Spatial Heterogeneity and Temporal Variation of Water Levels in Dongting Lake
Abstract
1. Introduction
2. Materials and Methods
3. Methodology
3.1. AHC Method
3.2. Trend Analysis and Change Point Detection Methods
3.3. IHA-RVA Framework
4. Results
4.1. Hierarchical Clustering of Water Levels
4.2. Trend Detection and Change-Point Analysis
4.3. Water-Level Alteration Degree
5. Discussion
5.1. Analysis of Spatial Heterogeneity in Water-Level Processes
5.2. Impacts on Lake Water Quality and Ecosystems
5.3. Lake Management and Conservation Strategies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, B.; Mu, L.; Ma, C.; Chen, G.; Tan, Y. Extreme water level changes in global lakes revealed by altimetry satellites since the 2000s. Int. J. Appl. Earth Obs. Geoinf. 2024, 127, 103694. [Google Scholar]
- Xu, N.; Ma, Y.; Wei, Z.; Huang, C.; Li, G.; Zheng, H.; Wang, X.H. Satellite observed recent rising water levels of global lakes and reservoirs. Environ. Res. Lett. 2022, 17, 074013. [Google Scholar] [CrossRef]
- Irwandi, H.; Rosid, M.S.; Mart, T. The effects of ENSO, climate change and human activities on the water level of Lake Toba, Indonesia: A critical literature review. Geosci. Lett. 2021, 8, 21. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Xie, H.; Yang, K.; Zhu, L.; Shum, C.K.; Bolch, T.; Yi, S.; Allen, S.; Jiang, L.; et al. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Sci. Rev. 2020, 208, 103269. [Google Scholar] [CrossRef]
- Kostianoy, A.G.; Lebedev, S.A.; Kostianaia, E.A.; Prokofiev, Y.A. Interannual Variability of Water Level in Two Largest Lakes of Europe. Remote Sens. 2022, 14, 659. [Google Scholar] [CrossRef]
- Schulz, S.; Darehshouri, S.; Hassanzadeh, E.; Tajrishy, M.; Schüth, C. Climate change or irrigated agriculture—What drives the water level decline of Lake Urmia. Sci. Rep. 2020, 10, 236. [Google Scholar] [CrossRef]
- Lima-Quispe, N.; Escobar, M.; Wickel, A.J.; von Kaenel, M.; Purkey, D. Untangling the effects of climate variability and irrigation management on water levels in Lakes Titicaca and Poopó. J. Hydrol. Reg. Stud. 2021, 37, 100927. [Google Scholar] [CrossRef]
- Demir, V.; Keskin, A.Ü. Water level change of lakes and sinkholes in Central Turkey under anthropogenic effects. Theor. Appl. Climatol. 2020, 142, 929–943. [Google Scholar] [CrossRef]
- Aminjafari, S.; Brown, I.A.; Frappart, F.; Papa, F.; Blarel, F.; Mayamey, F.V.; Jaramillo, F. Distinctive Patterns of Water Level Change in Swedish Lakes Driven by Climate and Human Regulation. Water Resour. Res. 2024, 60, e2023WR036160. [Google Scholar] [CrossRef]
- Cooley, S.W.; Ryan, J.C.; Smith, L.C. Addendum: Human alteration of global surface water storage variability. Nature 2023, 618, E36. [Google Scholar] [CrossRef]
- Lin, Y.; Dai, J.; Peng, X.; Li, Z.; Wan, Z. Effects of water level changes on the hydrological connectivity and water quality of a lake-type wetland. Front. Environ. Sci. 2025, 13, 1531893. [Google Scholar] [CrossRef]
- Geng, M.; Niu, Y.; Liao, X.; Wang, K.; Yang, N.; Qian, Z.; Li, F.; Zou, Y.; Chen, X.; Deng, Z.; et al. Inter-annual and intra-annual variations in water quality and its response to water-level fluctuations in a river-connected lake, Dongting Lake, China. Environ. Sci. Pollut. Res. 2021, 29, 14083–14097. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Liu, C.; Fan, Z.; Liao, K.; Wang, W.; Wang, N. Effects of water level variations on the water quality of Huayang Lakes, China. J. Geogr. Sci. 2025, 35, 173–188. [Google Scholar] [CrossRef]
- Tonetta, D.; Staehr, P.A.; Petrucio, M.M. Changes in CO2 dynamics related to rainfall and water level variations in a subtropical lake. Hydrobiologia 2017, 794, 109–123. [Google Scholar] [CrossRef]
- Geng, M.; Wang, K.; Yang, N.; Qian, Z.; Li, F.; Zou, Y.; Chen, X.; Deng, Z.; Xie, Y. Is water quality better in wet years or dry years in river-connected lakes? A case study from Dongting Lake, China. Environ. Pollut. 2021, 290, 118115. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; He, C.; Jiang, H.; Sheng, L. Multi-environment factors dominate plant community structure and diversity in an ombrotrophic bog: The water level is the main regulating mechanism. Front. Environ. Sci. 2022, 10, 1032068. [Google Scholar] [CrossRef]
- Anderson, O.; Harrison, A.; Heumann, B.; Godwin, C.; Uzarski, D. The influence of extreme water levels on coastal wetland extent across the Laurentian Great Lakes. Sci. Total Environ. 2023, 885, 163755. [Google Scholar] [CrossRef]
- Huang, X.; Wang, C.; Chen, Y.; Zhang, M.; Hashmi, M.Z.; Sun, T.; Zou, B.; Zhang, Y.; Lin, J.; Wang, Z. Seasonal water level fluctuations regulate the source, distribution, and risk of antibiotics in the largest floodplain-lake in China. Water Res. 2025, 286, 124158. [Google Scholar] [CrossRef]
- Walumona, J.R.; Kaunda-Arara, B.; Odoli Ogombe, C.; Murakaru, J.M.; Raburu, P.; Muvundja Amisi, F.; Nyakeya, K.; Kondowe, B.N. Effects of lake-level changes on water quality and fisheries production of Lake Baringo, Kenya. Ecohydrology 2021, 15, e2368. [Google Scholar] [CrossRef]
- Qiu, X.; Liu, H.; Yin, X.; Qin, J. Combining the management of water level regimes and plant structures for waterbird habitat provision in wetlands. Hydrol. Process. 2021, 35, e14122. [Google Scholar] [CrossRef]
- Larson, D.M.; Cordts, S.D.; Hansel-Welch, N. Shallow lake management enhanced habitat and attracted waterbirds during fall migration. Hydrobiologia 2020, 847, 3365–3379. [Google Scholar] [CrossRef]
- Li, B.; Yang, G.; Wan, R. Reassessment of the declines in the largest freshwater lake in China (Poyang Lake): Uneven trends, risks and underlying causes. J. Environ. Manag. 2023, 342, 118157. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Mei, X.; Dai, Z.; Gao, J.; Li, J.; Wang, J.; Lou, Y. Hydromorphological processes of Dongting Lake in China between 1951 and 2014. J. Hydrol. 2018, 562, 254–266. [Google Scholar] [CrossRef]
- Hu, Y.; Li, D.; Deng, J.; Yue, Y.; Zhou, J.; Chai, Y.; Li, Y. Mechanisms Controlling Water-Level Variations in the Middle Yangtze River Following the Operation of the Three Gorges Dam. Water Resour. Res. 2022, 58, e2022WR032338. [Google Scholar] [CrossRef]
- Chai, Y.; Yang, Y.; Deng, J.; Sun, Z.; Li, Y.; Zhu, L. Evolution characteristics and drivers of the water level at an identical discharge in the Jingjiang reaches of the Yangtze River. J. Geogr. Sci. 2021, 30, 1633–1648. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Zhu, L.; Liu, W.; Han, J.; Yang, Y. Influence of Large Reservoir Operation on Water-Levels and Flows in Reaches below Dam: Case Study of the Three Gorges Reservoir. Sci. Rep. 2017, 7, 15640. [Google Scholar] [CrossRef]
- Lai, X.; Zou, H.; Jiang, J.; Jia, J.; Liu, Y.; Wei, W. Hydrological dynamics of the Yangtze river-Dongting lake system after the construction of the three Gorges dam. Sci. Rep. 2025, 15, 50. [Google Scholar] [CrossRef]
- He, Z.; Duan, W.; Wan, R.; Li, B.; Yang, G.; Li, Y. Quantifying the effects of channel change on the discharge diversion of Jingjiang Three Outlets after the operation of the Three Gorges Dam. Hydrol. Res. 2016, 47, 161–174. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, T.; Chen, L.; Zhu, D.Z.; Zhu, L.; Feng, L.; Liu, X. Impact of the Three Gorges Reservoir on the hydrologic regime of the river-lake system in the middle Yangtze River. J. Clean. Prod. 2020, 258, 121004. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, J.; Zhang, Y.; Zhang, X.; Li, X. Enhanced lakebed sediment erosion in Dongting Lake induced by the operation of the Three Gorges Reservoir. J. Geogr. Sci. 2015, 25, 917–929. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, L.; Xu, Z.; Jiang, C.; Chen, H.; Ye, C.; Ma, X.; Huang, Y. Impacts of large reservoirs on downstream lake hydrological regimes in complex river–lake systems: A case study of the Three Gorges Reservoir and Dongting Lake. J. Hydrol. 2025, 661, 133694. [Google Scholar] [CrossRef]
- Zhou, Y.; Jeppesen, E.; Li, J.; Zhang, Y.; Zhang, X.; Li, X. Impacts of Three Gorges Reservoir on the sedimentation regimes in the downstream-linked two largest Chinese freshwater lakes. Sci. Rep. 2016, 6, 35396. [Google Scholar] [CrossRef]
- Wang, J.; Gao, M.; Guo, H.; Chen, E. Spatiotemporal distribution and historical evolution of polders in the Dongting Lake area, China. J. Geogr. Sci. 2016, 26, 1561–1578. [Google Scholar] [CrossRef]
- Ye, X.; Xu, C.-Y.; Zhang, Q.; Yao, J.; Li, X. Quantifying the Human Induced Water Level Decline of China’s Largest Freshwater Lake from the Changing Underlying Surface in the Lake Region. Water Resour. Manag. 2017, 32, 1467–1482. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, D.; Li, Y.; Zhang, Q.; Gao, J. Quantifying the hydrodynamic impacts of cumulative sand mining on a large river-connected floodplain lake: Poyang Lake. J. Hydrol. 2019, 579, 124156. [Google Scholar] [CrossRef]
- Han, X.; Zhu, Y.; Ting, K.M.; Li, G. The impact of isolation kernel on agglomerative hierarchical clustering algorithms. Pattern Recognit. 2023, 139, 109517. [Google Scholar] [CrossRef]
- Shen, B.; Jiang, J.; Qian, F.; Li, D.; Ye, Y.; Ahmadi, G. Semi-supervised hierarchical ensemble clustering based on an innovative distance metric and constraint information. Eng. Appl. Artif. Intell. 2023, 124, 106571. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef]
- Richter, B.; Baumgartner, J.; Wigington, R.; Braun, D. How much water does a river need? Freshw. Biol. 1997, 37, 231–249. [Google Scholar] [CrossRef]
- Solanki, A.; Gupta, V. Implications of geomorphometric parameters on the occurrence of landslides in the Kali Valley, Kumaun Himalaya, India. Catena 2022, 215, 106313. [Google Scholar] [CrossRef]
- Guo, H.; Liu, X.; Zhang, Q. Identifying daily water consumption patterns based on K-means Clustering, Agglomerative Hierarchical Clustering, and Spectral Clustering algorithms. AQUA—Water Infrastruct. Ecosyst. Soc. 2024, 73, 870–887. [Google Scholar] [CrossRef]
- Abebe, S.A.; Qin, T.; Zhang, X.; Yan, D. Wavelet transform-based trend analysis of streamflow and precipitation in Upper Blue Nile River basin. J. Hydrol. Reg. Stud. 2022, 44, 101251. [Google Scholar] [CrossRef]
- Singh, R.N.; Sah, S.; Das, B.; Jaiswal, R.; Singh, A.K.; Reddy, K.S.; Pathak, H. Innovative and polygonal trend analysis of temperature in agro climatic zones of India. Sci. Rep. 2024, 14, 29914. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Zhang, S.; Huang, G.; Zhang, R. Analysis of Long-Term Water Level Variation in Dongting Lake, China. Water 2016, 8, 306. [Google Scholar] [CrossRef]
- Thoral, F.; Montie, S.; Thomsen, M.S.; Tait, L.W.; Pinkerton, M.H.; Schiel, D.R. Unravelling seasonal trends in coastal marine heatwave metrics across global biogeographical realms. Sci. Rep. 2022, 12, 7740. [Google Scholar] [CrossRef] [PubMed]
- Mersin, D.; Tayfur, G.; Vaheddoost, B.; Safari, M.J.S. Historical Trends Associated with Annual Temperature and Precipitation in Aegean Turkey, Where Are We Heading? Sustainability 2022, 14, 13380. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, W.; Huang, F. Determining the suitable ecological water level based on the response relationship between landscape connectivity and water level: A case study of Poyang Lake, China. Ecol. Indic. 2025, 175, 113562. [Google Scholar] [CrossRef]
- Geng, M.; Wang, K.; Qian, Z.; Jiang, H.; Li, Y.; Xie, Y.; Li, F.; Li, Y.; Zou, Y.; Deng, Z. Is water resources management at the expense of deteriorating water quality in a large river-connected lake after the construction of a lake sluice? Ecol. Eng. 2023, 197, 107124. [Google Scholar] [CrossRef]
- Geng, M.; Qian, Z.; Jiang, H.; Huang, B.; Huang, S.; Deng, B.; Peng, Y.; Xie, Y.; Li, F.; Zou, Y. Assessing the impact of water-sediment factors on water quality to guide river-connected lake water environment improvement. Sci. Total Environ. 2024, 912, 168866. [Google Scholar] [CrossRef]
- Tian, Z.; Zheng, B.; Wang, L.; Li, H.; Wang, X. Effects of river-lake interactions in water and sediment on phosphorus in Dongting Lake, China. Environ. Sci. Pollut. Res. 2017, 24, 23250–23260. [Google Scholar] [CrossRef]
- Shao, Y.; Shen, Q.; Yao, Y.; Zhou, Y.; Xu, W.; Li, W.; Gao, H.; Shi, J.; Zhang, Y. Spatial and Temporal Variations of Total Suspended Matter Concentration during the Dry Season in Dongting Lake in the Past 35 Years. Remote Sens. 2024, 16, 3509. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, Y.; Wu, D.; Zhu, J.; Zou, B.; Ma, Z.; Xu, J.; Li, L. Identify the seasonal differences in water quality and pollution sources between river-connected and gate-controlled lakes in the Yangtze River basin. Mar. Pollut. Bull. 2024, 206, 116760. [Google Scholar] [CrossRef]
- Wang, W.; Yang, P.; Xia, J.; Zhang, S.; Hu, S. Changes in the water environment and its major driving factors in Poyang Lake from 2016 to 2019, China. Environ. Sci. Pollut. Res. 2023, 30, 3182–3196. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Zhou, L.; Sun, W.; Wang, G.; Shrestha, S.; Xue, B.; Li, Z. Assessing alterations of water level due to environmental water allocation at multiple temporal scales and its impact on water quality in Baiyangdian Lake, China. Environ. Res. 2022, 212, 113366. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Marnn, P.; Jiang, H.; Wen, Y.; Yan, H.; Li, D.; He, C.; Li, L. A study on the response of waterbird diversity to habitat changes caused by ecological engineering construction. Ecol. Eng. 2024, 208, 107358. [Google Scholar] [CrossRef]
- Cui, L.; Wei, Z.; Zhou, L.; Cheng, B. Effects of constant high water levels in winter on waterbird diversity in Caizi Lakes: A functional perspective. Glob. Ecol. Conserv. 2024, 52, e02934. [Google Scholar] [CrossRef]
- Wu, H.; Chen, J.; Zeng, G.; Xu, J.; Sang, L.; Liu, Q.; Dai, J.; Xiong, W.; Yuan, Z.; Wang, Y. Effects of Early Dry Season on Habitat Suitability for Migratory Birds in China's Two Largest Freshwater Lake Wetlands after the Impoundment of Three Gorges Dam. J. Environ. Inform. 2020, 36, 2. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, X.-S.; Li, F.; Hou, Z.-Y.; Li, X.; Zeng, J.; Deng, Z.-M.; Zou, Y.-A.; Xie, Y.-H. Community trait responses of three dominant macrophytes to variations in flooding during 2011–2019 in a Yangtze river-connected floodplain wetland (Dongting lake, China). Front. Plant Sci. 2021, 12, 604677. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.; Yu, D.; Yao, R.; Li, C.A.; He, Q.; Wang, S.; Wang, L. Four decades of wetland changes in Dongting Lake using Landsat observations during 1978–2018. J. Hydrol. 2020, 587, 124954. [Google Scholar] [CrossRef]
- Hu, J.-Y.; Xie, Y.-H.; Tang, Y.; Li, F.; Zou, Y.-A. Changes of vegetation distribution in the east Dongting Lake after the operation of the Three Gorges Dam, China. Front. Plant Sci. 2018, 9, 582. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Yan, D.; Chen, L.; Li, M.; Luan, Z. Typical vegetation dynamics and hydrological changes of Dongting Lake wetland from 1985 to 2020. Ecohydrol. Hydrobiol. 2024, 24, 910–919. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, H.; Guo, W. The impacts of water level fluctuations of East Dongting Lake on habitat suitability of migratory birds. Ecol. Indic. 2021, 132, 108277. [Google Scholar] [CrossRef]
- Li, X.; Hu, B.; Qi, S.; Luo, J. The Influence of Short-Term Water Level Fluctuations on the Habitat Response and Ecological Fragility of Siberian Cranes in Poyang Lake, China. Remote Sens. 2024, 16, 4431. [Google Scholar] [CrossRef]
- Lin, J.; Ding, W.; Zhou, H.; Wang, H. Mitigating adverse impacts of reservoir impoundment on lake ecology: A case study of the Three Gorges Reservoir and Dongting Lake. J. Clean. Prod. 2024, 451, 141835. [Google Scholar] [CrossRef]
- Wang, H.; Bai, X.; Huang, L.; Hong, F.; Yuan, W.; Guo, W. The spatial variation of hydrological conditions and their impact on wetland vegetation in connected floodplain wetlands: Dongting Lake Basin. Environ. Sci. Pollut. Res. 2024, 31, 8483–8498. [Google Scholar] [CrossRef]
- Wu, H.-B.; Zheng, B.-H. Wetland area identification and waterbird protection management in consideration of lake topography and water level change. Glob. Ecol. Conserv. 2020, 23, e01056. [Google Scholar] [CrossRef]
- Zhang, P.; Zou, Y.; Xie, Y.; Zhang, H.; Liu, X.; Gao, D.; Yi, F. Shifts in distribution of herbivorous geese relative to hydrological variation in East Dongting Lake wetland, China. Sci. Total Environ. 2018, 636, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.-A.; Zhang, P.-Y.; Zhang, S.-Q.; Chen, X.-S.; Li, F.; Deng, Z.-M.; Yang, S.; Zhang, H.; Li, F.-Y.; Xie, Y.-H. Crucial sites and environmental variables for wintering migratory waterbird population distributions in the natural wetlands in East Dongting Lake, China. Sci. Total Environ. 2019, 655, 147–157. [Google Scholar] [CrossRef]
- Yuan, Y.; Zeng, G.; Liang, J.; Huang, L.; Hua, S.; Li, F.; Zhu, Y.; Wu, H.; Liu, J.; He, X. Variation of water level in Dongting Lake over a 50-year period: Implications for the impacts of anthropogenic and climatic factors. J. Hydrol. 2015, 525, 450–456. [Google Scholar] [CrossRef]
- Zhang, C.; Yuan, Y.; Zeng, G.; Liang, J.; Guo, S.; Huang, L.; Hua, S.; Wu, H.; Zhu, Y.; An, H. Influence of hydrological regime and climatic factor on waterbird abundance in Dongting Lake Wetland, China: Implications for biological conservation. Ecol. Eng. 2016, 90, 473–481. [Google Scholar] [CrossRef]
- Yan, G.; Yin, X.; Huang, M.; Wang, X.; Huang, D.; Li, D. Dynamics of phytoplankton functional groups in river-connected lakes and the major influencing factors: A case study of Dongting Lake, China. Ecol. Indic. 2023, 149, 110177. [Google Scholar] [CrossRef]
- Peng, H.; Xia, H.; Shi, Q.; Chen, H.; Chu, N.; Liang, J.; Gao, Z. Monitoring spatial and temporal dynamics of wetland vegetation and their response to hydrological conditions in a large seasonal lake with time series Landsat data. Ecol. Indic. 2022, 142, 109283. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Y.; Jin, Y.; Guo, W. Quantitative assessment of hydrological alteration over multiple periods caused by human activities at the Jingjiang Three Outlets, China. Water Supply 2022, 22, 264–277. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, S.-h.; Xu, W.; Wang, B.-d.; Wang, H. Flow regime of the three outlets on the south bank of Jingjiang River, China: An impact assessment of the Three Gorges Reservoir for 2003–2010. Stoch. Environ. Res. Risk Assess. 2015, 29, 2047–2060. [Google Scholar] [CrossRef]
- Kokoszka, P.; Reimherr, M. Introduction to Functional Data Analysis; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017. [Google Scholar]
- Fan, Z.; Reimherr, M. High-dimensional adaptive function-on-scalar regression. Econom. Stats 2016, 1, 167–183. [Google Scholar] [CrossRef]
No. | Station Name | Time Series | Monitoring Parameters | Remarks |
---|---|---|---|---|
1 | Chenglingji | 1953–2024 | Water level, Discharge | Representative station for East Dongting Lake |
2 | Lujiao | 1952–2024 | Water level | Representative station for East Dongting Lake |
3 | Yingtian | 1953–2024 | Water level | Representative station for South Dongting Lake |
4 | Xiangyin | 1949–2024 | Water level | |
5 | Yangliutan | 1953–2024 | Water level | Representative station for South Dongting Lake |
6 | Yangdi | 1965–2022 | Water level, Discharge | |
7 | Shatou | 1956–2024 | Water level, Discharge | |
8 | Ganxigang | 2002–2022 | Water level, Discharge | |
9 | Yiyang | 2017–2024 | Water level | |
10 | Caowei | 1968–2024 | Water level, Discharge | |
11 | Xiaohezui | 1955–2024 | Water level, Discharge | Representative station for West Dongting Lake |
12 | Yuanjiang | 1951–2024 | Water level | Representative station for South Dongting Lake |
13 | Zhouwenmiao | 1968–2024 | Water level | |
14 | Changde | 1959–2024 | Water level | |
15 | Nanzui | 1955–2024 | Water level, Discharge | Representative station for West Dongting Lake |
16 | Xiaojiawan | 2017–2024 | Water level | |
17 | Baibengkou | 2017–2024 | Water level | |
18 | Anxiang | 1955–2024 | Water level, Discharge | |
19 | Haozigang | 2017–2024 | Water level | |
20 | Shiguishan | 1958–2024 | Water level, Discharge | Representative station for West Dongting Lake |
21 | Jinshi | 1959–2024 | Water level, Discharge | Representative station for West Dongting Lake |
Survey Date | Measured Stage at Chenglingji (m) | Landsat 8 Acquisition Date | Path | Row | Image-Derived Stage (m) |
---|---|---|---|---|---|
8 December 2022 | 17.56 | 19 December 2021 | 124 | 40 | 18.18 |
7 December 2021 | 123 | 40 | 18.27 | ||
26 April 2022 | 24.06 | 27 March 2017 | 124 | 40 | 24.07 |
22 August 2015 | 123 | 40 | 24.51 | ||
26 June 2024 | 29.33 | 20 July 2018 | 124 | 40 | 29.41 |
1 August 2019 | 123 | 40 | 29.21 |
Group | Description | Stage Metrics | Count |
---|---|---|---|
1 | Monthly stage characteristics | Mean stage for each calendar month | 12 |
2 | Annual extreme stages | Annual minimum/maximum 1 d, 3 d, 7 d, 30 d, and 90 d stages; base flow index | 11 |
3 | Timing of annual extremes | Julian date of annual minimum/maximum stage occurrence | 2 |
4 | Frequency and duration of high/low-stage events | Annual count of high/low-stage pulses; mean duration of high/low-stage events | 4 |
5 | Stage change dynamics | Mean rates of stage rise/fall; number of stage reversals | 3 |
No. | Hydrological Station | Z-Value | p-Value | Slope | Trend (α = 0.05) | Lake Region |
---|---|---|---|---|---|---|
1 | Jinshi | −7.24 | 4.46 × 10−13 | −0.0327 | Decreasing | Qili Lake |
2 | Shiguishan | −7.95 | 2.00 × 10−15 | −0.0340 | Decreasing | |
3 | Zhouwenmiao | −1.34 | 0.1816 | −0.0053 | No trend | Muping Lake |
4 | Nanzui | −3.42 | 0.0006 | −0.0078 | Decreasing | |
5 | Xiaohezui | −2.93 | 0.0034 | −0.0063 | Decreasing | |
6 | Yuanjiang | −2.49 | 0.0128 | −0.0055 | Decreasing | South Dongting Lake |
7 | Yangliutan | −0.12 | 0.9052 | −0.0010 | No trend | |
8 | Yingtian | −2.56 | 0.0104 | −0.0144 | Decreasing | |
9 | Lujiao | 1.24 | 0.2135 | 0.0059 | No trend | East Dongting Lake |
10 | Chenglingji | 2.72 | 0.0063 | 0.0149 | Increasing |
Lake Region | Hydrological Station | Methods | Change Point Year(s) | |||
---|---|---|---|---|---|---|
M-K Test | CUSUM | Moving t-Test | Pettitt’s Test | |||
Qili Lake | Jinshi | 1990 | 1990 | 1983, 2003 | 1991 | 1990 |
Shiguishan | 1990 | 1990 | 1983, 2003 | 1990 | ||
Muping Lake | Zhouwenmiao | 2003 | 2003 | 1983, 2003 | 2003 | 1983, 2003 |
Nanzui | 2003 | 2003 | 1983, 2004 | 2003 | ||
Xiaohezui | - | 2003 | 1983, 2003 | - | ||
South Dongting Lake | Yuanjiang | - | 2003 | 1983, 2003 | 2003 | 1983, 2003 |
Yangliutan | - | 1979, 2003 | 1983, 2003 | 2003 | ||
Yingtian | - | 2003 | 1983, 2003 | 2003 | ||
East Dongting Lake | Lujiao | - | 1980, 2005 | 1983, 2005 | - | 1980, 2005 |
Chenglingji | - | 1980, 2005 | 1979, 2005 | 1979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Jiang, C.; Ma, Y.; Li, S. Spatial Heterogeneity and Temporal Variation of Water Levels in Dongting Lake. Sustainability 2025, 17, 8080. https://doi.org/10.3390/su17178080
Yuan S, Jiang C, Ma Y, Li S. Spatial Heterogeneity and Temporal Variation of Water Levels in Dongting Lake. Sustainability. 2025; 17(17):8080. https://doi.org/10.3390/su17178080
Chicago/Turabian StyleYuan, Shuai, Changbo Jiang, Yuan Ma, and Shanshan Li. 2025. "Spatial Heterogeneity and Temporal Variation of Water Levels in Dongting Lake" Sustainability 17, no. 17: 8080. https://doi.org/10.3390/su17178080
APA StyleYuan, S., Jiang, C., Ma, Y., & Li, S. (2025). Spatial Heterogeneity and Temporal Variation of Water Levels in Dongting Lake. Sustainability, 17(17), 8080. https://doi.org/10.3390/su17178080