Assessment of the Impact of Climate Change on the Ecological Resilience of the Yangtze River Economic Belt
Abstract
1. Introduction
2. Methods and Materials
2.1. Study Area
2.2. Data Sources
2.2.1. Climate Data
2.2.2. Remote Sensing and Geographical Data
2.2.3. Socioeconomic Data
2.3. Methods
2.3.1. Construction of ER Evaluation Index System
Target Layer | Index Layer | The Nature of Indicators | EWM Weight | AHP Weight | Comprehensive Weight | Reference for Indicator Selection |
---|---|---|---|---|---|---|
ER | Normalized Difference Vegetation Index | + | 0.4612 | 0.5388 | 0.1783 | [24] |
Standardized Precipitation Evapotranspiration Index | − | 0.5163 | 0.4837 | 0.1027 | [25] | |
Annual temperature (°C) | − | 0.4093 | 0.5907 | 0.2327 | ||
Soil Sensitivity Index | − | 0.4102 | 0.5898 | 0.0629 | [26] | |
The proportion of public financial expenditure (%) | + | 0.5969 | 0.4031 | 0.0260 | [27] | |
Technology investment (billion) | + | 0.4039 | 0.5961 | 0.0612 | [28] | |
Educational investment (billion) | + | 0.4946 | 0.5054 | 0.0335 | [28] | |
Population density (persons/km2) | − | 0.5372 | 0.4628 | 0.1310 | [29] | |
Environmental protection expenditure (million dollars) | + | 0.6820 | 0.3180 | 0.0979 | [29] | |
Proportion of foreign direct investment to GDP (%) | + | 0.7286 | 0.2714 | 0.0738 | [30] |
2.3.2. Methods for Processing Meteorological Elements Under Climate Change
- Downscaling method
- 2.
- Deviation correction method
2.3.3. Soil and Water Loss Sensitivity Index
2.3.4. Standardized Precipitation Evapotranspiration Index
2.3.5. Normalized Difference Vegetation Index
2.3.6. Standardization of Indicators
2.4. Evaluation Model for ER in Response to Climate Change
- CCI > 0: Signifies a positive impact of climate change.
- CCI = 0: Denotes negligible climate change effects.
- CCI < 0: Reflects a negative impact of climate change.
2.5. ER Evaluation Model Under Climate Change
3. Results
3.1. Evaluation of Spatiotemporal Changes in Meteorological Risks
3.2. Analysis of CCI Results for Meteorological Risks
3.3. The Spatial Evolution of ER
3.3.1. Historical Experimental Period Analysis
3.3.2. Future Simulation Period Analysis
3.4. Analysis of Impact of Climate Change on ER
3.5. Analysis of CCI Results on ER
3.5.1. Analysis of CCI Results on ER in Temporal Dimension
3.5.2. Analysis of CCI Results on ER in Spatial Dimension
4. Discussion
- (1)
- Changes in meteorological risks under background of climate change
- (2)
- ER changes in YREB during historical periods
- (3)
- The spatial differences in river basin ER
- (4)
- The changing trend of ER and meteorological risk identification under the background of climate change
5. Conclusions
- (1)
- Under the four future scenarios, the CCI values of ER are measured at −0.8005, −0.8924, −0.9540, and −1.2298, respectively, indicating that the ER of the YREB is negatively impacted by climate change. The extent of climate change impacts varies across scenarios, with the ranking SSP5-8.5 > SSP4-6.0 > SSP2-4.5 > SSP1-2.6. The SSP5-8.5 scenario (fossil-fueled development with high radiative forcing) exhibits the most severe impacts, with CCI values of −0.7015, −1.2910, −1.3124, and −1.6144 for the four evaluation years.
- (2)
- Spatially, climate change exerts the greatest impact on the upstream regions, followed by the downstream and midstream areas. Notably, Guizhou Province experiences the most significant ER deterioration, with CCI values of −1.0428, −1.2062, −1.4673, and −1.4204 across the four scenarios.
- (3)
- Temp and NDVI are the primary meteorological risks contributing to the degradation of ER. In future scenarios, Temp shows an increasing trend, with mean values ranging from 0.2627 to 0.4461, while NDVI exhibits a declining trend, ranging from 0.6334 to 0.6825, compared to the historical period. Rising temperatures and reduced precipitation may exacerbate drought conditions, leading to increased soil erosion. Although upstream regions are rich in forest resources, overexploitation and climate-induced vegetation damage pose significant risks. In contrast, downstream regions face intensified ecological pressures due to rapid urbanization and land use changes.
- (4)
- This study still has some limitations, including data inaccuracies and modeling imprecisions. Firstly, the low spatiotemporal resolution of the data inevitably introduces estimation errors. Secondly, the evaluation indicators are limited by data availability, and future studies should incorporate additional ecological metrics to enhance their comprehensiveness. Furthermore, to improve the accuracy of ER estimation and reduce uncertainty, future work could employ multiple models with varied weighting schemes and utilize regional climate model data for more refined analysis. These directions will be explored in subsequent studies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ER | Ecological Resilience |
YREB | Yangtze River Economic Belt |
CCI | Climate Change Impact Index |
Temp | Temperature |
NDVI | Normalized Difference Vegetation Index |
AHP | Analytic Hierarchy Process |
EWM | Entropy Weight Method |
SPEI | Standardized Precipitation Evapotranspiration Index |
SSI | Soil Sensitivity Index |
Appendix A
Appendix A.1. Determining Indices Weights Using AHP
Index Layer | Normalized Difference Vegetation Index | Annual Temperature | Standardized Precipitation Evapotranspiration Index | Soil Sensitivity Index | The Proportion of Public Financial Expenditure |
Q1 | Q2 | Q3 | Q4 | S1 | |
Index Layer | Environmental Protection Expenditure | Educational Investment | Technology Investment | Population Density | Proportion of Foreign Direct Investment to GDP |
S2 | S3 | S4 | S5 | S6 |
S1 | S2 | S3 | S4 | S5 | S6 | Q1 | Q2 | Q3 | Q4 | |
---|---|---|---|---|---|---|---|---|---|---|
S1 | 1 | |||||||||
S2 | 3 | 1 | ||||||||
S3 | 2 | 1/2 | 1 | |||||||
S4 | 3 | 1 | 2 | 1 | ||||||
S5 | 5 | 2 | 4 | 3 | 1 | |||||
S6 | 2 | 1/3 | 1 | 1/2 | 1/4 | 1 | ||||
Q1 | 6 | 3 | 4 | 3 | 2 | 4 | 1 | |||
Q2 | 7 | 5 | 6 | 5 | 3 | 6 | 2 | 1 | ||
Q3 | 5 | 3 | 3 | 2 | 1 | 3 | 1/3 | 1/4 | 1 | |
Q4 | 4 | 2 | 2 | 2 | 0.5 | 3 | 1/4 | 1/5 | 1/3 | 1 |
S1 | S2 | S3 | S4 | S5 | S6 | Q1 | Q2 | Q3 | Q4 | |
---|---|---|---|---|---|---|---|---|---|---|
S1 | 1 | |||||||||
S2 | 4 | 1 | ||||||||
S3 | 3 | 1/4 | 1 | |||||||
S4 | 5 | 2 | 3 | 1 | ||||||
S5 | 6 | 3 | 4 | 2 | 1 | |||||
S6 | 3 | 1/2 | 1 | 1/3 | 1/3 | 1 | ||||
Q1 | 7 | 4 | 5 | 3 | 2 | 5 | 1 | |||
Q2 | 8 | 5 | 6 | 4 | 3 | 6 | 3 | 1 | ||
Q3 | 6 | 3 | 4 | 2 | 1 | 4 | 1/4 | 1/5 | 1 | |
Q4 | 5 | 3 | 3 | 1 | 1/2 | 3 | 1/5 | 1/6 | 1/2 | 1 |
S1 | S2 | S3 | S4 | S5 | S6 | Q1 | Q2 | Q3 | Q4 | |
---|---|---|---|---|---|---|---|---|---|---|
S1 | 1 | |||||||||
S2 | 3 | 1 | ||||||||
S3 | 2 | 1/2 | 1 | |||||||
S4 | 4 | 2 | 3 | 1 | ||||||
S5 | 5 | 3 | 5 | 2 | 1 | |||||
S6 | 2 | 1/2 | 1/2 | 1/3 | 1/4 | 1 | ||||
Q1 | 6 | 3 | 4 | 2 | 3 | 4 | 1 | |||
Q2 | 7 | 4 | 5 | 3 | 2 | 5 | 2 | 1 | ||
Q3 | 5 | 2 | 3 | 1 | 1/2 | 3 | 1/5 | 1/4 | 1 | |
Q4 | 4 | 2 | 4 | 1 | 1/3 | 2 | 1/6 | 1/5 | 1/2 | 1 |
Maximum Eigenvalue | CI | RI | CR | Consistency Check Results | |
---|---|---|---|---|---|
Expert 1 | 10.401 | 0.045 | 1.49 | 0.0302 | Pass |
Expert 2 | 10.672 | 0.075 | 1.49 | 0.0504 | Pass |
Expert 3 | 10.579 | 0.064 | 1.49 | 0.0430 | Pass |
S1 | S2 | S3 | S4 | S5 | S6 | Q1 | Q2 | Q3 | Q4 | |
---|---|---|---|---|---|---|---|---|---|---|
S1 | 1.0000 | |||||||||
S2 | 3.3019 | 1.0000 | ||||||||
S3 | 2.2894 | 0.3969 | 1.0000 | |||||||
S4 | 3.9149 | 1.5874 | 2.6207 | 1.0000 | ||||||
S5 | 5.3133 | 2.6207 | 4.3089 | 2.2894 | 1.0000 | |||||
S6 | 2.2894 | 0.4368 | 0.7937 | 0.3816 | 0.2752 | 1.0000 | ||||
Q1 | 6.3164 | 3.3019 | 4.3089 | 2.6207 | 2.2894 | 4.3089 | 1.0000 | |||
Q2 | 7.3186 | 4.6416 | 5.6462 | 3.9149 | 2.6207 | 5.6462 | 2.2894 | 1.0000 | ||
Q3 | 5.3133 | 2.6207 | 3.3019 | 1.5874 | 0.7937 | 3.3019 | 0.2554 | 0.2321 | 1.0000 | |
Q4 | 4.3089 | 2.2894 | 2.8845 | 1.2599 | 0.4368 | 2.6207 | 0.2027 | 0.1882 | 0.4368 | 1.0000 |
Eigenvector | Wight | Maximum Eigenvalue | CI | RI | CR | Consistency Check Results | |
---|---|---|---|---|---|---|---|
S1 | 0.211 | 2.11% | 10.462 | 0.051 | 1.49 | 0.0342 | Pass |
S2 | 0.572 | 5.72% | |||||
S3 | 0.353 | 3.53% | |||||
S4 | 0.731 | 7.31% | |||||
S5 | 1.254 | 12.54% | |||||
S6 | 0.345 | 3.45% | |||||
Q1 | 1.986 | 19.86% | |||||
Q2 | 2.769 | 27.69% | |||||
Q3 | 1.033 | 10.33% | |||||
Q4 | 0.748 | 7.48% |
Appendix A.2. Determining Indices Weights Using EWM
Index Layer | Information Entropy | Difference Coefficient | EWM Weight |
---|---|---|---|
S1 | 0.9992 | 0.0008 | 0.0312 |
S2 | 0.9970 | 0.0030 | 0.1226 |
S3 | 0.9992 | 0.0008 | 0.0345 |
S4 | 0.9988 | 0.0012 | 0.0496 |
S5 | 0.9965 | 0.0035 | 0.1456 |
S6 | 0.9977 | 0.0023 | 0.0925 |
Q1 | 0.9959 | 0.0041 | 0.1700 |
Q2 | 0.9953 | 0.0047 | 0.1919 |
Q3 | 0.9973 | 0.0027 | 0.1102 |
Q4 | 0.9987 | 0.0013 | 0.0520 |
Appendix A.3. Comprehensive Determination of Weights Based on EWM-AHP
Target Layer | Index Layer | EWM Weight | AHP Weight | Comprehensive Weight |
---|---|---|---|---|
ER | Normalized Difference Vegetation Index | 0.4612 | 0.5388 | 0.1783 |
Standardized Precipitation Evapotranspiration Index | 0.5163 | 0.4837 | 0.1027 | |
Annual temperature (°C) | 0.4093 | 0.5907 | 0.2327 | |
Soil Sensitivity Index | 0.4102 | 0.5898 | 0.0629 | |
The proportion of public financial expenditure (%) | 0.5969 | 0.4031 | 0.0260 | |
Technology investment (billion) | 0.4039 | 0.5961 | 0.0612 | |
Educational investment (billion) | 0.4946 | 0.5054 | 0.0335 | |
Population density (persons/km2) | 0.5372 | 0.4628 | 0.1310 | |
Environmental protection expenditure (million dollars) | 0.6820 | 0.3180 | 0.0979 | |
Proportion of foreign direct investment to GDP (%) | 0.7286 | 0.2714 | 0.0738 |
References
- Fu, J.; Liu, J.; Qin, J.; Yang, L.; Zhang, Z.; Deng, Y.; Hu, Y.; Su, B. Monitoring Long-Term Vegetation Dynamics over the Yangtze River Basin, China, Using Multi-Temporal Remote Sensing Data. Ecosphere 2024, 15, e4809. [Google Scholar] [CrossRef]
- Xue, Y.T.; Li, X.H.; Jia, H.J. Future Projection of Drought Risk in Southwestern China Based on CMIP6 Mode. Res. Soil Water Conserv. 2023, 30, 247–255. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, S.D.; Yang, L.H.; Huang, S.S.; Mao, W.Y.; Xia, J. CMlP6-Based Meteorological Drought Characteristic Study under Climate Change in the Hanjiang River Basin. Water Resour. Prot. 2024, 40, 39–45. [Google Scholar]
- Li, H.H.; Sun, S.N. Analysis of the Impact and Response of Climate Change on Extreme Hydrological Events in the Weihe River Basin. Harnessing Huaihe River 2024, 12, 9–10+21. [Google Scholar]
- Liu, K.; Liu, J.F.; Wang, C.Q. Assessment of Future Trends in Temperature and Precipitation in the Yellow River Basin under SSP Scenarios. J. China Hydrol. 2024, 44, 51–59. [Google Scholar] [CrossRef]
- Li, S.X. The Impact of Climate Change on Ecological Security in the Yangtze River Basin. China Invest. 2023, Z4, 16–17. [Google Scholar]
- Hu, S.S.; Luo, D.; Yang, X.L.; Shi, L.J. Research on Spatio-Temporal Trends of Meteorological Drought in the Yangtze River Basin. J. China Hydrol. 2024, 44, 76–84. [Google Scholar] [CrossRef]
- Wen, S.S.; Wang, Z.C.; Zhai, J.Q.; Jiang, F.S.; Zhou, B. Future Projections of Temperature and Precipitation in Changjiang River Basin Based on N-CMIP6. Yangtze River 2024, 55, 69–78. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Z.; Ding, S.; Yang, F.; Fu, T. Combined Effects of Climate Change on Urban Resilience in the Tibetan Plateau. Environ. Impact Assess. Rev. 2023, 102, 107186. [Google Scholar] [CrossRef]
- Hunt, A.; Watkiss, P. Climate Change Impacts and Adaptation in Cities: A Review of the Literature. Clim. Change 2010, 104, 13–49. [Google Scholar] [CrossRef]
- Cui, Z.; Yang, F.; Ren, F.; Zhang, X.; Jing, Z. Assessing Sustainability Environmental Performance of Three Urban Agglomerations in China: An Input–Output Modeling Approach. Ecol. Indic. 2021, 130, 108079. [Google Scholar] [CrossRef]
- Cannon, T.; Müller-Mahn, D. Vulnerability, Resilience and Development Discourses in Context of Climate Change. Nat. Hazards 2010, 55, 621–635. [Google Scholar] [CrossRef]
- Tompkins, E.L.; Adger, W.N. Does Adaptive Management of Natural Resources Enhance Resilience to Climate Change? Ecol. Soc. 2004, 9, 10. [Google Scholar] [CrossRef]
- Kim, D.; Song, S.-K. Measuring Changes in Urban Functional Capacity for Climate Resilience: Perspectives from Korea. Futures 2018, 102, 89–103. [Google Scholar] [CrossRef]
- Lu, H.; Lu, X.; Jiao, L.; Zhang, Y. Evaluating Urban Agglomeration Resilience to Disaster in the Yangtze Delta City Group in China. Sustain. Cities Soc. 2022, 76, 103464. [Google Scholar] [CrossRef]
- Tang, X.L.; Chen, N. A Multi-Scenario Urban Resilience Simulation Study Based on the System Dynamics Model. Phys. Chem. Earth Parts A/B/C 2023, 132, 103467. [Google Scholar] [CrossRef]
- Xia, C.H.; Zhai, G.F. The Spatiotemporal Evolution Pattern of Urban Resilience in the Yangtze River Delta Urban Agglomeration Based on TOPSIS-PSO-ELM. Sustain. Cities Soc. 2022, 87, 104223. [Google Scholar] [CrossRef]
- Liu, L.N.; Lei, Y.L.; Zhuang, M.H.; Ding, S. The Impact of Climate Change on Urban Resilience in the Beijing-Tianjin-Hebei Region. Sci. Total Environ. 2022, 827, 154157. [Google Scholar] [CrossRef]
- Chang, Q.; Sha, Y.; Chen, Y. The Coupling Coordination and Influencing Factors of Urbanization and Ecological Resilience in the Yangtze River Delta Urban Agglomeration, China. Land 2024, 13, 111. [Google Scholar] [CrossRef]
- Chen, H.B. Collaborative Promotion of Ecological Priority and Green Development in the Yangtze River Economic Belt: From the Perspective of Biodiversity. Stud. Social. Chin. Charact. 2020, 3, 79–87. [Google Scholar]
- Chen, Y. Research on Risk Management of Real Estate Trustee-Construction Based on the Analytic Hierarchy Process-a Case Study of the BGY-TH Project. Jilin Univ. 2024, 8, 1–75. [Google Scholar]
- Han, M. Customer Value Analysis and Marketing Strategy Research of R Company Based on AHP-Entroph Method. Beijing Univ. Chem. Technol. 2019, 6, 1–77. [Google Scholar]
- Yang, L.S.; Chen, Y.; Xie, H.Q. Spatio-Temporal Patterns and Driving Factors of Ecological Resilience in Urban Agglomerations in the Yellow River Basin. Ecol. Econ. 2024, 40, 99–108. [Google Scholar]
- Ye, C.; Hu, M.; Lu, L.; Dong, Q.; Gu, M. Spatio-Temporal Evolution and Factor Explanatory Power Analysis of Urban Resilience in the Yangtze River Economic Belt. Geogr. Sustain. 2022, 3, 299–311. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Sun, S.; Zhang, S.Y.; Wang, W. Climate Resilience Assessment and Enhancement Countermeasures for Yellow River Basin Cities. Sci. Technol. Manag. Land Resour. 2021, 41, 62–74. [Google Scholar]
- Lu, F.; Liu, Q.; Wang, P. Spatiotemporal Characteristics of Ecological Resilience and Its Influencing Factors in the Yellow River Basin of China. Sci. Rep. 2024, 14, 16988. [Google Scholar] [CrossRef]
- Zhong, P.S. Comparative Study on Ecological Resilience between the Yangtze River Economic Belt and the Yellow River Basin. Xinyang Norm. Univ. 2024, 4, 1–88. [Google Scholar] [CrossRef]
- Tao, J.Y.; Dong, P.; Lu, Y.Q. Analysis of Spatiotemporal Changes and Influencing Factors of Ecological Resilience in the Yangtze River Delta Region. Resour. Environ. Yangtze Basin 2022, 31, 1975–1987. [Google Scholar]
- Lu, L. Analysis on Spatial-Temporal Characteristics and Its Influencing Factors of Urban Resilience in the Yangtze River Economic Belt. East China Univ. Technol. 2021, 3, 1–86. [Google Scholar]
- Zhou, C.; Zhao, Y.L.; Zhang, X.H.; Zhou, L.; Ren, M.M. Spatiotemporal Evolutionary Characteristics and Coordinated Development of Urban Ecological Resilience and Efficiency in the Yellow River Basin. Arid. Land Geogr. 2022, 46, 1514–1523. [Google Scholar]
- Swain, S.S. Assessment of Basin-Scale Concurrent Dry and Wet Extreme Dynamics under Multimodel CORDEX Climate Scenarios. Int. J. Climatol. 2024, 44, 5950–5968. [Google Scholar] [CrossRef]
- Wei, J.M.; Li, C.B.; Wu, L.; Xie, X.H.; Lv, J.N.; Zhou, X. Study on Soil Erosion in Northwestern Sichuan and Southern Gansu (NSSG) Based on USLE. J. Soil Water Conserv. 2021, 35, 31–37+46. [Google Scholar] [CrossRef]
- Wang, Z.Y. Research on Risk Assessment of Soil and Water Loss in Jiangsu Province by Coupling RUSLE Model and Multi-Source Data. Shaanxi Water Resour. 2023, 10, 107–109. [Google Scholar] [CrossRef]
- Sun, F.Y. Drought and Flood Outlook for the Yangtze River Basin. East China Norm. Univ. 2018, 5, 1–187. [Google Scholar]
- Wei, J.; Wang, Z.; Han, L.; Shang, J.; Zhao, B. Analysis of Spatio-Temporal Evolution Characteristics of Drought and Its Driving Factors in Yangtze River Basin Based on SPEI. Atmosphere 2022, 13, 1986. [Google Scholar] [CrossRef]
- Gong, X.; Du, S.; Li, F.; Ding, Y. Study of Mesoscale NDVI Prediction Models in Arid and Semiarid Regions of China under Changing Environments. Ecol. Indic. 2021, 131, 108198. [Google Scholar] [CrossRef]
- Han, H.Q.; Zhang, J.Y.; Su, Z.H.; Lu, Y. Spatial and Temporal Variations of Extreme Climate Indices in Guizhou Province from 2011 to 2050. Res. Soil Water Conserv. 2018, 25, 341–346. [Google Scholar] [CrossRef]
- Li, X.N.; He, L.H.; Xue, L.Q. Spatial-Temporal Differentiation and Prediction of Extreme Weather Events and Vegetation Cover in Guizhou Province under Climate Change. Pearl River 2024, 45, 65–75. [Google Scholar]
- Wang, R.L.; Pan, W.L.; Wang, X.Q. Non-Parametric Two-Sample Test Developments and Prospects. Chin. J. Appl. Probab. Stat. 2024, 40, 498–524. [Google Scholar] [CrossRef]
- Xiao, Y.; He, L.; Li, M.K.; Yu, Y.; Meng, J.Y.; Zhou, Y. Dynamic Evolution and Regional, Variance of Urban Resilience in Yangtze River Economic Zone. Resour. Ind. 2025, 7, 1–13. [Google Scholar] [CrossRef]
- Wang, Z.F.; Liang, Z.Q. Evolution Pattern and Prediction of Ecological Resilience of Cities in the Yangtze River Economic Belt. Resour. Environ. Yangtze Basin 2025, 34, 268–279. [Google Scholar]
- Lu, F.Y.; Zhang, C.; Jia, T.Y.; Huang, Z.F.; Xu, M. Spatio-Temporal Evolution Characteristics and Driving Mechanisms of Urban Ecological Resilience in the Yangtze River Economic Belt. Environ. Sci. 2025, 46, 4592–4601. [Google Scholar] [CrossRef]
- Wang, S.M.; Niu, J.L. Spatio-Temporal Evolution and Influencing Factors of Urban Ecological Resilience in the Yellow River Basin. Acta Ecol. Sin. 2023, 43, 8309–8320. [Google Scholar] [CrossRef]
- Wang, D.; Jiao, Y.; Jiao, W.X.; Wang, H.; Zheng, H.R. Spatio-Temporal Evolution and Driving Factors of Rural Ecological Resilience in Jianghan Plain. J. Cent. China Norm. Univ. (Nat. Sci.) 2024, 58, 255–263. [Google Scholar] [CrossRef]
- Liu, H.L.; Wang, G.Y.; Zhang, P.C.; Wang, Z.L.; Zhang, L.P. Spatio-Temporal Evolution and Coordination Influence of Coupling Coordination between New Urbanization and Ecological Resilience in Fenhe River Basin. J. Nat. Resour. 2024, 39, 640–667. [Google Scholar] [CrossRef]
- Chen, F.; Wang, W.J.; He, T.; Zhou, H.R.; Qian, B. Analysis on Status and Countermeasures for Bloom Growth in Middle and Lower Hanjiang River. Yangtze River 2023, 54, 7–17. [Google Scholar] [CrossRef]
- Chen, F.; Li, X.H.; Wang, W.J.; Peng, L.; Qian, B. Temporal and Spatial Variation Characteristics of Total Phosphorusin Yangtze River Basin from 2018 to 2022. Express Water Resour. Hydropower Inf. 2023, 44, 91–97. [Google Scholar] [CrossRef]
- Qian, B.; Liu, L.; Xiao, X.; Chen, M.S. The Process of Phosphorus Release from Lake Sediments on the Micro-Interface. J. Hydraul. Eng. 2014, 45, 482–489. [Google Scholar] [CrossRef]
Model Name | Country | Atmospheric Resolution (Grid Points) |
---|---|---|
CanESM5 | Canada | 64 × 128 |
MIROC6 | Japan | 128 × 256 |
MRI-ESM2-0 | Japan | 160 × 320 |
Resilience Level | Very Low Resilience | Low Resilience | Moderate Resilience | High Resilience | Very High Resilience |
---|---|---|---|---|---|
Temp | [0, 0.2) | [0.2, 0.4) | [0.4, 0.6) | [0.6, 0.8) | [0.8, 1.0] |
NDVI | [0, 0.2) | [0.2, 0.4) | [0.4, 0.6) | [0.6, 0.8) | [0.8, 1.0] |
SPEI | [0, 0.2) | [0.2, 0.4) | [0.4, 0.6) | [0.6, 0.8) | [0.8, 1.0] |
SSI | [0, 0.2) | [0.2, 0.4) | [0.4, 0.6) | [0.6, 0.8) | [0.8, 1.0] |
ER | [min, 0.43) | [0.43, 0.48) | [0.48, 0.53) | [0.53, 0.58) | [0.58, max] |
Grade | 1 | 2 | 3 | 4 | 5 |
Very Low Resilience | Low Resilience | Moderate Resilience | High Resilience | Very High Resilience | Z | p | |
---|---|---|---|---|---|---|---|
Historical Scenario | 1272 (6.26%) | 2434 (11.98%) | 2662 (13.10%) | 10,003 (49.23%) | 3946 (19.24%) | ||
SSP1-2.6 | 2378 (11.70%) | 2511 (12.36%) | 4798 (23.62%) | 8421 (41.45%) | 2209 (10.87%) | −34.68 | 0.0011 |
SSP2-4.5 | 2981 (14.67%) | 3322 (16.35%) | 4989 (24.56%) | 7128 (35.08%) | 1897 (9.34%) | −49.49 | <0.001 |
SSP4-6.0 | 3042 (14.97%) | 3535 (17.04%) | 5103 (25.12%) | 6969 (34.30%) | 1668 (8.21%) | −53.75 | <0.001 |
SSP5-8.5 | 3400 (16.73%) | 4238 (20.86%) | 5449 (26.82%) | 5872 (28.90%) | 1358 (6.68%) | −66.15 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, J.; Wu, H.; Yan, F. Assessment of the Impact of Climate Change on the Ecological Resilience of the Yangtze River Economic Belt. Sustainability 2025, 17, 8265. https://doi.org/10.3390/su17188265
Yao J, Wu H, Yan F. Assessment of the Impact of Climate Change on the Ecological Resilience of the Yangtze River Economic Belt. Sustainability. 2025; 17(18):8265. https://doi.org/10.3390/su17188265
Chicago/Turabian StyleYao, Jianglin, Hongliang Wu, and Feng Yan. 2025. "Assessment of the Impact of Climate Change on the Ecological Resilience of the Yangtze River Economic Belt" Sustainability 17, no. 18: 8265. https://doi.org/10.3390/su17188265
APA StyleYao, J., Wu, H., & Yan, F. (2025). Assessment of the Impact of Climate Change on the Ecological Resilience of the Yangtze River Economic Belt. Sustainability, 17(18), 8265. https://doi.org/10.3390/su17188265