Optimization of Fermentation Parameters for the Sustainable Production of Effective Carbon Sources from Kitchen Waste to Enhance Nutrient Removal in Sewage
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Materials and Microbial Samples
2.2. Reactor Setup and Operating Conditions
2.3. Experimental Design
2.3.1. Primary Component Analysis of the Kitchen Waste
2.3.2. Preparation of a High Nitrogen and Phosphorus Removal Carbon Source from Kitchen Waste
2.4. Analytical Methods
2.4.1. Kitchen Waste Detection and Analysis
2.4.2. Sewage Detection and Analysis
2.5. Statistical Analyses
3. Results and Discussion
3.1. Composition Analysis of Kitchen Waste
3.2. Preparation of High-Efficiency Kitchen Waste Carbon Sources Using Fermentation Process Control
3.2.1. Fermentation Product Differences Due to Fermentation Times
3.2.2. Differences in Fermentation Products Due to Fermentation Temperature
3.3. Impact of Product Differences on Pollutant Removal in Sewage
3.3.1. Effect of Products Under Different Fermentation Times on Sewage Treatment
3.3.2. Effect of Products Under Different Fermentation Temperatures on Wastewater Treatment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.R.; Meng, X.Y.; Li, J.L.; Wang, P.; Ren, L. Research status of malodorous gas emissions during the aerobic composting process of food waste. Environ. Sanit. Eng. 2025, 33, 40–49, 56. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China (NBSC). China Statistical Yearbook 2024; Statistics Press: Beijing, China, 2024. [Google Scholar]
- Zhang, Y.; Su, Y.; Wang, F.; Feng, L.; Wang, X.; Mustafa, A.M. Food Waste Fermentation Liquid as a Supplementary Carbon Source for Enhanced Biological Nitrogen Removal from Rural Wastewater. Water 2024, 16, 3191. [Google Scholar] [CrossRef]
- Ramos-Suarez, M.; Zhang, Y.; Outram, V. Current perspectives on acidogenic fermentation to produce volatile fatty acids from waste. Rev. Environ. Sci. Biotechnol. 2021, 20, 439–478. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.H.; Song, X.S. High-effective denitrification of low c/n wastewater by combined constructed wetland and biofilm-electrode reactor (CW-BER). Bioresour. Technol. 2016, 203, 245–251. [Google Scholar] [CrossRef]
- Gui, X.W.; Luo, Y.F.; Li, Z.L.; Nie, M.; Yang, Y.; Zhang, C.; Liu, J. Co-fermentation of kitchen waste and excess sludge for organic acid production: A review. Chin. J. Biotechnol. 2021, 37, 448–460. [Google Scholar] [CrossRef]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Wu, Q.L.; Guo, W.Q.; Zheng, H.S.; Luo, H.-C.; Feng, X.-C.; Yin, R.-L.; Ren, N.-Q. Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: The mechanism and microbial community analyses. Bioresour. Technol. 2016, 216, 653–660. [Google Scholar] [CrossRef]
- Sudiartha, G.A.W.; Imai, T.; Chairattanamanokorn, P.; Reungsang, A. Unveiling the impact of temperature shift on microbial community dynamics and metabolic pathways in anaerobic digestion. Process Saf. Environ. Prot. 2024, 186, 1505–1515. [Google Scholar] [CrossRef]
- Li, Z.L.; Gui, X.W.; Luo, Y.F. Kitchen Waste Degrading Agent. Chinese Patent CN112011491B, 28 October 2022. [Google Scholar]
- Chen, Z.; Li, Y.Z.; Peng, Y.Y.; Ye, C.; Zhang, S. Effects of antibiotics on hydrolase activity and structure of microbial community during aerobic co-composting of food waste with sewage sludge. Bioresour. Technol. 2021, 321, 124506. [Google Scholar] [CrossRef]
- Frølund, B.; Palmgren, R.; Keiding, K.; Nielsen, P.H. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 1996, 30, 1749–1758. [Google Scholar] [CrossRef]
- GB5009.5-2016; National Food Safety Standard Determination of Protein in Food. National Standardization Administration of China (NSA): Beijing, China, 2016a.
- GB5009.6-2016; National Food Safety Standard Determination of Fat in Food. National Standardization Administration of China (NSA): Beijing, China, 2016b.
- Pan, X.; Zhang, Y.; Wang, H.; Luo, L.; Xu, Y.; Chen, X.; Chen, Y.; Tang, J.; Imanaka, T.; Luo, F. Study on biogas production from pig manure wastewater by microbial electrosynthesis at sub-psychrophilic conditions. Process Biochem. 2024, 146, 195–203. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Sewage, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Zhang, Y.M. Study on Carbon Source Recovery from Food Wastes and Nitrogen Removal Enhancement. Ph.D. Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2016. [Google Scholar] [CrossRef]
- Chandel, N.S. Carbohydrate Metabolism. Cold Spring Harb. Perspect. Biol. 2021, 13, a040568. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.X.; Xu, K. Comparative Research on Protein and Fat Intake of Chinese Residents. Food Nutr. China 2019, 25, 79–83. [Google Scholar] [CrossRef]
- Wang, Z.J.; Gui, X.W.; Li, Z.L. Compounding of efficient microbial agents for kitchen waste aerobic hydrolysis and its application as wastewater treatment additive. J. Appl. Environ. Biol. 2023, 29, 836–842. [Google Scholar] [CrossRef]
- Gui, X.W.; Wang, Z.J.; Li, K.L.; Li, Z.; Mao, X.; Geng, J.; Pan, Y. Enhanced nitrogen removal in sewage treatment is achieved by using kitchen waste hydrolysate without a significant increase in nitrous oxide emissions. Sci. Total Environ. 2024, 906, 167108. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Wu, Y.; Wang, P.C.; Chen, Y.; Zheng, X. Research progress on anaerobic co-fermentation of waste-activated sludge to produce acid under the goal of low carbon. Environ. Eng. 2024, 42, 102–109. [Google Scholar] [CrossRef]
- Elsayad, R.M.; Sharshir, S.W.; Khalil, A.; Basha, A.M. Recent advancements in wastewater treatment via anaerobic fermentation process: A systematic review. J. Environ. Manag. 2024, 366, 121724. [Google Scholar] [CrossRef]
- Wikandari, R.; Taherzadeh, M.J. Rapid anaerobic digestion of organic solid residuals for biogas production using flocculating bacteria and membrane bioreactors—A critical review. Biofuels Bioprod. Biorefin. 2019, 13, 1119–1132. [Google Scholar] [CrossRef]
- Zhu, X.; Li, P.; Ju, F. Microbiome dynamics and products profiles of biowaste fermentation under different organic loads and additives. Eng. Life Sci. 2023, 24, 2300216. [Google Scholar] [CrossRef]
- Chen, H.; Huang, J.; Jiao, D.; Wang, X.; Du, X.; Dai, J.; Sun, S.; Xu, Q.; Wu, C.; Qiu, D. Supplementation of plant fermentation carbon sources significantly enhances the abundance of ammonia-oxidizing genes and increases nitrogen removal in a municipal wastewater treatment plant. BMC Microbiol. 2025, 25, 426. [Google Scholar] [CrossRef]
- Law, A.W.S.; Rubio Rincón, F.; van de Vossenberg, J.; Al Saffar, Z.; Welles, L.; Rene, E.R.; Vazquez, C.L. Volatile fatty acid production from food waste: The effect of retention time and lipid content. Bioresour. Technol. 2023, 367, 128298. [Google Scholar] [CrossRef] [PubMed]
- Cha, G.C.; Chung, H.K.; Chung, J.C. Suppression of acidogenic activities due to rapid temperature drop in anaerobic digestion. Biotechnol. Lett. 1997, 19, 461–464. [Google Scholar] [CrossRef]
- Xiong, J.J. Preparation of External Carbon Source for Wastewater Treatment by Anaerobic Fermentation of Kitchen Waste and Its Denitrification Performance Evaluation. Master’s Thesis, Hebei University of Engineering, Handan, China, 2021. [Google Scholar] [CrossRef]
- Lago, A.; Greses, S.; Aboudi, K.; Moreno, I.; González-Fernández, C. Effect of decoupling hydraulic and solid retention times on carbohydrate-rich residue valorization into carboxylic acids. Sci. Rep. 2023, 13, 20590. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Aguirre, J.; Aymerich, E.; de Goni, J.G.M.; Esteban-Gutiérrez, M. Selective VFA production potential from organic waste streams: Assessing temperature and pH influence. Bioresour. Technol. 2017, 244, 1081–1088. [Google Scholar] [CrossRef]
- Ren, N.Q.; Wang, A.J.; Ma, F. Physiological Ecology of Acidogens in Anaerobic Biotreatment Process; Science Press: Beijing, China, 2005. [Google Scholar]
- Hidalgo, D.; Garrote, L.; Infante, F.; Martín-Marroquín, J.M.; Pérez-Zapatero, E.; Corona, F. Targeted Acidogenic Fermentation of Waste Streams for the Selective Production of Volatile Fatty Acids as Bioplastic Precursors. Appl. Sci. 2025, 15, 5923. [Google Scholar] [CrossRef]
- Yuan, Q.; Sparling, R.; Oleszkiewicz, J.A. VFA generation from waste activated sludge: Effect of temperature and mixing. Chemosphere 2011, 82, 603–607. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Chen, Y.; Zhao, F.; Yuan, P.; Lu, M.; Qin, K.; Qin, F.; Fu, S.; Guo, R.; Feng, Q. Use of magnetic powder to effectively improve the denitrification employing the activated sludge fermentation liquid as carbon source. J. Environ. Manag. 2023, 348, 119049. [Google Scholar] [CrossRef]
- Zhang, M.J.; Zhang, C.C.; Wu, Q.S.; Wang, M.; Zhou, Y.; Wang, D.; Zhou, L. Deciphering nitrogen removal performance concerning heterotrophic microorganism's succession by using three typical acid-rich fermentation liquids of food waste as carbon sources in high ammonium and high salt wastewater treatment. Environ. Res. 2025, 268, 120763. [Google Scholar] [CrossRef]
- Xu, B.K.; Liu, L.; Wang, M.; Fu, Z.; Xu, P.; Ma, J.; He, Q. Effects of dissolved oxygen on the anaerobic/oxic/anoxic simultaneous nitrification, denitrification and phosphorus removal (AOA-SNDPR) process for advanced wastewater treatment and in situ sludge reduction. J. Environ. Chem. Eng. 2025, 13, 115258. [Google Scholar] [CrossRef]
- Zhu, Z.H.; Zhao, Y.C.; Guo, Y.Y.; Zhang, R.; Pan, Y.; Zhou, T. A novel additional carbon source derived from rotten fruits: Application for the denitrification from mature landfill leachate and evaluation the economic benefits. Bioresour. Technol. 2021, 334, 125244. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, F.; Chai, W.B.; Xing, D.; Lu, H. Biotransformation and modeling of nitrogeneous organic matter in wastewater treatment processes. Microbiol. China 2021, 48, 1717–1726. [Google Scholar] [CrossRef]
- Gao, L.; Wu, X.P.; Wang, Q.; Ai, Q.; Zhang, B. Phosphorus release during denitrification process in continuous-flow intermittentaeration biological reactor. Chin. J. Environ. Eng. 2019, 13, 1359–1365. [Google Scholar] [CrossRef]
- Li, H.; Li, Q.; Wang, G.J.; Wang, X. Analysis of efficiency and energy consumption of co-digestion of food waste and waste activated sludge under different operational conditions. Chin. J. Environ. Eng. 2017, 11, 4305–4312. [Google Scholar] [CrossRef]
Test | TN (mg/L) | COD (mg/L) | TP (mg/L) | pH | COD/TN |
---|---|---|---|---|---|
Fermentation time test | 24.13 | 70.48 | 0.65 | 7.54 | 3.11 |
Fermentation temperature test | 27.13 | 117.73 | 0.94 | 7.66 | 4.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gui, X.; Wang, L.; Li, Z. Optimization of Fermentation Parameters for the Sustainable Production of Effective Carbon Sources from Kitchen Waste to Enhance Nutrient Removal in Sewage. Sustainability 2025, 17, 8079. https://doi.org/10.3390/su17178079
Gui X, Wang L, Li Z. Optimization of Fermentation Parameters for the Sustainable Production of Effective Carbon Sources from Kitchen Waste to Enhance Nutrient Removal in Sewage. Sustainability. 2025; 17(17):8079. https://doi.org/10.3390/su17178079
Chicago/Turabian StyleGui, Xuwei, Ling Wang, and Zhenlun Li. 2025. "Optimization of Fermentation Parameters for the Sustainable Production of Effective Carbon Sources from Kitchen Waste to Enhance Nutrient Removal in Sewage" Sustainability 17, no. 17: 8079. https://doi.org/10.3390/su17178079
APA StyleGui, X., Wang, L., & Li, Z. (2025). Optimization of Fermentation Parameters for the Sustainable Production of Effective Carbon Sources from Kitchen Waste to Enhance Nutrient Removal in Sewage. Sustainability, 17(17), 8079. https://doi.org/10.3390/su17178079