fertilizer with Reduced Rates of Chemical Fertilization Improves Soil Fertility and Enhances Tomato Yield and Quality. Sci. Rep. 2020, 10, 177. [Google Scholar] [CrossRef] [PubMed]
- McCray, J.M.; Ji, S.; Powell, G. Sugarcane Yield Response to Potassium Fertilization as Related to Extractable Soil Potassium on Florida Histosols. Agron. J. 2017, 109, 2243–2252. [Google Scholar] [CrossRef]
- Chen, X.; Yan, X.; Muneer, M.A.; Weng, X.; Cai, Y.; Ma, C.; Liu, Y.; Zhang, S.; Zhang, W.; Yang, W.; et al. Pomelo Green Production on Acidic Soil: Reduce Traditional Fertilizers, but Do Not Ignore Magnesium. Front. Sustain. Food Syst. 2022, 6, 948810. [Google Scholar] [CrossRef]
- Loekito, S.; Afandi; Afandi, A.; Nishimura, N.; Koyama, H.; Senge, M. The Effects of Calcium Fertilizer Sprays during Fruit Development Stage on Pineapple Fruit Quality under Humid Tropical Climate. Int. J. Agron. 2022, 2022, 3207161. [Google Scholar] [CrossRef]
- Sun, H.; Huang, X.; Chen, T.; Zhou, P.; Huang, X.; Jin, W.; Liu, D.; Zhang, H.; Zhou, J.; Wang, Z.; et al. Fruit Quality Prediction Based on Soil Mineral Element Content in Peach Orchard. Food Sci. Nutr. 2022, 10, 1756–1767. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, M.; Zhou, B.; Zhang, J.; Wei, Q. Quantitative Analysis of Relationship Between Fruit Quality of ‘Fuji’ Apple and Environmental Factors: A Case Study of the Loess Plateau Production Region. Erwerbs-Obstbau 2023, 65, 423–434. [Google Scholar] [CrossRef]
- Shao, Z.; Li, C.; Li, D.; Altan, O.; Zhang, L.; Ding, L. An Accurate Matching Method for Projecting Vector Data into Surveillance Video to Monitor and Protect Cultivated Land. ISPRS Int. J. Geo-Inf. 2020, 9, 448. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Chabrillat, S.; Pignatti, S.; Milewski, R.; Karyotis, K.; Brell, M.; Ruhtz, T.; Bochtis, D.; Zalidis, G. Evaluation of Airborne HySpex and Spaceborne PRISMA Hyperspectral Remote Sensing Data for Soil Organic Matter and Carbonates Estimation. Remote Sens. 2023, 15, 1106. [Google Scholar] [CrossRef]
- Sahbeni, G.; Ngabire, M.; Musyimi, P.K.; Székely, B. Challenges and Opportunities in Remote Sensing for Soil Salinization Mapping and Monitoring: A Review. Remote Sens. 2023, 15, 2540. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote Sensing for Agricultural Applications: A Meta-Review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Bastos, L.M.; Froes de Borja Reis, A.; Sharda, A.; Wright, Y.; Ciampitti, I.A. Current Status and Future Opportunities for Grain Protein Prediction Using On- and Off-Combine Sensors: A Synthesis-Analysis of the Literature. Remote Sens. 2021, 13, 5027. [Google Scholar] [CrossRef]
- Ryu, C.; Suguri, M.; Iida, M.; Umeda, M.; Lee, C. Integrating Remote Sensing and GIS for Prediction of Rice Protein Contents. Precis. Agric. 2011, 12, 378–394. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, L.; Taylor, J.; Casa, R.; Fan, C.; Song, X.; Yang, G.; Huang, W.; Li, Z. The 500-Meter Long-Term Winter Wheat Grain Protein Content Dataset for China from Multi-Source Data. Sci. Data 2024, 11, 1025. [Google Scholar] [CrossRef] [PubMed]
- Farifteh, J.; Van der Meer, F.; Atzberger, C.; Carranza, E.J.M. Quantitative Analysis of Salt-Affected Soil Reflectance Spectra: A Comparison of Two Adaptive Methods (PLSR and ANN). Remote Sens. Environ. 2007, 110, 59–78. [Google Scholar] [CrossRef]
- Vera, E.; Cruz, C.; Barboza, E.; Salazar, W.; Canta, J.; Salazar, E.; Vásquez, H.V.; Arbizu, C.I. Change of Vegetation Cover and Land Use of the Pómac Forest Historical Sanctuary in Northern Peru. Int. J. Environ. Sci. Technol. 2024, 21, 8919–8930. [Google Scholar] [CrossRef]
- Barboza, E.; Bravo, N.; Cotrina-Sanchez, A.; Salazar, W.; Gálvez-Paucar, D.; Gonzales, J.; Saravia, D.; Valqui-Valqui, L.; Cárdenas, G.P.; Ocaña, J.; et al. Modeling the Current and Future Habitat Suitability of Neltuma Pallida in the Dry Forest of Northern Peru under Climate Change Scenarios to 2100. Ecol. Evol. 2024, 14, e70158. [Google Scholar] [CrossRef]
- Aldana, C.; Lloret, J.; Moncada, W.; Rojas Acuña, J.; Saavedra, Y.; Tirado-Kulieva, V.A. Un Nuevo Algoritmo Para Determinar La Cobertura Espacial Del Algarrobo (Neltuma Piurensis) Por Piso Ecológico: Caso de La Cuenca Del Río Chira-Piura. Remote Sens. Appl. Soc. Environ. 2024, 36, 101363. [Google Scholar] [CrossRef]
- Barboza, E.; Salazar, W.; Gálvez-Paucar, D.; Valqui-Valqui, L.; Valqui, L.; Zagaceta, L.H.; Gonzales, J.; Vásquez, H.V.; Arbizu, C.I. Cloud Computing Application for the Analysis of Land Use and Land Cover Changes in Dry Forests of Peru. IJEI 2024, 7, 505–514. [Google Scholar] [CrossRef]
- Corredor, F.-A.; Figueroa, D.; Estrada, R.; Burgos-Paz, W.; Salazar, W.; Cruz, W.; Lobato, R.; Injante, P.; Godoy, D.; Barrantes, C.; et al. Genome-Wide Single Nucleotide Polymorphisms Reveal the Genetic Diversity and Population Structure of Creole Goats from Northern Peru. Livest. Sci. 2024, 283, 105473. [Google Scholar] [CrossRef]
- Method 9045D; Soil and Waste pH, Revision 4. United States Environmental Protection Agency (USEPA): Washington, DC, USA, 2004. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/9045d.pdf (accessed on 1 June 2025).
- ISO 11265:1994; Soil Quality—Determination of the Specific Electrical Conductivity. ISO (International Organization for Standardization): Geneva, Switzerland, 1994. Available online: https://www.iso.org/standard/19243.html (accessed on 1 June 2025).
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil. Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Norma Oficial Mexicana que Establece las Especificaciones de Fertilidad, Salinidad y Clasificación de Suelos. Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT): Estudios, Muestreo y Análisis. 2002. Available online: https://faolex.fao.org/docs/pdf/mex50674.pdf (accessed on 1 June 2025).
- ISO 13878:1998; International Organization for Standardization (ISO). Soil Quality—Determination of Total Nitrogen by Dry Combustion (Elemental Analysis); First Edition. ISO: Geneva, Switzerland, 1998.
- United States Environmental Protection Agency (USEPA), Method 6020B: Inductively Coupled Plasma–Mass Spectrometry. Revision 2, 2014. Washington, DC, USA. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/6020b.pdf (accessed on 1 June 2025).
- NTP 208.017:2021; Cacao y Chocolate—Determinación de Humedad. Método Gravimétrico, 4ª ed. Instituto Nacional de Calidad (INACAL): Lima, Perú, 2021.
- NTP 208.016:2021; Cacao y Chocolate—Grasa en Productos del Cacao. Método de Extracción por Soxhlet, 4ª ed. Instituto Nacional de Calidad (INACAL): Lima, Perú, 2021.
- Official Method 2001.11; Protein (Crude) in Animal Feed, Forage (Plant Tissue), Grain, and Oilseeds—Block Digestion Method Using Copper Catalyst and Steam Distillation into Boric Acid; Edition 2023. AOAC International: Rockville, MD, USA, 2023.
- Official Method 930.05; Ash of Plants, Chapter 3; 22nd ed. AOAC International: Rockville, MD, USA, 2023.
- Markert Restee Documentation. Available online: https://kmarkert.github.io/restee/ (accessed on 11 April 2025).
- Wu, Q. Geemap: A Python Package for Interactive Mapping with Google Earth Engine. Open Source Softw. 2020, 5, 2305. [Google Scholar] [CrossRef]
- Van den Bossche, J.; Journois, M.; Jordahl, K.; Wolf, L.J.; Fernandes, F.; Farmer, C.; Ward, B.; Perry, M.; Farmer, C.; Hjelle, G.A.; et al. GeoPandas: The Geospatial Data Library for Python, Version 0.13.2. Zenodo 2023. Available online: https://doi.org/10.5281/zenodo.8009629 (accessed on 1 June 2025).
- Khan, N.M.; Rastoskuev, V.V.; Sato, Y.; Shiozawa, S. Assessment of Hydrosaline Land Degradation by Using a Simple Approach of Remote Sensing Indicators. Agric. Water Manag. 2005, 77, 96–109. [Google Scholar] [CrossRef]
- Mathieu, R.; Pouget, M.; Cervelle, B.; Escadafal, R. Relationships between Satellite-Based Radiometric Indices Simulated Using Laboratory Reflectance Data and Typic Soil Color of an Arid Environment. Remote Sens. Environ. 1998, 66, 17–28. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Anand, A.; Pandey, P.; Petropoulos, G.; Pavlidés, A.; Srivastava, P.; Sharma, J.; Malhi, R. Uso de Hyperion para la evaluación de las reservas de carbono de los bosques de manglares en la reserva forestal de Bhitarkanika: Una contribución a la iniciativa del carbono azul. Remote Sens. 2020, 12, 597. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, Y.; Tateishi, R.; Bayaer, W. Development of Topsoil Grain Size Index for Monitoring Desertification in Arid Land Using Remote Sensing. Int. J. Remote Sens. 2006, 27, 2411–2422. [Google Scholar] [CrossRef]
- Kidwell, K.B. Global Vegetation Index User’s Guide, Revised October 1990; U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite Data and Information Service, National Climatic Data Center, Satellite Data Services Division: Washington, DC, USA, 1990.
- Crippen, R.E. Calculating the Vegetation Index Faster. Remote Sens. Environ. 1990, 34, 71–73. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L.; Trigg, S.N. Remote Sensing of Fire Severity: Assessing the Performance of the Normalized Burn Ratio. IEEE Geosci. Remote Sens. Lett. 2006, 3, 112–116. [Google Scholar] [CrossRef]
- Nguyen, K.; Liou, Y.; Tran, H.; Hoang, P.; Nguyen, T. Soil salinity assessment by using near-infrared channel and Vegetation Soil Salinity Index derived from Landsat 8 OLI data: A case study in the Tra Vinh Province, Mekong Delta, Vietnam. Prog. Earth Planet. Sci. 2020, 7, 1–16. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 309–317. [Google Scholar]
- Choudhury, B.J.; Golus, R.E. Estimating soil wetness using satellite data. Int. J. Remote Sens. 1988, 9, 1251–1257. [Google Scholar] [CrossRef]
- Bannari, A.; Guedon, A.M.; El-Harti, A.; Cherkaoui, F.Z.; El-Ghmari, A. Characterization of Slightly and Moderately Saline and Sodic Soils in Irrigated Agricultural Land Using Simulated Data of Advanced Land Imaging (EO-1) Sensor. Commun. Soil Sci. Plant Anal. 2008, 39, 2795–2811. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Schmidt, K.; Toomanian, N.; Heung, B.; Behrens, T.; Mosavi, A.; Band, S.S.; Amirian-Chakan, A.; Fathabadi, A.; Scholten, T. Improving the Spatial Prediction of Soil Salinity in Arid Regions Using Wavelet Transformation and Support Vector Regression Models. Geoderma 2021, 383, 114793. [Google Scholar] [CrossRef]
- Douaoui, A.E.K.; Nicolas, H.; Walter, C. Detecting Salinity Hazards within a Semiarid Context by Means of Combining Soil and Remote-Sensing Data. Geoderma 2006, 134, 217–230. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G.; Major, D.J. TSAVI: A Vegetation Index Which Minimizes Soil Brightness Effects On LAI And APAR Estimation. In Proceedings of the 12th Canadian Symposium on Remote Sensing, Vancouver, BC, Canada, 10–14 July 1989; IEEE: Piscataway, NJ, USA, 1989; Volume 3, pp. 1355–1358. [Google Scholar]
- Major, D.J.; Baret, F.; Guyot, G. A ratio vegetation index adjusted for soil brightness. Int. J. Remote Sens. 1990, 11, 727–740. [Google Scholar] [CrossRef]
- John, K.; Abraham Isong, I.; Michael Kebonye, N.; Okon Ayito, E.; Chapman Agyeman, P.; Marcus Afu, S. Using Machine Learning Algorithms to Estimate Soil Organic Carbon Variability with Environmental Variables and Soil Nutrient Indicators in an Alluvial Soil. Land 2020, 9, 487. [Google Scholar] [CrossRef]
- Alasta, A. Using Remote Sensing Data to Identify Iron Deposits in Central Western Libya. In Proceedings of the International Conference on Emerging Trends in Computer and Image Processing (ICETCIP’2011), Bangkok, Thailand, 27–28 December 2011; pp. 56–61. Available online: https://www.researchgate.net/publication/325550303_Using_Remote_Sensing_data_to_identify_iron_deposits_in_central_western_Libya (accessed on 15 March 2025).
- Dubčáková, R. Eureqa: Software Review. Genet. Program. Evolvable Mach. 2011, 12, 173–178. [Google Scholar] [CrossRef]
- Amen, R.; Hameed, J.; Albashar, G.; Kamran, H.W.; Hassan Shah, M.U.; Zaman, M.K.U.; Mukhtar, A.; Saqib, S.; Ch, S.I.; Ibrahim, M.; et al. Modelling the Higher Heating Value of Municipal Solid Waste for Assessment of Waste-to-Energy Potential: A Sustainable Case Study. J. Clean. Prod. 2021, 287, 125575. [Google Scholar] [CrossRef]
- Pérez, M.J.; Cuello, A.S.; Zampini, I.C.; Ordoñez, R.M.; Alberto, M.R.; Quispe, C.; Schmeda-Hirschmann, G.; Isla, M.I. Polyphenolic Compounds and Anthocyanin Content of Prosopis Nigra and Prosopis Alba Pods Flour and Their Antioxidant and Anti-Inflammatory Capacities. Food Res. Int. 2014, 64, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Zveushe, O.K.; de Dios, V.R.; Zhang, H.; Zeng, F.; Liu, S.; Shen, S.; Kang, Q.; Zhang, Y.; Huang, M.; Sarfaraz, A.; et al. Effects of Co-Inoculating Saccharomyces Spp. with Bradyrhizobium Japonicum on Atmospheric Nitrogen Fixation in Soybeans (Glycine max (L.)). Plants 2023, 12, 681. [Google Scholar] [CrossRef]
- Díaz Lezcano, M.I.; Gamarra Lezcano, C.C.; Vera de Ortiz, M.L.; Santa Cruz Estigarribia, A.V.; Díaz Lezcano, M.I.; Gamarra Lezcano, C.C.; Vera de Ortiz, M.L.; Santa Cruz Estigarribia, A.V. Contenido de Nitrógeno En Suelos de Sistemas Silvopastoriles de Prosopis Spp. Del CHaco Central Paraguayo. Rev. Cub. Cienc. For. 2021, 9, 226–240. [Google Scholar]
- Sadeq, M.A.M.; Abido, M.S.; Salih, A.A.; Alkhuzai, J.A. The Effects of Mesquite (Prosopis juliflora) on Soils and Plant Communities in the Deserted Rangelands of Bahrain. Int. J. For. Res. 2020, 2020, 8810765. [Google Scholar] [CrossRef]
- Kong, W.; Liu, M.; Felker, P.; Ewens, M.; Bessega, C.; Pometti, C.; Wang, J.; Xu, P.; Teng, J.; Wang, J.; et al. Genome and Evolution of Griseb., a Drought and Salinity Tolerant Tree Legume Crop for Arid Climates. Plants People Planet 2023, 5, 933–947. [Google Scholar] [CrossRef]
- Wu, L.; Qin, M.; Muneer, M.A.; Bao, J.; Chen, X.; Yang, Y.; Huang, J.; Zhang, S.; Su, D.; Yan, X. Soil pH and Organic Matter: Key Edaphic Factors in Sustaining Optimum Yield and Quality of Pomelo Fruit. Sci. Hortic. 2024, 337, 113524. [Google Scholar] [CrossRef]
- Martins-Noguerol, R.; Matías, L.; Pérez-Ramos, I.M.; Moreira, X.; Francisco, M.; Pedroche, J.; DeAndrés-Gil, C.; Gutiérrez, E.; Salas, J.J.; Moreno-Pérez, A.J.; et al. Propiedades Fisicoquímicas Del Suelo Asociadas al Rendimiento y Composición Fitoquímica de La Halófita Comestible. Crithmum Maritimum. Sci. Total Environ. 2023, 869, 161806. [Google Scholar] [CrossRef]
- Mao, Y.; Chai, X.; Zhong, M.; Zhang, L.; Zhao, P.; Kang, Y.; Guo, J.; Yang, X. Efectos de Los Nutrientes Nitrógeno y Magnesio Sobre El Crecimiento de La Planta, Calidad, Características Fotosintéticas, Metabolismo Antioxidante y Hormonas Endógenas de La Col Rizada China (Brassica albograbra Bailey). Sci. Hortic. 2022, 303, 111243. [Google Scholar] [CrossRef]
- Jadeja, A.S.; Rajani, A.V.; Kaneriya, S.C.; Hirpara, D.V. Nutrient Content, Uptake, Quality of Chickpea (Cicer Arietinum L.) and Fertility Status of Soil as Influenced by Fertilization of Potassium and Sulphur. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 2351–2355. [Google Scholar] [CrossRef]
- Xing, Y.; Niu, X.; Wang, N.; Jiang, W.; Gao, Y.; Wang, X. The Correlation between Soil Nutrient and Potato Quality in Loess Plateau of China Based on PLSR. Sustainability 2020, 12, 1588. [Google Scholar] [CrossRef]
- Taghavi, M.; Bakhshi, K.; Zarei, A.; Hoseinzadeh, E.; Gholizadeh, A. Soil Pollution Indices and Health Risk Assessment of Metal(Loid)s in the Agricultural Soil of Pistachio Orchards. Sci. Rep. 2024, 14, 8971. [Google Scholar] [CrossRef] [PubMed]
- Vallejos-Torres, G.; Gaona-Jimenez, N.; Arevalo, A.A.; Paredes, C.; Lozano, A.; Saavedra-Ramírez, J.; Arévalo, L.A.; Reátegui, K.; Mendoza-Caballero, W.; Marín, C. Cadmium uptake and mycorrhization by cacao clones in agroforestry and monoculture systems of Peruvian Amazon. Bioagro 2023, 35, 237–246. [Google Scholar] [CrossRef]
- Angon, P.B.; Islam, M.S.; Kc, S.; Das, A.; Anjum, N.; Poudel, A.; Suchi, S.A. Sources, Effects and Present Perspectives of Heavy Metals Contamination: Soil, Plants and Human Food Chain. Heliyon 2024, 10, e28357. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Muhammad, I.; Zhang, Y.; Hu, W.; Lu, Q.; Wang, W.; Huang, B.; Hao, M. Transfer of Heavy Metals in Fruits and Vegetables Grown in Greenhouse Cultivation Systems and Their Health Risks in Northwest China. Sci. Total Environ. 2021, 766, 142663. [Google Scholar] [CrossRef]
- Eid, E.M.; Shaltout, K.H.; Alamri, S.A.M.; Alrumman, S.A.; Hussain, A.A.; Sewelam, N.; El-Bebany, A.F.; Alfarhan, A.H.; Picó, Y.; Barcelo, D. Modelos de Predicción Basados En Las Propiedades Del Suelo Para Evaluar La Absorción de Ocho Metales Pesados Por Plantas de Tomate (Lycopersicon Esculentum Mill.) Cultivadas En Suelos Agrícolas Modificados Con Lodos de Depuradora. J. Environ. Chem. Eng. 2021, 9, 105977. [Google Scholar] [CrossRef]
- Villalba, R.; Denis Ibars, J.; Martínez, K.; Coronel, E.; Friesen, A.; Mereles, L. Variations in the Composition of “Algarrobas” (Prosopis sp.) Flours Paraguayan Chaco. Biol. Life Sci. Forum 2022, 17, 25. [Google Scholar] [CrossRef]
- Bigne, F.; Sciammaro, L.P.; Conforti, P.; Salinas, M.V.; Ferrero, C.; Puppo, M.C. Alimentos Con Harina de Prosopis spp.: Productos Horneados Comunes y Nuevos. In Prosopis as a Heat Tolerant Nitrogen Fixing Desert Food Legume; Puppo, M.C., Felker, P., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 333–340. ISBN 978-0-12-823320-7. [Google Scholar]
- Jhajharia, K.; Mathur, P. Prediction of Crop Yield Using Satellite Vegetation Indices Combined with Machine Learning Approaches. Adv. Space Res. 2023, 72, 3998–4007. [Google Scholar] [CrossRef]
- Jeya Kumaran, V.; Mohidem, N.A.; Che’Ya, N.N.; Fazlil Ilahi, W.F.; Arif Shah, J.; Sahwee, Z.; Yusof, N.; Omar, M.H. How Can Aerial Imagery and Vegetation Indices Algorithms Monitor the Geotagged Crop? Egypt. J. Remote Sens. Space Sci. 2024, 27, 628–636. [Google Scholar] [CrossRef]
- Hernandez, C.M.; Correndo, A.; Kyveryga, P.; Prestholt, A.; Ciampitti, I.A. On-Farm Soybean Seed Protein and Oil Prediction Using Satellite Data. Comput. Electron. Agric. 2023, 212, 108096. [Google Scholar] [CrossRef]
- Hou, L.; Liu, Z.; Zhao, J.; Ma, P.; Xu, X. Comprehensive Assessment of Fertilization, Spatial Variability of Soil Chemical Properties, and Relationships among Nutrients, Apple Yield and Orchard Age: A Case Study in Luochuan County, China. Ecol. Indic. 2021, 122, 107285. [Google Scholar] [CrossRef]
- Zahir, S.A.D.M.; Jamlos, M.F.; Omar, A.F.; Jamlos, M.A.; Mamat, R.; Muncan, J.; Tsenkova, R. Review—Plant Nutritional Status Analysis Employing the Visible and near-Infrared Spectroscopy Spectral Sensor. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 304, 123273. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Noguchi, N.; Ito, A.; Shibuya, Y. Correlation Analysis of Vegetation Indices Based on Multi-Temporal Satellite Images and Unmanned Aerial Vehicle Images with Wheat Protein Contents. Eng. Agric. Environ. Food 2019, 14, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Savaşlı, E.; Karaduman, Y.; Önder, O.; Ateş, Ö. Prediction of Grain Protein Content and Gluten Quality of Bread Wheat in the Early Vegetation Period by Optical Sensors. J. Cereal Sci. 2021, 102, 103354. [Google Scholar] [CrossRef]
- Savaşlı, E.; Önder, O.; Karaduman, Y.; Özen, D.; Dayıoğlu, R.; Özdemir, S.; Ateş, Ö.; Ekïz, M.; Erşahin, S. Developing Early-Estimating Normalized Difference Vegetation Index Calibrations for Grain Yield and Technological Quality of Bread Wheat in Semi-Arid Rainfed Conditions. J. Cereal Sci. 2024, 120, 104053. [Google Scholar] [CrossRef]
- Fu, Z.; Yu, S.; Zhang, J.; Xi, H.; Gao, Y.; Lu, R.; Zheng, H.; Zhu, Y.; Cao, W.; Liu, X. Combining UAV Multispectral Imagery and Ecological Factors to Estimate Leaf Nitrogen and Grain Protein Content of Wheat. Europ. J. Agron. 2022, 132, 126405. [Google Scholar] [CrossRef]
- Wang, L.; Tian, Y.; Yao, X.; Zhu, Y.; Cao, W. Predicting Grain Yield and Protein Content in Wheat by Fusing Multi-Sensor and Multi-Temporal Remote-Sensing Images. Field Crops Res. 2014, 164, 178–188. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Yule, I.J.; Hedley, M.J.; Tuohy, M.P.; Dynes, R.A.; King, W.M. Multi-Spectral Radiometry to Estimate Pasture Quality Components. Precis. Agric. 2012, 13, 442–456. [Google Scholar] [CrossRef]
- Arogoundade, A.M.; Mutanga, O.; Odindi, J.; Naicker, R. The Role of Remote Sensing in Tropical Grassland Nutrient Estimation: A Review. Environ. Monit. Assess. 2023, 195, 954. [Google Scholar] [CrossRef]
- Tiwari, D.C.; Negi, P.; Thakur, S.; Rana, S.K.; Pandey, R.; Bhatt, I.D.; Nautiyal, S. Analyzing Climatic and Non-Climatic Impacts on Structure, Phenology and Functions of Western Himalayan Forests. Ecol. Indic. 2025, 174, 113511. [Google Scholar] [CrossRef]
- Tasnim, N.; Hossain, M.R.; Fayeem, H.A.M.; Mostofa, Z.B.; Anika, T.T.; Mou, M.; Modabber, A.; Zaddary, A.M.; Gupta, A.D.; Marma, M.; et al. Towards Data-Driven Tropical Forest Restoration: Uncovering Spatial Variation, Interactions and Historical Management Effects on Nutrients along Soil Depth Gradients. Sci. Total Environ. 2024, 954, 176756. [Google Scholar] [CrossRef]
Parameters Assessed | Method and/or Instrument | Remark | Source |
---|---|---|---|
pH | Digital potentiometer | soil suspension: water (1:2.5) | [32] |
Electrical conductivity (EC) | Digital conductivity meter | Same suspension of pH analysis | [33] |
Organic matter (OM) | Walkley-Black wet oxidation | [34] | |
Texture | Bouyucos method | [35] | |
Cation-exchange capacity (CEC) | Ammonium acetate | pH 7 | [35] |
Nutrients available | Flamometry: exchangeable potassium Bray II: phosphorus available Kjeldahl: total nitrogen | [35] [35] [36] | |
Heavy metals | Inductively coupled plasma mass spectrometry | [37] |
Vegetation Index | Equation | Source |
---|---|---|
Brightness Index (BI) | [45] | |
Coloration Index (COI) | [46] | |
Difference Vegetation Index (DVI) | [47] | |
Enhanced Vegetation Index (EVI) | [48] | |
Greenness Index (GI) | [49] | |
Grain Size Index (GSI) | [50] | |
Global Vegetation Index (GVI) | (−0.29 Green) − (0.56 Red) + (0.6 IR) + (0.49 NIR) | [51] |
Infrared Percentage Vegetation Index (IPVI) | [52] | |
Normalized Burn Ratio (NBR) | [53] | |
Normalized Difference Salinity Index (NDSI) | [54] | |
Normalized Difference Vegetation Index (NDVI) | [55] | |
Normalized Difference Water Index (NDWI) | [56] | |
Salinity Index (S1) | [57] | |
Saturation Index (SI) | [46] | |
Redness index (RI) | ||
Salinity Index (S2) | ||
Salinity Index (S3) | [58] | |
Salinity Index (S4) | [45] | |
Salinity Index (S5) | ||
Salinity Index (S6) | ||
Salinity Index (S7) | [59] | |
Soil Adjusted Vegetation Index (SAVI) | [60] | |
Saturation Index (SI) | [46] | |
Transformed Soil Adjusted Vegetation Index (TSAVI) | Donde a = 0.33, b = 0.5, x = 1.5 | [61] |
Wetness Index (WI) | [56] | |
Redness index (RI) | [46] | |
Ratio Vegetation Index (RVI) | [62] | |
Ferric Iron Index (FI) | [63] | |
Clay Index (CI) | [64] |
Properties | Units | Mean | Maximum | Minimum | Standard Deviation (±) |
---|---|---|---|---|---|
Electrical conductivity (EC) | mS cm−1 | 85.93 | 966.40 | 3.71 | 184.81 |
pH | - | 7.00 | 8.10 | 4.40 | 0.56 |
Potassium available (Kavai) | ppm | 130.08 | 600.42 | 40.31 | 110.35 |
Phosphorus available (Pavai) | 6.91 | 48.70 | 0.00 | 8.00 | |
Organic matter (OM) | % | 4.65 | 12.99 | 0.86 | 2.38 |
Total nitrogen (TN) | 0.01 | 0.03 | 0.00 | 0.01 | |
Sand | 84.68 | 98.44 | 38.29 | 7.31 | |
Clay | 8.60 | 17.56 | 1.14 | 3.75 | |
Silt | 6.72 | 44.14 | 0.28 | 5.36 | |
Total carbon (TC) | 3.72 | 9.30 | 0.81 | 1.46 | |
Carbon organic (OC) | 2.66 | 7.53 | 0.50 | 1.44 | |
Calcium ion (Ca2+) | cmol+ kg−1 | 4.36 | 28.47 | 0.88 | 5.49 |
Magnesium ion (Mg2+) | 0.81 | 5.33 | 0.00 | 0.99 | |
Sodium ion (Na+) | 0.50 | 8.02 | 0.00 | 1.56 | |
Potassium ion (K+) | 0.37 | 3.10 | 0.10 | 0.43 |
Properties (ppm) | Mean | Maximum | Minimum | Standard Deviation (±) |
---|---|---|---|---|
Arsenic (As) | 41.59 | 59.65 | 29.23 | 7.66 |
Beryllium (Be) | 0.38 | 1.00 | 0.00 | 0.19 |
Cadmium (Cd) | 0.92 | 2.70 | 0.30 | 0.56 |
Calcium (Ca) | 5532.15 | 20,615.35 | 2876.40 | 3056.64 |
Cobalt (Co) | 6.14 | 20.20 | 1.89 | 4.32 |
Copper (Cu) | 16.46 | 58.05 | 4.23 | 11.96 |
Strontium (Sr) | 78.42 | 213.99 | 36.88 | 35.89 |
Molybdenum (Mo) | 0.76 | 1.88 | 0.32 | 0.37 |
Nickel (Ni) | 9.64 | 37.17 | 3.26 | 7.29 |
Lead (Pb) | 9.12 | 33.18 | 3.05 | 5.19 |
Selenium (Se) | 4.64 | 14.07 | 0.00 | 2.77 |
Thallium (Tl) | 0.16 | 0.48 | 0.04 | 0.11 |
Vanadium (V) | 65.29 | 139.90 | 43.32 | 22.04 |
Iron (Fe) | 9046.52 | 22,008.29 | 4050.02 | 4644.70 |
Potassium (K) | 1591.56 | 4667.54 | 498.19 | 770.42 |
Magnesium (Mg) | 3130.53 | 8352.83 | 1023.90 | 1536.74 |
Sodium (Na) | 700.93 | 6819.66 | 78.93 | 1324.26 |
Mercury (Hg) | 0.05 | 0.82 | 0.00 | 0.15 |
Barium (Ba) | 60.65 | 275.93 | 10.28 | 52.87 |
Zinc (Zn) | 65.63 | 144.00 | 29.65 | 29.30 |
Antimony (Sb) | 0.31 | 0.57 | 0.18 | 0.08 |
Manganese (Mn) | 275.88 | 913.85 | 98.08 | 172.81 |
Chromium (Cr) | 19.06 | 41.13 | 11.38 | 6.67 |
Aluminum (Al) | 6716.76 | 14,559.98 | 2961.31 | 2948.43 |
Properties | Mean | Maximum | Minimum | Standard Deviation (±) |
---|---|---|---|---|
Humidity (%) | 12.11 | 13.61 | 10.38 | 0.74 |
Ash (g 100 g−1) | 3.46 | 4.98 | 2.59 | 0.38 |
Ether extract (g 100 g−1) | 1.10 | 1.27 | 0.90 | 0.08 |
Protein (g 100 g−1) | 10.15 | 18.12 | 7.21 | 1.82 |
Model | ID | Equation |
---|---|---|
Protein | A | |
B | ||
C | ||
D | ||
E | ||
F | ||
Ether extract | A’ | |
B’ | ||
C’ | ||
D’ | ||
E’ | ||
F’ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salazar, W.; Cruz-Grimaldo, C.; Lastra, S.; Rengifo, R.; Vargas-de-la-Cruz, C.; Godoy-Padilla, D.; Sessarego, E.; Cruz, J.; Solórzano, R. Nutritional Quality of the “Algarrobo” Neltuma pallida Fruit and Its Relationship with Soil Properties and Vegetation Indices in the Dry Forests of Northern Peru. Sustainability 2025, 17, 8296. https://doi.org/10.3390/su17188296
Salazar W, Cruz-Grimaldo C, Lastra S, Rengifo R, Vargas-de-la-Cruz C, Godoy-Padilla D, Sessarego E, Cruz J, Solórzano R. Nutritional Quality of the “Algarrobo” Neltuma pallida Fruit and Its Relationship with Soil Properties and Vegetation Indices in the Dry Forests of Northern Peru. Sustainability. 2025; 17(18):8296. https://doi.org/10.3390/su17188296
Chicago/Turabian StyleSalazar, Wilian, Camila Cruz-Grimaldo, Sphyros Lastra, Raihil Rengifo, Celia Vargas-de-la-Cruz, David Godoy-Padilla, Emmanuel Sessarego, Juancarlos Cruz, and Richard Solórzano. 2025. "Nutritional Quality of the “Algarrobo” Neltuma pallida Fruit and Its Relationship with Soil Properties and Vegetation Indices in the Dry Forests of Northern Peru" Sustainability 17, no. 18: 8296. https://doi.org/10.3390/su17188296
APA StyleSalazar, W., Cruz-Grimaldo, C., Lastra, S., Rengifo, R., Vargas-de-la-Cruz, C., Godoy-Padilla, D., Sessarego, E., Cruz, J., & Solórzano, R. (2025). Nutritional Quality of the “Algarrobo” Neltuma pallida Fruit and Its Relationship with Soil Properties and Vegetation Indices in the Dry Forests of Northern Peru. Sustainability, 17(18), 8296. https://doi.org/10.3390/su17188296