Sustainable Integral Optimization of Service Queues: A Human-Centered Approach Using IAM and SMAA
Abstract
1. Introduction
2. Literature Review
3. Description of the Problem
3.1. Cardinal Analysis
3.2. Ordinal Analysis
3.3. Integration Analysis
4. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Integral Analysis Method (IAM)—Mathematics Stages
Appendix B. Qualitative Aspects in Queuing Theory
Appendix B.1. Service Quality
Appendix B.1.1. Anxiety of the Consumer
- The Magellan Anxiety Scale (EMANS) is a questionnaire containing 15 statements describing physiological sensations and involuntary movements related to tension, discomfort, and overwhelm, among others. The person being evaluated reports the frequency with which each of these sensations or movements has been experienced during the last two months [65].
- Cognitive-Somatic Anxiety Questionnaire (CSAQ) by [60] consists of fourteen items, seven of which are cognitive (cognitive subscale), while seven are somatic (somatic subscale). When they feel nervous or anxious, subjects must answer the different items on a Likert-type scale graduated from 1 to 5, according to how they typically experience each of the symptoms.
Appendix B.1.2. Importance of Customer Service
Appendix B.1.3. Service in Face of Customer’s Attention
Appendix B.2. Comfort Level
Appendix B.2.1. Lighting
Indicator | Calculation Formula | |
---|---|---|
Total necessary luminous flux | , where Total necessary luminous flux (lumens) Average illuminance (lux) Area to be illuminated (m2) Lighting performance = Maintenance factor of the lighting system | |
Average illuminance | It is set according to the visual requirements of the tasks to be carried out, which are specified in the corresponding technical standards, such as Article 28 of Colombia’s General Ordinance on Safety and Hygiene at Work (Ordenanza General de Seguridad e Higiene en el Trabajo—OGSHT). | |
Lighting performance | where Performance of the room = Luminaire performance | |
Maintenance factor of the lightning system | This factor ranges from 0.5 to 0.8. 0.5 corresponds to dusty rooms with poorly maintained lighting systems. 0.8 corresponds to lighting systems located in clean places, equipped with enclosed luminaires and low luminous depreciation lamps, where frequent cleaning and total or partial lamp replacements are systematically carried out. This factor is determined by loss of luminous flux, loss of reflection, or transmission of the lamps due to natural aging or dirt that is deposited on them. | |
Number of light points (N) | where Total necessary luminous flux = Nominal luminous flux of the lamps contained in a luminaire If luminaires with high luminous flux are used, the same total flux is achieved with fewer light points (with a lower total cost of the system), but uniformity is directly affected because the space between luminaires is larger, which gives rise to intermediate zones with less illumination. | |
Average uniformity (fum) | ||
Height of luminaires above the working plane (h) | In order to achieve acceptable average uniformity and glare risk levels, the luminaires must be distributed at a certain height (h) above the working plane and a corresponding distance (d) between them. Minimum height: Advisable height: Optimum height: In the case of indirect and semi-direct lighting, the optimum height must not be exceeded. | |
Distance between luminaires (d) | It is a function of (h) and the beam opening angle of the luminaire. | |
Type of luminaire | Distance | |
Intensive | D ≤ 1.2 h | |
Semi-intensive | D ≤ 1.5 h | |
Extensive | D ≤ 1.6 h | |
Selection of luminaire type as a function of (h) | ||
Height of the room | Type of luminaire | |
Up to 4 m | Extensive | |
From 4 to 6 m | Semi-extensive | |
From 6 to 10 m | Semi-intensive | |
More than 10 m | Intensive |
Appendix B.2.2. Noise
Indicator | Calculation Formula |
---|---|
Critical distance (r): | , where r: Critical distance in meters (within this distance, the acoustic conditioning of the walls is not appreciable because of the dominance of direct waves); R: Constant of the room, in square meters; Q: Directivity coefficient. |
Absorption (A) | where A: Absorption of frequency f in m2. It quantifies the energy extracted from the acoustic field when the sound wave passes through a given medium or collides with the boundary surfaces of the enclosure. : Average absorption in meters. Absorption coefficient of the material. S: Surface of the material in m2. |
Reverberation time (T) | , where V: Volume of the premises in m3 A: Absorption of the premises in m2 |
Appendix B.2.3. Thermal Load
Indicator | Calculation Formula | |
---|---|---|
Wet-Bulb Globe Temperature (WBGT) | The WBGT index consists of the fractional weighing of wet, balloon, and sometimes dry temperatures. | |
(WBGT) outdoors (sun exposure) | (WBGT) indoors (in the shade) | |
WBGT = 0.7 Tw + 0.2 Tg + 0.1 Ta | WBGT = 0.7 Tw + 0.3 Tg | |
Where Tw: Natural temperature of wet bulb. Tg: Globe temperature (measured through radiation load on a thermometer inside a 6-inch diameter black copper sphere). Ta: Dry bulb temperature (basic ambient temperature; shaded thermometer shielded from radiation). |
Appendix B.3. Marketing Factors
Appendix B.4. Transaction Costs
Appendix B.5. Competition Level
Indicator | Calculation Formula |
---|---|
Lerner’s index (L) | In a market with perfect competition, the market price (P) would be equal to the marginal cost of production (MC). Based on this premise, the Lerner index (L) is defined by the difference between those parameters, divided by the market price (P), in order to establish a fractional measure. L represents the power of a monopoly in the market.
where ped: Price elasticity of demand. |
Appendix C. Central Weight Vectors
Appendix C.1. Ordinal Analysis (SMAA-O)
w1 | w2 | w3 | w4 | |
---|---|---|---|---|
wc1 | 0.35 | 0.15 | 0.15 | 0.35 |
wc2 | 0 | 0 | 0 | 0 |
wc3 | 0 | 0 | 0 | 0 |
wc4 | 0 | 0 | 0 | 0 |
wc5 | 0.35 | 0.15 | 0.15 | 0.35 |
Appendix C.2. Integration Analysis (Deterministic SMAA)
w1 | w2 | |
---|---|---|
wc1 | 0.5 | 0.5 |
wc2 | 0 | 0 |
wc3 | 0 | 0 |
wc4 | 0 | 0 |
wc5 | 0 | 0 |
References
- Mardani, A.; Zavadskas, E.K.; Jusoh, A.; Khalifah, Z. Sustainable and renewable energy: An overview of the application of multiple criteria decision-making techniques and approaches. Sustainability 2015, 7, 13947–13984. [Google Scholar] [CrossRef]
- Freire, D.L.; Frantz, R.Z.; Roos-Frantz, F.; Basto-Fernandes, V. Queue-priority optimised algorithm: A novel task scheduling for runtime systems of application integration platforms. J. Supercomput. 2022, 78, 1501–1531. [Google Scholar] [CrossRef]
- Guo, P.; Haviv, M.; Luo, Z.; Wang, Y. Optimal queue length information disclosure when service quality is uncertain. Prod. Oper. Manag. 2022, 31, 1912–1927. [Google Scholar] [CrossRef]
- Chakravarthy, S.R.; Dudin, A.N.; Dudin, S.A.; Dudina, O.S. Queueing system with potential for recruiting secondary servers. Mathematics 2023, 11, 624. [Google Scholar] [CrossRef]
- Wątróbski, J.; Bączkiewicz, A.; Rudawska, I. A Strong Sustainability Paradigm based Analytical Hierarchy Process (SSP-AHP) method to evaluate sustainable healthcare systems. Ecol. Indic. 2023, 154, 110493. [Google Scholar] [CrossRef]
- Farahdel, S.; Wang, C.; Awasthi, A. Literature Review of Current Sustainability Assessment Frameworks and Approaches for Organizations. arXiv 2024, arXiv:2403.04717. [Google Scholar] [CrossRef]
- Taha, H.A. Operations Research: An Introduction, 7th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Tao, Y.; Templeton, J.G.C. A survey on retrial queues. Queueing Syst. 1987, 2, 201–233. [Google Scholar] [CrossRef]
- Kalashnikov, V.V. Queueing Theory. In Mathematical Methods in Queuing Theory; Springer: Dordrecht, The Netherlands, 1994; pp. 5–15. [Google Scholar]
- García-Cáceres, R.G.; Araoz, J.A.; Palacios, F. Integral Analysis Method—IAM. Eur. J. Oper. Res. 2009, 192, 891–903. [Google Scholar] [CrossRef]
- Saaty, T.L. Elements of Queueing Theory: With Applications; Dover Publications: New York, NY, USA, 1983. [Google Scholar]
- Cohen, J.W. The Single Server Queue, 2nd ed.; Elsevier: North-Holland, Amsterdam, The Netherlands, 1982. [Google Scholar]
- Stalk, J. Time—The Next Source of Competitive Advantage; Harvard Business Review: Boston, MA, USA, 1988; pp. 41–55. [Google Scholar]
- Beamon, B.M. Supply chain design and analysis: Models and methods. Int. J. Prod. Econ. 1998, 55, 281–294. [Google Scholar] [CrossRef]
- Ballou, R.H. Business Logistics/Supply Chain Management, 5th ed.; Prentice-Hall: Naucalpan de Juárez, Mexico, 2004. [Google Scholar]
- Manish, G.; Magrab, E.B. Incorporating production concerns in conceptual product design. Int. J. Prod. Res. 2000, 38, 3823–3843. [Google Scholar] [CrossRef]
- Gross, D.; Shortle, J.; Thompson, J.; Harris, C. Fundamentals of Queuing Theory; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Kulkarni, V.G.; Liang, H.M. Retrial queues revisited. In Frontiers in Queuing; Dshalalow, J.H., Ed.; CRC Press: New York, NY, USA, 1997. [Google Scholar]
- Prabhu, N. Foundations of Queuing Theory; Kluwer Academic Publishers: Plymouth, MA, USA, 2002. [Google Scholar]
- Afolalu, S.A.; Ikumapayi, O.M.; Abdulkareem, A.; Emetere, M.E.; Adejumo, O. A short review on queueing theory as a deterministic tool in sustainable telecommunication system. Mater. Today Proc. 2021, 44, 2884–2888. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Chen, Q.X.; Smith, J.M.; Mao, N.; Liao, Y.; Xi, S.H. Queueing network models for intelligent manufacturing units with dual-resource constraints. Comput. Oper. Res. 2021, 129, 105213. [Google Scholar] [CrossRef]
- Artalejo, J.R.A. Queueing System with Returning Customers and Waiting Line; Department of Statistics and O.R. Faculty of Mathematics, University of Madrid-Complutense: Madrid, Spain, 1995; Volume 17, pp. 191–199. [Google Scholar]
- Artalejo, J.R. Accessible bibliography on retrial queues: Progress in 2000–2009. Math. Comput. Model. 2010, 51, 1071–1108. [Google Scholar] [CrossRef]
- Kondrashova, E. Optimization of Controlled Queueing Systems: The Case of Car Wash Services. Transp. Res. Procedia 2021, 54, 662–671. [Google Scholar] [CrossRef]
- Zhang, X.; Ahmed, R.R. A Queuing system for inert construction waste management on a reverse logistics network. Autom. Constr. 2022, 137, 104221. [Google Scholar] [CrossRef]
- Alnowibet, K.A.; Khireldin, A.; Abdelawwad, M.; Mohamed, A.W. Airport terminal building capacity evaluation using queueing system. Alex. Eng. J. 2022, 61, 10109–10118. [Google Scholar] [CrossRef]
- Cárdenas-Barrón, L.E.; Trejo, M.G.; García-Alcaraz, J.L. A sustainability-oriented multi-criteria model for service system optimisation: An application in public health queueing. Sustainability 2021, 13, 7212. [Google Scholar] [CrossRef]
- Winser, J.D.; Fawcett, S.E. Linking firm strategy to operating decisions through performance measuremet. Prod. Inventory Manag. J. 1991, 32, 5–11. [Google Scholar]
- Coase, R.H. The nature of the firm. Economical 1937, 4, 386–405. [Google Scholar] [CrossRef]
- Chia-Huang, W.; Dong-Yuh, Y. Bi-objective optimisation of a queueing model with two-phase heterogeneous service. Comput. Oper. Res. 2021, 130, 105230. [Google Scholar]
- Singh, S.K.; Acharya, S.K.; Cruz, F.R.B.; Quinino, R.C. Estimation of traffic intensity from queue length data in a deterministic single server queueing system. J. Comput. Appl. Math. 2021, 398, 113693. [Google Scholar] [CrossRef]
- Singh, S.K.; Acharya, S.K.; Cruz, F.R.B.; Quinino, R.C. Bayesian sample size determination in a single-server deterministic queueing system. Math. Comput. Simul. 2021, 187, 17–29. [Google Scholar] [CrossRef]
- Itoh, K.; Konno, T. An Integrated Method for Parameter Tuning on Synchronized Queuing Network Bottlenecks by Qualitative and Quantitative Reasoning. IEICE Trans. Inf. Syst. 1992, 75, 635–647. [Google Scholar]
- Khan, S.; Traore, I. Queue-based analysis of DoS attacks. In Proceedings of the Sixth Annual IEEE SMC Information Assurance Workshop (IAW), West Point, NY, USA, 15–17 June 2005; pp. 266–273. [Google Scholar]
- Ullah, A.; Iqbal, K.; Zhang, X.; Ayat, M. Sub-optimisation of bank queueing system by qualitative and quantitative analysis. In Proceedings of the 11th International Conference on Service Systems and Service Management (ICSSSM), Beijing, China, 25–27 June 2014; pp. 1–6. [Google Scholar]
- Salehin, K.; Kwon, K.W.; Rojas-Cessa, R. A Simulation Study of the Measurement of Queueing Delay Over End-to-End Paths. IEEE Open J. Comput. Soc. 2020, 1, 1–11. [Google Scholar] [CrossRef]
- Doshi, B.T. Queueing Systems with Vacations, a Survey. Queueing Syst. 1986, 1, 29–66. [Google Scholar] [CrossRef]
- Falin, G. A survey of retrial queues. Queueing Syst. 1990, 7, 127–167. [Google Scholar] [CrossRef]
- Akhlaghi, A.; Adibnia, F.; Shirali-Shahreza, M.H. A queue-based analysis for Denial of Service attacks on Voice over IP proxies. In Proceedings of the International Symposium on Telecommunications, Tehran, Iran, 27–28 August 2008; pp. 19–24. [Google Scholar] [CrossRef]
- Lin, C.; Liu, J.; Jiang, F.; Kuo, C. An Effective Priority Queue-Based Scheme to Alleviate Malicious Packet Flows from Distributed DoS Attacks. In Proceedings of the International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIHMSP), Harbin, China, 15–17 August 2008; pp. 1371–1374. [Google Scholar]
- Huang, M.; Liu, W.; Wang, T.; Song, H.; Li, X.; Liu, A. A queuing delay utilisation scheme for on-path service aggregation in services-oriented computing networks. IEEE Access 2019, 7, 23816–23833. [Google Scholar] [CrossRef]
- Alhulayil, M.; López-Benítez, M.; Alammar, M.; Al Ayidh, A. Towards Fair Spectrum Sharing: An Enhanced Fixed Waiting Time Model for LAA and Wi-Fi Networks Coexistence. IEEE Access 2025, 14, 73735–73744. [Google Scholar] [CrossRef]
- Heineke, J.; Davis, M. Understanding the roles of the customer and the operation for better queue management. Int. J. Oper. Prod. Manag. 1994, 14, 21–34. [Google Scholar] [CrossRef]
- Maister, D.A. The psychology of waiting lines. In The Service Encounter: Managing Employee/Customer Interaction in Service Business; Czepiel, J.A., Soloman, M.R., Surprenant, C.F., Eds.; Lexington Books: Lexington, MA, USA, 1985. [Google Scholar]
- Haviv, M.; Ravner, L. A survey of queueing systems with strategic timing of arrivals. Queueing Syst. 2021, 99, 163–198. [Google Scholar] [CrossRef]
- D’Apice, C.; Dudin, A.N.; Dudina, O.S.; Manzo, R. Analysis of Queueing System with Dynamic Rating-Dependent Arrival Process and Price of Service. Mathematics 2024, 12, 1101. [Google Scholar] [CrossRef]
- Lahdelma, R.; Miettinen, K.; Salminen, P. Ordinal criteria in stochastic multicriteria acceptability analysis (SMAA). Eur. J. Oper. Res. 2003, 147, 117–127. [Google Scholar] [CrossRef]
- Lahdelma, R.; Hokkanen, J.; Salminen, P. SMAA—Stochastic Multiobjetive Acceptability Analysis. Eur. J. Oper. Res. 2000, 106, 137–143. [Google Scholar] [CrossRef]
- Lahdelma, R.; Salminen, P. SMAA-2: Stochastic multicriteria acceptability analysis for group decision making. Eur. J. Oper. Res. 2001, 49, 444–454. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Pamucar, D.; Stevic, Z.; Mardani, A. Multi-Criteria Decision-Making Techniques for Improving Sustainable Engineering Processes. Symmetry 2023, 12, 986. [Google Scholar]
- Little, J.D.C. A proof of the queueing formula L = λW. Oper. Res. 1961, 9, 383–387. [Google Scholar] [CrossRef]
- Ritzman, L.; Krajewski, L. Administración de operaciones: Estrategia y Análisis; Pearson Education de México S.A.: Ciudad de México, Mexico, 2002. [Google Scholar]
- Ross, S. Introduction to Probability Models; Academic Press: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Estevadeordal, A.; Robert, C. (Eds.) Las Américas Sin Barreras: Negociaciones Comerciales de Acceso a Mercados en Los Años Noventa; Inter-American Development Bank: Washington, DC, USA, 2001. [Google Scholar]
- Maslow, A.H. A theory of human motivation. Psychol. Rev. 1943, 50, 370–396. [Google Scholar] [CrossRef]
- Levine, R.A. Geography of Time; Oneworld Books: Oxford, UK, 2006. [Google Scholar]
- Niebel, B.; Freivald, A. Ingeniería Industrial: Métodos, Estándares y Diseño del Trabajo; Alfaomega: Ciudad de México, México, 2001. [Google Scholar]
- Singer, M.; Donoso, P. Assessing an Ambulance Service with queuing theory. Comput. Oper. Res. 2008, 35, 2549–2560. [Google Scholar] [CrossRef]
- Chan, F. Performance Measurement in a Supply Chain; Department of Industrial and Manufacturing Systems Engineering, University of Hong Kong: Hong Kong, 2003. [Google Scholar]
- Schwartz, G.E.; Davidson, R.J.; Goleman, D.J. Cognitive-Somatic Anxiety Questionnaire (CSAQ) [Database record]. APPsycTests; American Psychological Association: Washington, DC, USA, 1978. [Google Scholar]
- Hellriegel, D.; Slocum, J.W. Organizational Behavior; Thomson South-Western: Mason, OH, USA, 2004. [Google Scholar]
- Gordon, I.E. Theories of Visual Perception, 2nd ed.; Psychology Press: Hove, UK; New York, NY, USA, 2004. [Google Scholar]
- Kierein, N. Pygmalion in work organizations: A meta-analysis. J. Organ. Behav. 2000, 21, 913–914. [Google Scholar] [CrossRef]
- Dube-Rioux, L.; Schmitt, B.H.; Leclerc, F. Consumer’s reactions to waiting: When delays affect the perception of service quality. Adv. Consum. Res. 1989, 16, 59–63. [Google Scholar]
- Martínez-Monteagudo, M.C.; Inglés, C.J.; García-Fernández, J.M. Evaluación de la ansiedad escolar: Revisión de cuestionarios, inventarios y escalas. Psicol. Educ. 2013, 19, 27–36. [Google Scholar] [CrossRef]
- Fraisse, P.E.; Piaget, J.E. Traité de Psychologie Expérimentale: VI. La Perception; Presses Universitaires de France: Paris, France, 1963. [Google Scholar]
- Dallenbach, K.M. Attention. Psychol. Bull. 1928, 25, 493–512. [Google Scholar] [CrossRef]
- Block, R.A.; Zakay, D. Prospective and retrospective duration judgements: A meta-analytic review. Psychon. Bull. Rev. 1994, 4, 184–197. [Google Scholar] [CrossRef]
- Baker, J.; Cameron, M. The Effects of the Service Environment on Affect and Consumer Perception of Waiting Time: An Analysis of an Industrial Technology Diffusion. J. Acad. Mark. Sci. 1996, 24, 338–349. [Google Scholar] [CrossRef]
- Davis, M.M.; Heineke, J.N. Operations Management: Integrating Manufacturing and Services; McGraw-Hill Companies: Columbus, OH, USA, 2005. [Google Scholar]
- Melo, J.L. Ergonomía Práctica: Guía Para la Evaluación Ergonómica de un Puesto de Trabajo; Fundación MAPFRE: Buenos Aires, Argentina, 2009. [Google Scholar]
- Kotler, P. Marketing Management: Analysis, Planning, and Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1967. [Google Scholar]
- Ringold, D.J.; Weitz, B. The American Marketing Association definition of marketing: Moving from lagging to leading indicator. J. Public Policy Mark. 2007, 26, 251–260. [Google Scholar] [CrossRef]
- Williamson, O.E. Markets and Hierarchies: Analysis and Antitrust Implications; Free Press: New York, NY, USA, 1975. [Google Scholar]
- Williamson, O.E. Comparative economic organization: The analysis of discrete structural alternatives. Adm. Sci. Q. 1991, 36, 269–296. [Google Scholar] [CrossRef]
- Pindyck, R.; Rubinfeld, D. Microeconomía, 5th ed.; Mc Graw Hill: Madrid, Spain, 2005. [Google Scholar]
Symbol | Description | Units |
---|---|---|
λ | Arrival rate | customers/hour |
μ | Service rate per server | customers/hour |
c | Number of servers | count |
L | Expected number of users | customers |
Lq | Expected number in the queue | customers |
W | Expected time in the system | minutes |
Wq | Expected time in queue | minutes |
X | % of server inactivity | percentage |
α, β | Aspiration thresholds (W and X, respectively) | minutes/percentage |
n | λ (Arrival Rate) | µ (Service Rate) | c (Number of Servers) | λeff | Ls | Ws (min) | Lq | Wq (min) | 100 − X (%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 6 | 3 | 4 | 6 | 2.17 | 21.73 | 0.17 | 1.74 | 50.00 | 0.1 | i = 1, 0.3 |
2 | 7 | 3 | 4 | 7 | 2.70 | 23.19 | 0.37 | 3.19 | 58.33 | 0.1 | |
3 | 8 | 3 | 4 | 8 | 3.42 | 25.67 | 0.75 | 5.67 | 66.67 | 0.1 | |
4 | 9 | 3 | 5 | 9 | 3.35 | 22.36 | 0.35 | 2.36 | 60.00 | 0.1 | i = 2, 0.2 |
5 | 10 | 3 | 5 | 10 | 3.98 | 23.92 | 0.65 | 3.91 | 66.67 | 0.1 | |
6 | 11 | 3 | 6 | 11 | 3.99 | 21.79 | 0.32 | 1.80 | 61.11 | 0.1 | i = 3, 0.2 |
7 | 12 | 3 | 6 | 12 | 4.56 | 22.84 | 0.56 | 2.85 | 66.67 | 0.1 | |
8 | 13 | 3 | 7 | 13 | 4.63 | 21.4 | 0.30 | 1.40 | 61.90 | 0.1 | i = 4, 0.2 |
9 | 14 | 3 | 7 | 14 | 5.16 | 22.14 | 0.50 | 2.14 | 66.67 | 0.1 | |
10 | 15 | 3 | 8 | 15 | 5.27 | 21.11 | 0.27 | 1.11 | 62.5 | 0.1 | i = 5, 0.1 |
Range | Level |
---|---|
1 | Very high |
2 | High |
3 | Medium |
4 | Low |
5 | Very low |
dB | Likert Level | Level |
---|---|---|
≥80 | 5 | Very bad |
[70–80) | 4 | Bad |
[60–70) | 3 | Medium |
(50–60) | 2 | Good |
50≤ | 1 | Very good |
WBGT (°C) | Likert Level | Level |
---|---|---|
>38 o < 5 | 5 | Very bad |
[32–38) o [5–10) | 4 | Bad |
[26–32) o [10–15) | 3 | Medium |
[23–26) | 2 | Good |
[15–23) | 1 | Very good |
Lerner’s Index | Likert Level | Level |
---|---|---|
[0–0.2) | 1 | Very good |
[0.2–0.4) | 2 | Good |
[0.4–0.6) | 3 | Medium |
[0.6–0.8) | 4 | Bad |
[0.8–1] | 5 | Very bad |
i | c | Frequency | j:1 Consumer’s Anxiety | j:2 Noise | j:3 Thermal Load | j:4 Competition | ||
---|---|---|---|---|---|---|---|---|
1 | 4 | 3 | 0.3 | 5 | 1 | 1 | 5 | 0.25 |
2 | 5 | 2 | 0.2 | 4 | 2 | 2 | 4 | 1/6 |
3 | 6 | 2 | 0.2 | 3 | 3 | 3 | 3 | 1/6 |
4 | 7 | 2 | 0.2 | 2 | 4 | 4 | 2 | 1/6 |
5 | 8 | 1 | 0.1 | 1 | 5 | 5 | 1 | 0.25 |
i | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
c * (optimal number of servers) | 4 | 5 | 6 | 7 | 9 |
0.30 | 0.20 | 0.20 | 0.20 | 0.10 | |
¼ | 1/6 | 1/6 | 1/6 | ¼ | |
0.075 | 0.033 | 0.033 | 0.033 | 0.025 | |
1 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Cáceres, R.G.; Prado-Téllez, A.G.; Escobar-Velásquez, J.W. Sustainable Integral Optimization of Service Queues: A Human-Centered Approach Using IAM and SMAA. Sustainability 2025, 17, 8179. https://doi.org/10.3390/su17188179
García-Cáceres RG, Prado-Téllez AG, Escobar-Velásquez JW. Sustainable Integral Optimization of Service Queues: A Human-Centered Approach Using IAM and SMAA. Sustainability. 2025; 17(18):8179. https://doi.org/10.3390/su17188179
Chicago/Turabian StyleGarcía-Cáceres, Rafael Guillermo, Angel Gabriel Prado-Téllez, and John Wilmer Escobar-Velásquez. 2025. "Sustainable Integral Optimization of Service Queues: A Human-Centered Approach Using IAM and SMAA" Sustainability 17, no. 18: 8179. https://doi.org/10.3390/su17188179
APA StyleGarcía-Cáceres, R. G., Prado-Téllez, A. G., & Escobar-Velásquez, J. W. (2025). Sustainable Integral Optimization of Service Queues: A Human-Centered Approach Using IAM and SMAA. Sustainability, 17(18), 8179. https://doi.org/10.3390/su17188179