Socio-Ecological Drivers of Ecosystem Services in Karst Forest Park: Interactions Among Climate, Vegetation, Geomorphology, and Tourism
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Research Methods
2.3.1. Quantification of Ecosystem Services
- (1)
- Water conservation
- (2)
- Soil conservation
- (3)
- Carbon storage
- (4)
- Tourism and cultural services
2.3.2. Comprehensive Ecosystem Services Index
2.3.3. Partial Least Squares Structural Equation Model
2.3.4. Pearson Correlation Analysis
3. Results and Analysis
3.1. Differentiation Characteristics of FPES in Different Geomorphological Areas
3.2. Analysis of the Correlation Between Driving Factors and FPES
3.3. Analysis of the Driving Mechanisms of CES Differentiation
4. Discussion
4.1. Effects of Karst Landforms on FPESs
4.2. Influence of Climate-Vegetation-Karst Surface Characteristics-Tourism Activity Factors on Ecosystem Services in Forest Parks
4.3. Strategies and Policy Framework for Improving the Ecosystem Service Function of Forest Parks
4.4. Limitations and Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Pan, L.; Li, R.; Shu, D.; Zhao, L.; Chen, M.; Jing, J. Effects of Rainfall and Rocky Desertification on Soil Erosion in Karst Area of Southwest China. J. Mt. Sci. 2022, 19, 3118–3130. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, X. Deforestation, Forestation, and Water Supply a Systematic Approach Helps to Illuminate the Complex Forestwater Nexus. Science 2021, 371, 990–991. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Wang, L.; Wang, H.; Zhang, X.; Jiang, J. Spatial Heterogeneity of Ecosystem Services in Response to Landscape Patterns under the Grain for Green Program: A Case-study in Kaihua County, China. Land Degrad. Dev. 2022, 33, 1901–1916. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Lu, N.; Zeng, Y.; Wu, B. How Ecological Restoration Alters Ecosystem Services: An Analysis of Carbon Sequestration in China’s Loess Plateau. Sci. Rep. 2013, 3, 2846. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in Ecosystem Services from Investments in Natural Capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Seidl, R.; Albrich, K.; Erb, K.; Formayer, H.; Leidinger, D.; Leitinger, G.; Tappeiner, U.; Tasser, E.; Rammer, W. What Drives the Future Supply of Regulating Ecosystem Services in a Mountain Forest Landscape? For. Ecol. Manag. 2019, 445, 37–47. [Google Scholar] [CrossRef]
- Ndayizeye, G.; Imani, G.; Nkengurutse, J.; Irampagarikiye, R.; Ndihokubwayo, N.; Niyongabo, F.; Cuni-Sanchez, A. Ecosystem Services from Mountain Forests: Local Communities’ Views in Kibira National Park, Burundi. Ecosyst. Serv. 2020, 45, 101171. [Google Scholar] [CrossRef]
- Sgroi, F.; Modica, F. Digital Technologies for the Development of Sustainable Tourism in Mountain Areas. Smart Agric. Technol. 2024, 8, 100475. [Google Scholar] [CrossRef]
- Shams, A. Tourism Flow and the Consumption of Aesthetic Landscape Values in High-Elevation Mountain Areas in the Alps: A Cartographic and Spatio-Market Methodology. J. Outdoor Recreat. Tour. 2025, 51, 100911. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, K.; Liu, H.; Zhang, C.; Yue, Y.; Qi, X. Effect of Ecological Engineering Projects on Ecosystem Services in a Karst Region: A Case Study of Northwest Guangxi, China. J. Clean. Prod. 2018, 183, 831–842. [Google Scholar] [CrossRef]
- Telbisz, T.; Imecs, Z.; Máthé, A.; Mari, L. Empirical Investigation of the Motivation and Perception of Tourists Visiting the Apuseni Nature Park (Romania) and the Relationship of Tourism and Natural Resources. Sustainability 2023, 15, 4181. [Google Scholar] [CrossRef]
- Canedoli, C.; Ferrè, C.; Abu El Khair, D.; Comolli, R.; Liga, C.; Mazzucchelli, F.; Proietto, A.; Rota, N.; Colombo, G.; Bassano, B.; et al. Evaluation of Ecosystem Services in a Protected Mountain Area: Soil Organic Carbon Stock and Biodiversity in Alpine Forests and Grasslands. Ecosyst. Serv. 2020, 44, 101135. [Google Scholar] [CrossRef]
- Miao, P.; Zhao, X.; Pu, J.; Huang, P.; Shi, X.; Gu, Z. Study on the Evolution Mechanism of Ecosystem Services in Karst Mountainous Areas from the Perspective of Humanities. Int. J. Environ. Res. Public Health 2022, 19, 13628. [Google Scholar] [CrossRef] [PubMed]
- Meng, G.; Wang, K.; Wang, F.; Dong, Y. Analysis of the Tourism-Economy-Ecology Coupling Coordination and High-Quality Development Path in Karst Guizhou Province, China. Ecol. Indic. 2023, 154, 110858. [Google Scholar] [CrossRef]
- Wei, W.; Yang, A.; Jiang, L.; Lawson, G.; Lei, W. Ecological Recreation Across the Jinma Mountain Region: A Comprehensive Evaluation of Suburban Mountain Greenway Networks. Land 2025, 14, 1532. [Google Scholar] [CrossRef]
- Xie, C.; Chen, L.; Luo, W.; Jim, C.Y. Species Diversity and Distribution Pattern of Venerable Trees in Tropical Jianfengling National Forest Park (Hainan, China). J. Nat. Conserv. 2024, 77, 126542. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhao, B.; Peng, S.; Li, K.; Yin, Y.; Zhang, J. Effects of Cultural Landscape Service Features in Nat.ional Forest Parks on Visitors’ Sentiments: A Nationwide Social Media-Based Analysis in China. Ecosyst. Serv. 2024, 67, 101614. [Google Scholar] [CrossRef]
- Bruce, H.R.; Buhyoff, G.J. The Scenic Beauty Temporal Distribution Method: An Attempt to Make Scenic Beauty Assessments Compatible with Forest Planning Efforts. For. Sci. 1986, 32, 271–286. [Google Scholar] [CrossRef]
- Lafond, V.; Cordonnier, T.; Mao, Z.; Courbaud, B. Trade-Offs and Synergies between Ecosystem Services in Uneven-Aged Mountain Forests: Evidences Using Pareto Fronts. Eur. J. For. Res. 2017, 136, 997–1012. [Google Scholar] [CrossRef]
- Ma, A.T.H.; Chow, A.S.Y.; Cheung, L.T.O.; Liu, S. Self-Determined Travel Motivation and Environmentally Responsible Behaviour of Chinese Visitors to National Forest Protected Areas in South China. Glob. Ecol. Conserv. 2018, 16, e00480. [Google Scholar] [CrossRef]
- Sedmák, R.; Scheer, Ľ.; Kúdela, P.; Vencúrik, J.; Modranský, J.; Daniš, D.; Fabrika, M. Multicriteria Optimization of Ecosystem Services as a Base for Participative Forest Management Promoting Recreation near Tourist Centers and Cities. Trees For. People 2025, 21, 100905. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Y.; Lin, Z.; Li, S. National-Scale Connectivity Analysis and Construction of Forest Networks Based on Graph Theory: A Case Study of China. Ecol. Eng. 2025, 216, 107639. [Google Scholar] [CrossRef]
- Abate, D.; Botequim, B.; Marques, S.; Lagoa, C.; Hernández, J.G.; Hengeveld, G.; Hoogstra-Klein, M.; Borges, J.G. Recreational and Aesthetic Values of Forest Landscapes (RAFL): Quantifying Management Impacts and Trade-Offs with Provisioning and Regulatory Ecosystem Services. For. Ecosyst. 2025, 13, 100318. [Google Scholar] [CrossRef]
- Loft, L.; Schleyer, C.; Klingler, M.; Kister, J.; Zoll, F.; Stegmaier, P.; Aukes, E.; Sorge, S.; Mann, C. The Development of Governance Innovations for the Sustainable Provision of Forest Ecosystem Services in Europe: A Comparative Analysis of Four Pilot Innovation Processes. Ecosyst. Serv. 2022, 58, 101481. [Google Scholar] [CrossRef]
- Li, R.; Gao, J.; He, M.; Jing, J.; Xiong, L.; Chen, M.; Zhao, L. Effect of Rock Exposure on Runoff and Sediment on Karst Slopes under Erosive Rainfall Conditions. J. Hydrol. Reg. Stud. 2023, 50, 101525. [Google Scholar] [CrossRef]
- Liao, J.; Yu, C.; Feng, Z.; Zhao, H.; Wu, K.; Ma, X. Spatial Differentiation Characteristics and Driving Factors of Agricultural Eco-Efficiency in Chinese Provinces from the Perspective of Ecosystem Services. J. Clean. Prod. 2021, 288, 125466. [Google Scholar] [CrossRef]
- Shi, Z.H.; Ai, L.; Fang, N.F.; Zhu, H.D. Modeling the Impacts of Integrated Small Watershed Management on Soil Erosion and Sediment Delivery: A Case Study in the Three Gorges Area, China. J. Hydrol. 2012, 438–439, 156–167. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, S.; Bai, X.; Luo, G.; Xu, Y. Trade-Offs among Ecosystem Services in a Typical Karst Watershed, SW China. Sci. Total Environ. 2016, 566–567, 1297–1308. [Google Scholar] [CrossRef]
- Guo, M.; Ma, S.; Wang, L.-J.; Lin, C. Impacts of Future Climate Change and Different Management Scenarios on Water-Related Ecosystem Services: A Case Study in the Jianghuai Ecological Economic Zone, China. Ecol. Indic. 2021, 127, 107732. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, Q.; Tao, J.; Zhang, Y.; Lin, J.; Bai, X. Use of Interpretable Machine Learning for Understanding Ecosystem Service Trade-Offs and Their Driving Mechanisms in Karst Peak-Cluster Depression Basin, China. Ecol. Indic. 2024, 166, 112474. [Google Scholar] [CrossRef]
- Wen, X.; Theau, J. Spatiotemporal Analysis of Water-Related Ecosystem Services under Ecological Restoration Scenarios: A Case Study in Northern Shaanxi, China. Sci. Total Environ. 2020, 720, 137477.1–137477.13. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Wu, J.; Lv, H.; Hu, X. Linking Ecosystem Services and Landscape Patterns to Assess Urban Ecosystem Health: A Case Study in Shenzhen City, China. Landsc. Urban Plan. 2015, 143, 56–68. [Google Scholar] [CrossRef]
- Shirmohammadi, B.; Malekian, A.; Salajegheh, A.; Taheri, B.; Azarnivand, H.; Malek, Z.; Verburg, P.H. Impacts of Future Climate and Land Use Change on Water Yield in a Semiarid Basin in Iran. Land Degrad. Dev. 2020, 31, 1252–1264. [Google Scholar] [CrossRef]
- Yanqing, L.; Wei, S. Trade-off Analysis of Ecosystem Services in a Mountainous Karst Area, China. Water 2018, 10, 300. [Google Scholar] [CrossRef]
- Chen, M.; Gao, J.; Chen, H.; Jing, J.; Li, R. Elevation, Bedrock Exposure, Land Use, Interbedded Limestone and Clastic Rock, and Vegetation Coverage Dominate the Spatiotemporal Variability of Soil Erosion in Karst Basin. J. Mt. Sci. 2023, 20, 2519–2535. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Song, X.; Lu, Y. Revealing the Main Factors Affecting Global Forest Change at Distinct Altitude Gradients. Ecol. Indic. 2023, 148, 110131. [Google Scholar] [CrossRef]
- Jing, J.; Li, R.; Zhang, Y.; Wu, Q. Identification of Priority Areas for Soil Erosion Control Based on Minimum Administrative Units and Karst Landforms in Karst Areas of Guizhou. Prog. Phys. Geogr. Earth Environ. 2023, 47, 892–911. [Google Scholar] [CrossRef]
- Li, Y.; Geng, H.; Luo, G.; Wu, L.; Wang, J.; Wu, Q. Multiscale Characteristics of Ecosystem Service Value Trade-Offs/Synergies and Their Response to Landscape Pattern Evolution in a Typical Karst Basin in Southern China. Ecol. Inform. 2024, 81, 102584. [Google Scholar] [CrossRef]
- Szczygieł, J.; Golicz, M.; Hercman, H.; Lynch, E. Geological Constraints on Cave Development in the Plateau-Gorge Karst of South China (Wulong, Chongqing). Geomorphology 2018, 304, 50–63. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, X.; Hu, Z.; Xu, X.; Dai, Q.; Mei, L.; Gan, F.; Jin, H.; Wang, L.; Huang, C. Exploring the Spatiotemporal Trends of Extreme Sub-Hourly Rainfall Erosivity: Insights from Karst Plateaus in China. J. Hydrol. Reg. Stud. 2025, 60, 102590. [Google Scholar] [CrossRef]
- Shi, H.; Jiang, L.; Tan, X.; Gan, F.; Xia, Y.; Li, W.; Xu, X.; Yan, Y.; Fan, Y.; Pu, J. Changes in Vegetation Types Alter Soil Respiration under the Erosion and Deposition Topography in Karst Trough Valley. Catena 2025, 255, 109027. [Google Scholar] [CrossRef]
- Guizhou Provincial Forestry Bureau. Guizhou Province 2022 Forest Coverage Rate of the Whole Province and Nine Prefecture-Level Cities. Available online: https://lyj.guizhou.gov.cn/ztzl/zybh/202306/t20230625_80491927.html (accessed on 25 August 2025).
- Chen, Y.; Cheng, C.; Xiong, K.; Rong, L.; Zhang, S. Quantifying the Biodiversity and Ecosystem Service Outcomes of Karst Ecological Restoration: A Meta-Analysis of South China Karst. Catena 2024, 245, 108278. [Google Scholar] [CrossRef]
- Yang, X.; Liu, B.; Bussmann, R.W.; Guan, X.; Xu, W.; Xue, T.; Xia, C.; Li, J.; Jiang, H.; Wu, L.; et al. Integrated Plant Diversity Hotspots and Long-Term Stable Conservation Strategies in the Unique Karst Area of Southern China under Global Climate Change. For. Ecol. Manag. 2021, 498, 119540. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Y.; Deng, X.; Li, Z. Optimization of Functional Zoning and Spatial Patterns of Water Conservation on the Qinghai-Tibetan Plateau under Different SSP-RCP Scenarios. Anthropocene 2025, 51, 100479. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978.
- Mccool, D.K.; Brown, L.C.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised Slope Steepness Factor for the Universal Soil Loss Equation. Trans. ASAE 1987, 30, 1387–1396. [Google Scholar] [CrossRef]
- Liu, B.Y.; Nearing, M.A.; Risse, L.M. Slope Gradient Effects on Soil Loss for Steep Slopes. Trans. ASAE 1994, 37, 1835–1840. [Google Scholar] [CrossRef]
- Feng, T.; Chen, H.; Polyakov, V.O.; Wang, K.; Zhang, X.; Zhang, W. Soil Erosion Rates in Two Karst Peak-Cluster Depression Basins of Northwest Guangxi, China: Comparison of the RUSLE Model with 137Cs Measurements—ScienceDirect. Geomorphology 2016, 253, 217–224. [Google Scholar] [CrossRef]
- Du, S.; Zhou, Z.; Huang, D.; Zhang, F.; Deng, F.; Yang, Y. The Response of Carbon Stocks to Land Use/Cover Change and a Vulnerability Multi-Scenario Analysis of the Karst Region in Southern China Based on PLUS-InVEST. Forests 2023, 14, 2307. [Google Scholar] [CrossRef]
- Willis, C. The Contribution of Cultural Ecosystem Services to Understanding the Tourism–Nature–Wellbeing Nexus. J. Outdoor Recreat. Tour. 2015, 10, 38–43. [Google Scholar] [CrossRef]
- Li, L.; Feng, R.; Hou, G.; Xi, J. Identifying Cultural Ecosystem Service Flows and Drivers in Ecological Functional Zone. J. Environ. Manag. 2025, 392, 126914. [Google Scholar] [CrossRef]
- Ghasemi, M.; Charrahy, Z.; González-García, A. Mapping Cultural Ecosystem Services Provision: An Integrated Model of Recreation and Ecotourism Opportunities. Land Use Policy 2023, 131, 106732. [Google Scholar] [CrossRef]
- Wu, L.; Fan, F. Assessment of Ecosystem Services in New Perspective: A Comprehensive Ecosystem Service Index (CESI) as a Proxy to Integrate Multiple Ecosystem Services. Ecol. Indic. 2022, 138, 108800. [Google Scholar] [CrossRef]
- Hayes, A.F.; Montoya, A.K.; Rockwood, N.J. The Analysis of Mechanisms and Their Contingencies: PROCESS versus Structural Equation Modeling. Australas. Mark. J. (AMJ) 2017, 25, 76–81. [Google Scholar] [CrossRef]
- Grace, J.B. Structural Equation Modeling and Natural Systems; Cambridge University Press: Cambridge, UK, 2006; ISBN 978-0-521-54653-9. [Google Scholar]
- Zhao, D.; Xiong, D.; Zhang, B.; He, K.; Wu, H.; Zhang, W.; Lu, X. Long-Term Response of Runoff and Sediment Load to Spatiotemporally Varied Rainfall in the Lhasa River Basin, Tibetan Plateau. J. Hydrol. 2023, 618, 129154. [Google Scholar] [CrossRef]
- Wang, C.; Ma, L.; Zhang, Y.; Chen, N.; Wang, W. Spatiotemporal Dynamics of Wetlands and Their Driving Factors Based on PLS-SEM: A Case Study in Wuhan. Sci. Total Environ. 2022, 806, 151310. [Google Scholar] [CrossRef] [PubMed]
- Kassun, B.W.; Kallio, M.; Trømborg, E.; Rannestad, M.M. Land Use and Land Cover Change, Trade-Offs, and Synergies between Ecosystem Services in a Dry Afromontane Forest. J. Nat. Conserv. 2025, 85, 126874. [Google Scholar] [CrossRef]
- Iqbal, S.; Ali, A.; Umer, M.; Wang, Z. Integrated Assessment of Tourism Driven Ecological Stressors in Mountain Ecosystems of Swat Valley Pakistan. J. Clean. Prod. 2025, 521, 146198. [Google Scholar] [CrossRef]
- Zhang, W.; Xiong, K.; Li, Y.; Song, S.; Xiang, S. Improving Grassland Ecosystem Services for Human Wellbeing in the Karst Desertification Control Area: Anthropogenic Factors Become More Important. Sci. Total Environ. 2024, 946, 174199. [Google Scholar] [CrossRef]
- Peng, J.; Hu, X.; Wang, X.; Meersmans, J.; Liu, Y.; Qiu, S. Simulating the Impact of Grain-for-Green Programme on Ecosystem Services Trade-Offs in Northwestern Yunnan, China. Ecosyst. Serv. 2019, 39, 100998. [Google Scholar] [CrossRef]
- Xiong, B.; Gao, Y.; Liu, J.; Yan, X. Revealing the Role That Epikarst Fissures Filled with Soil Play in Soil Erosion and Nutrient Loss in Karst Rocky Desertification Region of Guizhou, China. J. Hydrol. Reg. Stud. 2024, 51, 101645. [Google Scholar] [CrossRef]
- Zheng, W.; Guo, X.; Zhou, P.; Tang, L.; Lai, J.; Dai, Y.; Yan, W.; Wu, J. Vegetation Restoration Enhancing Soil Carbon Sequestration in Karst Rocky Desertification Ecosystems: A Meta-Analysis. J. Environ. Manag. 2024, 370, 122530. [Google Scholar] [CrossRef]
- Huang, S.; Tian, Y.; Zhang, Q.; Tao, J.; Zhang, Y.; Lin, J. Spatiotemporal Changes and Driving Mechanism of Ecosystem Carbon Sink in Karst Peak Cluster Depression Basin in Southwest Guangxi Based on the Interaction of “Water-Rock-Soil-Air-Biology”. Ecol. Inform. 2024, 83, 102800. [Google Scholar] [CrossRef]
- Li, W.; Jian, J.; Lu, K. Spatial-Temporal Characteristics Analysis and Ecological Environment Quality Evaluation of Forest Health Care Bases in Yunnan, Guizhou and Sichuan Provinces. Heliyon 2024, 10, e29644. [Google Scholar] [CrossRef]
- Zhong, F.; Xu, X.; Li, Z.; Zeng, X.; Yi, R.; Luo, W.; Zhang, Y.; Xu, C. Relationships between Lithology, Topography, Soil, and Vegetation, and Their Implications for Karst Vegetation Restoration. Catena 2022, 209, 105831. [Google Scholar] [CrossRef]
- Parhizkar, M.; Shabanpour, M.; Miralles, I.; Zema, D.A.; Lucas-Borja, M.E. Effects of Plant Species on Soil Quality in Natural and Planted Areas of a Forest Park in Northern Iran. Sci. Total Environ. 2021, 778, 146310. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, Y.; Liu, Q.; Liu, Y. Forest Management Interventions Affect the Trade-Offs of Multiple Vegetation and Soil Ecosystem Services in Walnut Forests in the Taihang Mountains, China. Glob. Ecol. Conserv. 2025, 57, e03420. [Google Scholar] [CrossRef]
- Jiao, Y.; Ren, Y.; Wang, J.; Yadav, R.; Chen, S.; Liu, C.; Mu, J.; Xue, L.; Mu, Y.; Mellouki, A. Influence of Tourism on the Local Air Quality in the Mountain Laoshan Forest Scenic Areas. Atmos. Environ. 2025, 353, 121229. [Google Scholar] [CrossRef]
- Huang, X.; An, R.; Yu, M.-M.; He, F. Tourism Efficiency Decomposition and Assessment of Forest Parks in China Using Dynamic Network Data Envelopment Analysis. J. Clean. Prod. 2022, 363, 132405. [Google Scholar] [CrossRef]
- Zhang, H.; Cai, L.; Bai, B.; Yang, Y.; Zhang, J. National Forest Park Visitors’ Connectedness to Nature and pro-Environmental Behavior: The Effects of Cultural Ecosystem Service, Place and Event Attachment. J. Outdoor Recreat. Tour. 2023, 42, 100621. [Google Scholar] [CrossRef]
- Suresh, A.; Wartman, M.; Rifaee Rasheed, A.; Macreadie, P.I. Tourism and Recreation in Blue Carbon Ecosystems: Exploring Synergies, Trade-Offs and Pathways to Sustainability. Ocean Coast. Manag. 2025, 266, 107697. [Google Scholar] [CrossRef]
Landform Type | Non-Karst Areas | Peak-Cluster Depressions | Karst Plateaus | Karst Basins | Karst Trough Valley | Karst Gorge |
---|---|---|---|---|---|---|
Area (km2) | 20,295.99 | 23,400.34 | 55,279.33 | 7108.69 | 49,557.97 | 20,606.75 |
Percentage of Guizhou Province (%) | 11.52 | 13.28 | 31.36 | 4.03 | 28.12 | 11.69 |
Data Type | Data Source | Processing |
---|---|---|
DEM | Resource and Environment Science and Data Center (https://www.resdc.cn) 12.5 m | Resampled to 30 m; clipped to study area |
NDVI | Resource and Environment Science and Data Center (https://www.resdc.cn) | Monthly composite; averaged annually; masked to study area |
Soil data | Database of the third stony desertification survey in Guizhou Province | Classified by soil types; reprojected to uniform coordinate system |
Climatic data | China Meteorological Data Network (http://data.cma.cn/) | Interpolated to 1 km (IDW); averaged to annual scale |
Land use data | Resource and Environment Science and Data Center (https://www.resdc.cn) | Reclassified into six categories; spatial clipping |
Rock exposure | Database of the third stony desertification survey in Guizhou Province | Converted to raster; normalized to 0–1 scale |
Tourism data | Guizhou Forestry Bureau (ATA, ATI); NPP-VIIRS (NLI); National Basic Geographic Information Center (RND); DEM-based viewshed analysis | Aggregated to county level; downscaled to forest-park polygons using dasymetric mapping (road density + POI); normalized; visibility modeling of scenic spots |
Forest park vector data | Guizhou Forestry Bureau | Converted to raster (30 m); spatial overlay |
Road data | National Center for Basic Geographic Information (https://www.webmap.cn/) | Vector to raster conversion; distance calculation |
Latent Variable | Manifest Variable | Abbreviation | Unit | |
---|---|---|---|---|
X1 | Vegetation | Forest coverage rate | FCR | % |
X2 | NDVI | NDVI | - | |
X3 | landform | Elevation | EL | m |
X4 | slope | SL | ° | |
X5 | Surface roughness | SR | - | |
X6 | Rock exposure | RE | % | |
X7 | Soil layer thickness | ST | mm | |
X8 | Tourism activity | Average annual tourist arrivals | ATA | Tens of thousands of people |
X9 | Average annual tourism income | ATI | Ten thousand yuan | |
X10 | Night light index | NLI | Lm/m2 | |
X11 | Road network density | RND | Km/km2 | |
X12 | Climatic | Average annual rainfall | AAR | mm |
X13 | Average annual spring rainfall | AASP | mm | |
X14 | Average annual summer rainfall | AASU | mm | |
X15 | Average annual autumn rainfall | AAU | mm | |
X16 | Average annual winter rainfall | AWI | mm | |
X17 | Average annual evapotranspiration | AE | mm/d | |
X18 | Annual mean temperature | AMT | °C | |
X19 | Average relative humidity over many years | ARH | % |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, R.; Chen, M. Socio-Ecological Drivers of Ecosystem Services in Karst Forest Park: Interactions Among Climate, Vegetation, Geomorphology, and Tourism. Sustainability 2025, 17, 8174. https://doi.org/10.3390/su17188174
Li Z, Li R, Chen M. Socio-Ecological Drivers of Ecosystem Services in Karst Forest Park: Interactions Among Climate, Vegetation, Geomorphology, and Tourism. Sustainability. 2025; 17(18):8174. https://doi.org/10.3390/su17188174
Chicago/Turabian StyleLi, Zhixin, Rui Li, and Mei Chen. 2025. "Socio-Ecological Drivers of Ecosystem Services in Karst Forest Park: Interactions Among Climate, Vegetation, Geomorphology, and Tourism" Sustainability 17, no. 18: 8174. https://doi.org/10.3390/su17188174
APA StyleLi, Z., Li, R., & Chen, M. (2025). Socio-Ecological Drivers of Ecosystem Services in Karst Forest Park: Interactions Among Climate, Vegetation, Geomorphology, and Tourism. Sustainability, 17(18), 8174. https://doi.org/10.3390/su17188174