Spatiotemporal Variation of Outdoor Heat Stress in Typical Coastal Cities Under the Influence of Summer Sea Breezes: An Analysis Based on Thermal Comfort Maps
Abstract
1. Introduction
2. Methodology
2.1. Simulation of Meteorological Parameters on a Sea Breeze Day
2.2. Calculation of Thermal Comfort
3. Results and Discussion
3.1. PET and Wind Field
3.2. Evaluation of Heat Stress Levels Using PET
- (1)
- Overall Ascending Phase (07:00–12:00), as shown in Figure 5a–f.
- (2)
- Low-Level Expansion Phase Along the Coast (13:00–15:00), as shown in Figure 5g–i.
- (3)
- Low-Level Peripheral Expansion Phase (15:00–18:00), as shown in Figure 5i–l.
- (4)
- High-Level Maintenance Phase in the Urban Center (19:00–21:00), as shown in Figure 5m–o.
3.3. Variation in Heat Stress Levels Under the Influence of Sea Breeze
- (1)
- Decrease in Levels: This indicates an improvement in thermal comfort. Areas where a decrease occurs earlier correspond to regions where improvements in thermal comfort are also earlier.
- (2)
- Maintaining Levels: This state can be differentiated into maintaining relatively high levels and maintaining relatively low levels.
- (3)
- Increase in Heat Stress Levels: Indications of decreased thermal comfort.
4. Conclusions
- (1)
- At the onset of the sea breeze, wind speeds are lower, leading to an increase in PET. As the sea breeze penetrates inland, there is a significant reduction in regional PET. By evening, as the sea breeze dissipates, temperatures decrease, generally lowering PET values, though the urban core consistently maintains relatively higher PET levels.
- (2)
- Spatial analysis from the coastline: Within a 0–4 km range from the coast, periods of lower heat stress levels persist the longest. Starting from 12 km from the coast, the highest level of heat stress (Level A) begins to appear; in the evening, areas beyond 26 km experience longer durations of lower heat stress levels compared to the 4–26 km interval. In contrast, the 20–26 km range endures the longest durations of higher heat stress levels and the shortest durations of lower levels, resulting in the poorest relative thermal comfort.
- (3)
- An increase in heat stress levels primarily occurs between 08:00 and 11:00, concentrated in the northwestern inland areas. The decline in levels starts along the coast and progresses inland, reaching the urban core later than the surrounding vegetated areas. The inland zones maintain high levels of heat stress for the longest duration, followed by urban core areas; lower levels of heat stress are primarily concentrated in the coastal and vegetated peripheries of the city. This indicates that the sea breeze’s cooling effect on thermal comfort diminishes with distance and is weakened by urban surface characteristics.
- (4)
- For hourly variations in heat stress levels across zones, during overall phases of increasing heat stress levels, the urban and inland zones exhibit a significantly higher rise compared to the coastal zone. When significant thermal environment improvements occur (decline in heat stress levels), the coastal and urban zones show greater amelioration, and their recovery to “no heat stress” levels occurs earlier than in the inland zones.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PET | Physiological Equivalent Temperature |
WRF | Weather Research and Forecasting |
OTC | Outdoor thermal comfort |
Ta | Air temperature |
V | Wind speed |
RH | Relative humidity |
TP | Thermal perception |
References
- Synnefa, A.; Haddad, S.; Rajagopalan, P.; Santamouris, M. SI: Survivability under overheating: The impact of regional and global climate change on the vulnerable and low-income population. Climate 2020, 8, 122. [Google Scholar] [CrossRef]
- Guo, Y.; Gasparrini, A.; Armstrong, B.G.; Tawatsupa, B.; Tobias, A.; Lavigne, E.; Coelho, M.D.S.Z.S.; Pan, X.; Kim, H.; Hashizume, M.; et al. Heat wave and mortality: A multicountry, multicommunity study. Environ. Health Perspect. 2017, 125, 087006. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef]
- ASHRAE Standard 55-2017; Thermal Environmental Conditions for Human Occupancy. American Society of Heating Refrigerating and Air-Conditioning Engineers: Georgia, Atlanta, 2017.
- Cheung, T.; Schiavon, S.; Parkinson, T.; Li, P.; Brager, G. Analysis of the accuracy on PMV–PPD model using the ASHRAE global thermal comfort database II. Build. Environ. 2019, 153, 205–217. [Google Scholar] [CrossRef]
- Sansaniwal, S.K.; Mathur, J.; Garg, V.; Gupta, R. Review of studies on thermal comfort in Indian residential buildings. Sci. Technol. Built Environ. 2020, 26, 727–748. [Google Scholar] [CrossRef]
- Schweiker, M.; Fuchs, X.; Becker, S.; Shukuya, M.; Dovjak, M.; Hawighorst, M.; Kolarik, J. Challenging the assumptions for thermal sensation scales. Build. Res. Inf. 2017, 45, 572–589. [Google Scholar] [CrossRef]
- Schinasi, L.H.; Bloch, J.R.; Melly, S.; Zhao, Y.; Moore, K.; De Roos, A.J. High ambient temperature and infant mortality in Philadelphia, Pennsylvania: A case–crossover study. Am. J. Public Health 2020, 110, 189–195. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, C.R.; Grigorieva, E.A. A comprehensive catalogue and classification of human thermal climate indices. Int. J. Biometeorol. 2015, 59, 109–120. [Google Scholar] [CrossRef]
- Lai, D.; Chen, B.; Liu, K. Quantification of the influence of thermal comfort and life patterns on outdoor space activities. Build. Simul. 2020, 13, 113–125. [Google Scholar] [CrossRef]
- Tian, Y.; Hong, B.; Zhang, Z.; Wu, S.; Yuan, T. Factors influencing resident and tourist outdoor thermal comfort: A comparative study in China’s cold region. Sci. Total Environ. 2022, 808, 152079. [Google Scholar] [CrossRef]
- Geng, Y.; Hong, B.; Du, M.; Yuan, T.; Wang, Y. Combined effects of visual-acoustic-thermal comfort in campus open spaces: A pilot study in China’s cold region. Build. Environ. 2022, 209, 108658. [Google Scholar] [CrossRef]
- Al-hagla, K.S.; El-sayad, Z.T. Using simulation methods to investigate the impact of urban form on human comfort. Case study: Coast of Baltim, North Coast, Egypt. Alex. Eng. J. 2019, 58, 273–282. [Google Scholar] [CrossRef]
- Atkinson, B. Meso-Scale Atmospheric Circulations; Academic Press: London, UK, 1981. [Google Scholar]
- Ng, E. Policies and technical guidelines for urban planning of high-density cities–air ventilation assessment (AVA) of Hong Kong. Build. Environ. 2009, 44, 1478–1488. [Google Scholar] [CrossRef]
- Lopes, A.; Lopes, S.; Matzarakis, A.; Alcoforado, M.J. The influence of the summer sea breeze on thermal comfort in Funchal (Madeira). A contribution to tourism and urban planning. Meteorol. Z. 2011, 20, 553–564. [Google Scholar] [CrossRef]
- Emmanuel, R.; Johansson, E. Influence of urban morphology and sea breeze on hot humid microclimate: The case of Colombo, Sri Lanka. Clim. Res. 2006, 30, 189–200. [Google Scholar] [CrossRef]
- He, B.J.; Ding, L.; Prasad, D. Outdoor thermal environment of an open space under sea breeze: A mobile experience in a coastal city of Sydney, Australia. Urban Clim. 2020, 31, 100567. [Google Scholar] [CrossRef]
- Umezaki, A.S.; Ribeiro, F.N.D.; de Oliveira, A.P.; Soares, J.; de Miranda, R.M. Numerical characterization of spatial and temporal evolution of summer urban heat island intensity in São Paulo, Brazil. Urban Clim. 2020, 32, 100615. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Ishikawa, H. Influence of urban spatial configuration and sea breeze on land surface temperature on summer clear-sky days. Urban Clim. 2020, 31, 100578. [Google Scholar] [CrossRef]
- Zhu, M.; Atkinson, B.W. Observed and Modelled Climatology of the Land-Sea Breeze Circulation over the Persian Gulf. Int. J. Climatol. 2004, 24, 883–905. [Google Scholar] [CrossRef]
- Peng, S.; Watanabe, H. Analysis and maping of sea breeze event time in coastal cities: A case study of Sendai. Atmosphere 2022, 13, 1484. [Google Scholar] [CrossRef]
- Junimura, Y.; Watanabe, H. Study on the effects of sea breeze for decreasing urban air temperatures in summer. J. Environ. Eng. 2008, 73, 93–99. [Google Scholar] [CrossRef]
- Avolio, E.; Federico, S.; Miglietta, M.M.; Lo Feudo, T.; Calidonna, C.R.; Sempreviva, A.M. Sensitivity analysis of WRF model PBL schemes in simulating boundary-layer variables in southern Italy: An experimental campaign. Atmos. Res. 2017, 192, 58–71. [Google Scholar] [CrossRef]
- Xue, L.; Edwards, R.; Huggins, A.; Lou, X.; Rasmussen, R.; Tessendorf, S.; Holbrook, P.; Blestrud, D.; Kunkel, M.; Glenn, B.; et al. WRF large-eddy simulations of chemical tracer deposition and seeding effect over complex terrain from groundand aircraft-based Agl generators. Atmos. Res. 2017, 190, 89–103. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, S.; Chen, B.; Zhang, B.; Wang, S.; Li, S. Simulating Urban Flow and Dispersion in Beijing by Coupling a CFD Model with the WRF Model. Adv. Atmos. Sci. 2013, 30, 1663–1678. [Google Scholar] [CrossRef]
- Zheng, Y.; Miao, Y.; Liu, S.; Chen, B.; Zheng, H.; Wang, S. Simulating Flow and Dispersion by Using WRF-CFD Coupled Model in a Built-up Area of Shenyang, China. Adv. Meteorol. 2015, 2015, 528618. [Google Scholar] [CrossRef]
- Kusaka, H.; Hara, M.; Takane, Y. 48 Urban climate projection by the WRF model at 3-km horizontal grid increment: Dynamical downscaling and predicting heat stress in the 2070’s August for Tokyo, Osaka, and Nagoya metropolises. J. Meteorol. Soc. Japan 2012, 90, 47–63. [Google Scholar] [CrossRef]
- Xie, B.; Fung, J.C.; Chan, A.; Lau, A. Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model. J. Geophys. Res. Atmos. 2012, 117, D12103. [Google Scholar] [CrossRef]
- Peng, S.; Watanabe, H. Reproducibility Analysis of WRF Model in Urban Climate Research, A Case Study of Sendai. J. Asian Urban Environ. 2022, 91–94. [Google Scholar]
- Wang, Y. Field Measurement and Thermal Comfort of Hangzhou Guo Zhuang. Master’s Thesis, Zhejiang Agriculture & Forestry University, Hangzhou, China, 2019. [Google Scholar]
- Parsons, K. The effects of hot, moderate, and cold environments on human health, comfort and performance. In Human Thermal Environments; Taylor & Francis: London, UK, 2003. [Google Scholar]
- Kumar, P.; Sharma, A. Study on importance, procedure, and scope of outdoor thermal comfort-a review. Sustain. Cities Soc. 2020, 61, 102297. [Google Scholar] [CrossRef]
- Ye, F. Natural Environment Location and Area; Huang, L., Ed.; Shenzhen Yearbook, Editorial Office of Shenzhen Yearbook, Yearbook: Shenzhen, China, 2019; pp. 21–22. [Google Scholar]
- Armstrong, L.E.; Epstein, Y.; Greenleaf, J.E.; Haymes, E.M.; Hubbard, R.W.; Roberts, W.O.; Thompson, P.D. American College of Sports Medicine position stand. Heat and cold illnesses during distance running. Med. Sci. Sports Exerc. 1996, 28, i–x. [Google Scholar] [CrossRef]
- Ergonomics of the Thermal Environment-Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; ISO: Geneva, Switzerland, 2005.
- Gagge, A.P.; Fobelets, A.P.; Berglund, L.G. A standard predictive Index of human reponse to thermal enviroment, Transactions/American Society of Heating. Refrig. Air-Cond. Eng. 1986, 92, 709–731. [Google Scholar]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Bröde, P.; Fiala, D.; Błażejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the operational procedure for the universal thermal climate index (UTCI). Int. J. Biometeorol. 2012, 56, 481–494. [Google Scholar] [CrossRef]
- Li, J.; Liu, N. The perception, optimization strategies and prospects of outdoor thermal comfort in China: A review. Build. Environ. 2020, 170, 106614. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef]
- Thorsson, S.; Honio, T.; Lindberg, F.; Eliasson, L.; Lim, E.M. Thermal comfort and outdoor activity in Japanese urban public places. Environ. Behav. 2007, 39, 660–684. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Lykoudis, S. Use of outdoor spaces and microclimate in a Mediterranean urban area. Build. Environ. 2007, 42, 3691–3707. [Google Scholar] [CrossRef]
- VDI 3787 Part 2; Environmental Meteorology—Methods for the Human Biometeorological Evaluation of Climate and Air Quality for Urban and Regional Planning. VDI: Düsseldorf, Germany, 1998.
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple complex environments-application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- Mayer, H.; Höppe, P. Die Bedeutung des Waldes für die Erholung aus der Sicht der Humanbioklimatologie. Forstwiss. Cent. 1984, 103, 125–131. [Google Scholar] [CrossRef]
- Peng, S.; Kon, Y.; Watanabe, H. Effects of sea breeze on urban areas using computation fluid dynamic—A case study of the range of cooling and humidity effects in Sendai, Japan. Sustainability 2022, 14, 1074. [Google Scholar] [CrossRef]
Calculation period | 09:00 (JST) on 1 August 2016 to 09:00 (JST) on 10 August 2016 (sea breeze day) |
Vertical grid | 30 layers |
Horizontal grid (Figure 1a,b) | Domain 1: 9 km, dimension 37 × 28 |
Domain 2: 3 km, dimension 43 × 34 | |
Domain 3: 1 km, dimension 31 × 28 | |
Meteorological data | NCEP re-analysis of global objective data |
Land data | Digital national land information (resolution of 1000 m) |
Microphysics | WSM 6-class graupel scheme |
Radiation: Longwave | Rapid radiative transfer model |
Shortwave | Dudhia shortwave |
PBL scheme | Mellor–Yamada–Janjic TKE scheme |
Surface scheme | Urban canopy model |
PET (°C) | Thermal Perception | Grade of Physical Stress | |
---|---|---|---|
a | >41 | Very hot | Extreme heat stress |
b | 35–41 | Hot | Strong heat stress |
c | 29–35 | Warm | Moderate heat stress |
d | 23–29 | Slightly warm | Slight heat stress |
e | 18–23 | Comfortable | No thermal stress |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, S.; Watanabe, H. Spatiotemporal Variation of Outdoor Heat Stress in Typical Coastal Cities Under the Influence of Summer Sea Breezes: An Analysis Based on Thermal Comfort Maps. Sustainability 2025, 17, 8137. https://doi.org/10.3390/su17188137
Peng S, Watanabe H. Spatiotemporal Variation of Outdoor Heat Stress in Typical Coastal Cities Under the Influence of Summer Sea Breezes: An Analysis Based on Thermal Comfort Maps. Sustainability. 2025; 17(18):8137. https://doi.org/10.3390/su17188137
Chicago/Turabian StylePeng, Shiyi, and Hironori Watanabe. 2025. "Spatiotemporal Variation of Outdoor Heat Stress in Typical Coastal Cities Under the Influence of Summer Sea Breezes: An Analysis Based on Thermal Comfort Maps" Sustainability 17, no. 18: 8137. https://doi.org/10.3390/su17188137
APA StylePeng, S., & Watanabe, H. (2025). Spatiotemporal Variation of Outdoor Heat Stress in Typical Coastal Cities Under the Influence of Summer Sea Breezes: An Analysis Based on Thermal Comfort Maps. Sustainability, 17(18), 8137. https://doi.org/10.3390/su17188137