Synergistic and Trade-Off Influences of Combined PM2.5-O3 Pollution in the Shenyang Metropolitan Area, China: A Comparative Land Use Regression Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Technique Route
2.3. LUR Modeling and Evaluation
2.4. Pollution Surface Generation
3. Results and Discussion
3.1. Descriptive Statistics
3.2. LUR Models of O3
3.3. Synergistic and Trade-Off Factors Affecting PM2.5 and O3
3.4. Spatial Pollution Maps
3.5. Recommendations and Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LUR | Land use regression |
SYMA | Shenyang metropolitan area |
PRD | Pearl River delta |
AQG | Air quality guideline |
LASSO | Least absolute shrinkage and selection operator |
VOCs | Volatile organic compounds |
LOOCV | Leave-one-out cross validation |
AOD | Aerosol optical depth |
References
- Hua, C.; Jiang, Q.; Chi, X.; Liu, C. Meteorological characteristics of PM2.5–O3 air combined pollution in central and Eastern China in the summer half years of 2015–2020. Res. Environ. Sci. 2022, 35, 650–658. [Google Scholar]
- Ministry of Ecology and Environment of China (MEE). Report on the State of the Ecology and Environment in China 2023; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2024.
- Lelieveld, J.; Haines, A.; Burnett, R.; Tonne, C.; Klingmüller, K.; Münzel, T.; Pozzer, A. Air pollution deaths attributable to fossil fuels: Observational and modelling study. BMJ 2023, 383, e077784. [Google Scholar] [CrossRef]
- Zaręba, Ł.; Piszczatowska, K.; Dżaman, K.; Soroczynska, K.; Motamedi, P.; Szczepański, M.J.; Ludwig, N. The Relationship between Fine Particle Matter (PM2.5) Exposure and Upper Respiratory Tract Diseases. J. Pers. Med. 2024, 14, 98. [Google Scholar] [CrossRef]
- Feng, Y.; Castro, E.; Wei, Y.; Jin, T.; Qiu, X.; Dominici, F.; Schwartz, J. Long-term exposure to ambient PM2.5, particulate constituents and hospital admissions from non-respiratory infection. Nat. Commun. 2024, 15, 1518. [Google Scholar] [CrossRef] [PubMed]
- Curtis, L. PM2.5, NO2, wildfires, and other environmental exposures are linked to higher COVID 19 incidence, severity, and death rates. Environ. Sci. Pollut. Res. 2021, 28, 54429–54447. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.-B.; Tang, J.-X.; Dan, L.; Tong, J.-H. Characteristics, Impact Factors and Potential Sources of PM2.5 Pollution for Hainan Island. Huan Jing Ke Xue=Huanjing Kexue 2024, 45, 5140–5148. [Google Scholar]
- Shi, B.; Liu, G.; Fu, J.; Zhai, S.; He, L.; Li, R.; Chen, W. Traceability and policy suggestions for ozone pollution in heavy industrial city in Northeast China. Environ. Sci. Pollut. Res. 2024, 31, 47630–47643. [Google Scholar] [CrossRef]
- Kim, S.; Yi, S.M.; Park, J.M.; Song, I.H.; Jeon, K.; Park, J. Simultaneous comparison of the chemical composition and attributable source of PM2.5 during 2014–2018 in major metropolitan cities in South Korea: Impacts of policy interventions. Environ. Res. Lett. 2024, 19, 114020. [Google Scholar] [CrossRef]
- Zhang, J.K.; Su, Y.F.; Chen, C.Y.; Guo, W.K.; Tan, Q.W.; Feng, M.; Song, D.L.; Jiang, T.; Chen, Q.; Li, Y.; et al. Chemical composition, sources and formation mechanism of urban PM2.5 in Southwest China: A case study at the beginning of 2023. Atmos. Chem. Phys. 2024, 24, 2803–2820. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Y.; Dong, F. Insight into the Overlooked Photochemical Decomposition of Atmospheric Surface Nitrates Triggered by Visible Light. Angew. Chem. Int. Ed. 2022, 61, e202209201. [Google Scholar] [CrossRef]
- Chen, Q.; Fang, Y.; Feng, Y.; Zhang, F.; Zhu, W.; Wang, W.; Chen, Y. Based on the variation of black carbon in PM2.5 to observe pollution episode in winter Shanghai. J. Shanghai Univ. (Nat. Sci. Ed.) 2020, 26, 263–274. [Google Scholar]
- Liang, L.; Gong, P. Urban and air pollution: A multi-city study of long-term effects of urban landscape patterns on air quality trends. Sci. Rep. 2020, 10, 18618. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Liang, J.; Yao, F. Exploring common factors influencing PM2.5 and O3 concentrations in the Pearl River Delta: Tradeoffs and synergies. Environ. Pollut. 2021, 285, 117138. [Google Scholar] [CrossRef]
- Du, S.W.; He, C.; Zhang, L.; Zhao, Y.; Chu, L.L.; Ni, J.M. Policy implications for synergistic management of PM2.5 and O3 pollution from a pattern-process-sustainability perspective in China. Sci. Total Environ. 2024, 916, 170210. [Google Scholar] [CrossRef]
- Curley, L.; Holland, R.; Khan, M.A.H.; Shallcross, D.E. Investigating the Effect of Fine Particulate Matter (PM2.5) Emission Reduction on Surface-Level Ozone (O3) during Summer across the UK. Atmosphere 2024, 15, 733. [Google Scholar] [CrossRef]
- Shao, P.; Xin, J.; An, J.; Wang, J.; Wu, F.; Wang, Y. An analysis on the relationship between ground-level ozone and particulate matter in an industrial area in the Yangtze River Delta during summer time. Chin. J. Atmos. Sci. 2017, 41, 618–628. [Google Scholar]
- Wang, C.; Wang, S.; Yang, B.; Zhang, L.; Wang, L.; Liu, M. Study of the effect of meteorological conditions on the ambient air ozone concentrations in Shenyang. Environ. Monit. China 2015, 31, 32–37. [Google Scholar]
- Ndiaye, A.; Shen, Y.; Kyriakou, K.; Karssenberg, D.; Schmitz, O.; Flückiger, B.; Hoogh, K.d.; Hoek, G. Hourly land-use regression modeling for NO2 and PM2.5 in the Netherlands. Environ. Res. 2024, 256, 119233. [Google Scholar] [CrossRef]
- Ma, X.; Zou, B.; Deng, J.; Gao, J.; Longley, I.; Xiao, S.; Guo, B.; Wu, Y.; Xu, T.; Xu, X.; et al. A comprehensive review of the development of land use regression approaches for modeling spatiotemporal variations of ambient air pollution: A perspective from 2011 to 2023. Environ. Int. 2024, 183, 108430. [Google Scholar] [CrossRef]
- Shi, T.; Zhang, Y.; Yuan, X.; Li, F.; Yan, S. Spatial Patterns and Determinants of PM2.5 Concentrations: A Land Use Regression Analysis in Shenyang Metropolitan Area, China. Sustainability 2024, 16, 5119. [Google Scholar] [CrossRef]
- Sun, Y.; Luo, Z.; Fan, X. Robust structured heterogeneity analysis approach for high-dimensional data. Stat. Med. 2022, 41, 3229–3259. [Google Scholar] [CrossRef] [PubMed]
- Coker, E.S.; Amegah, A.K.; Mwebaze, E.; Ssematimba, J.; Bainomugisha, E. A land use regression model using machine learning and locally developed low cost particulate matter sensors in Uganda. Environ. Res. 2021, 199, 111352. [Google Scholar] [CrossRef]
- Liaoning Provincial Bureau of Statistics. Liaoning Statistical Yearbook 2023; Liaoning Statistical Bureau: Shenyang, China, 2023. [Google Scholar]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 2010, 33, 1. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Ecology and Environment of China (MEE). Ambient Air Quality Standards (GB 3095–2012); China Environmental Science Press: Beijing, China, 2012.
- Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Xie, P.H.; Xu, J.; Lv, Y.S.; Zhang, Z.D.; Zheng, J.Y.; Tian, X. Long-term trends of ozone in the Yangtze River Delta, China: Spatiotemporal impacts of meteorological factors, local, and non-local emissions. J. Environ. Sci. 2025, 156, 408–420. [Google Scholar] [CrossRef]
- Lu, X.; Hong, J.; Zhang, L.; Cooper, O.R.; Schultz, M.G.; Xu, X.; Wang, T.; Gao, M.; Zhao, Y.; Zhang, Y. Severe Surface Ozone Pollution in China: A Global Perspective. Environ. Sci. Technol. Lett. 2018, 5, 487–494. [Google Scholar] [CrossRef]
- Wang, W.J.; Parrish, D.D.; Wang, S.W.; Bao, F.X.; Ni, R.J.; Li, X.; Yang, S.D.; Wang, H.L.; Cheng, Y.F.; Su, H. Long-term trend of ozone pollution in China during 2014–2020: Distinct seasonal and spatial characteristics and ozone sensitivity. Atmos. Chem. Phys. 2022, 22, 8935–8949. [Google Scholar] [CrossRef]
- Qi, X.; Han, Y.; Che, H.; Zhou, J.; Peng, C.; Bao, Z.; Liu, Y.; Meng, L.; Zhang, S.; Yang, F.; et al. Characteristics and health risks assessment of PM2.5-bound heavy metals during winter in urban areas of northern China: A case study in Kaifeng. Sci. Total Environ. 2024, 955, 177050. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, C.; Xue, C.; Mu, Y.; Liu, J.; Zhang, Y.; Tian, D.; Ye, C.; Zhang, H.; Guan, J. The contribution of residential coal combustion to atmospheric PM2.5 in northern China during winter. Atmos. Chem. Phys. 2017, 17, 11503–11520. [Google Scholar] [CrossRef]
- Zheng, G.J.; Duan, F.K.; Su, H.; Ma, Y.L.; Cheng, Y.; Zheng, B.; Zhang, Q.; Huang, T.; Kimoto, T.; Chang, D.; et al. Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos. Chem. Phys. 2015, 15, 2969–2983. [Google Scholar] [CrossRef]
- Hu, W.Y.; Zhao, T.L.; Bai, Y.Q.; Kong, S.F.; Xiong, J.; Sun, X.Y.; Yang, Q.J.; Gu, Y.; Lu, H.C. Importance of regional PM2.5 transport and precipitation washout in heavy air pollution in the Twain-Hu Basin over Central China: Observational analysis and WRF-Chem simulation. Sci. Total Environ. 2021, 758, 143710. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, L.; Liu, H.F.; Liu, S.; Feng, M.; Song, D.L.; Tan, Q.W.; Jiang, H.B.; Zuoqiu, S.; Yang, F.M. Disparities in precipitation effects on PM2.5 mass concentrations and chemical compositions: Insights from online monitoring data in Chengdu. J. Environ. Sci. 2025, 156, 421–434. [Google Scholar] [CrossRef]
- Liu, W.J.; Yu, Y.; Li, M.; Yu, H.K.; Shi, M.M.; Cheng, C.; Hu, T.P.; Mao, Y.; Zhang, J.Q.; Liang, L.L.; et al. Bioavailability and regional transport of PM2.5 during heavy haze episode in typical coal city site of Fenwei Plain, China. Environ. Geochem. Health 2023, 45, 1933–1949. [Google Scholar] [CrossRef]
- Belan, B.D.; Savkin, D.E. The Role of Air Humidity in Variations in Near-Surface Ozone Concentration. Atmos. Ocean. Opt. 2019, 32, 586–589. [Google Scholar] [CrossRef]
- Clifton, O.E.; Fiore, A.M.; Massman, W.J.; Baublitz, C.B.; Coyle, M.; Emberson, L.; Fares, S.; Farmer, D.K.; Gentine, P.; Gerosa, G.; et al. Dry Deposition of Ozone Over Land: Processes, Measurement, and Modeling. Rev. Geophys. 2020, 58, e2019RG000670. [Google Scholar] [CrossRef]
- Badia, A.; Vidal, V.; Ventura, S.; Curcoll, R.; Segura, R.; Villalba, G. Modelling the impacts of emission changes on O3 sensitivity, atmospheric oxidation capacity, and pollution transport over the Catalonia region. Atmos. Chem. Phys. 2023, 23, 10751–10774. [Google Scholar] [CrossRef]
- Chen, H.M.; Zhuang, B.L.; Liu, J.E.; Zhou, Y.N.; Hu, Y.X.; Chen, Y.; Gao, Y.M.; Wei, W.; Lin, H.J.; Li, S.; et al. Absorbing Aerosol Optical Properties and Radiative Effects on Near-Surface Photochemistry in East Asia. Remote Sens. 2023, 15, 2779. [Google Scholar] [CrossRef]
- Akinyoola, J.A.; Oluleye, A.; Gbode, I.E. A Review of Atmospheric Aerosol Impacts on Regional Extreme Weather and Climate Events. Aerosol Sci. Eng. 2024, 8, 249–274. [Google Scholar] [CrossRef]
- Ivatt, P.D.; Evans, M.J.; Lewis, A.C. Suppression of surface ozone by an aerosol-inhibited photochemical ozone regime. Nat. Geosci. 2022, 15, 536–540. [Google Scholar] [CrossRef]
- Deng, X.; Zhou, X.; Wu, D.; Tie, X.; Tan, H.; Li, F.; Bi, X.; Deng, T.; Jiang, D. Effect of atmospheric aerosol on surface ozone variation over the Pearl River Delta region. Sci. China Earth Sci. 2011, 54, 744–752. [Google Scholar] [CrossRef]
- Hesselbarth, M.H.K.; Sciaini, M.; With, K.A.; Wiegand, K.; Nowosad, J. landscapemetrics: An open-source R tool to calculate landscape metrics. Ecography 2019, 42, 1648–1657. [Google Scholar] [CrossRef]
- Sohrab, S.; Csikós, N.; Szilassi, P. Landscape Metrics as Ecological Indicators for PM10 Prediction in European Cities. Land 2024, 13, 2245. [Google Scholar] [CrossRef]
- Hu, H.; Zeng, S.; Han, X. Effects of Urban Landscapes on Pollutant Concentrations in Chengdu Plain Urban Agglomeration. Atmosphere 2022, 13, 1492. [Google Scholar] [CrossRef]
- Łowicki, D. Landscape pattern as an indicator of urban air pollution of particulate matter in Poland. Ecol. Indic. 2019, 97, 17–24. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, H.; Liu, Q. Characteristics of PM2.5 and PM10 pollution in the urban agglomeration of Central Liaoning. Urban. Clim. 2022, 43, 101170. [Google Scholar] [CrossRef]
- Zhong, J.; Zhang, X.; Wang, Y.; Wang, J.; Shen, X.; Zhang, H.; Wang, T.; Xie, Z.; Liu, C.; Zhang, H.; et al. The two-way feedback mechanism between unfavorable meteorological conditions and cumulative aerosol pollution in various haze regions of China. Atmos. Chem. Phys. 2019, 19, 3287–3306. [Google Scholar] [CrossRef]
- Brodin, M.; Helmig, D.; Oltmans, S. Seasonal ozone behavior along an elevation gradient in the Colorado Front Range Mountains. Atmos. Environ. 2010, 44, 5305–5315. [Google Scholar] [CrossRef]
- Shi, Y.; Lau, K.K.L.; Ng, E. Developing Street-Level PM2.5 and PM10 Land Use Regression Models in High-Density Hong Kong with Urban Morphological Factors. Environ. Sci. Technol. 2016, 50, 8178–8187. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Q.Y.; Zhang, T.; Liu, S.X.; Ho, S.S.H.; Tian, J.; Su, H.; Zhang, Y.; Wang, L.Y.; Wu, T.T.; et al. Elaborations of the influencing factors on the formation of secondary inorganic aerosols in a heavily polluted urban area of China. J. Environ. Sci. 2024, 138, 406–417. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, X.; Shi, A.; Huang, Y.; Yan, J.; Nie, T.; Yan, X.; Li, X. Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China. Atmos. Environ. 2018, 177, 275–282. [Google Scholar] [CrossRef]
- Zhai, S.X.; Jacob, D.J.; Wang, X.; Liu, Z.R.; Wen, T.X.; Shah, V.; Li, K.; Moch, J.M.; Bates, K.H.; Song, S.J.; et al. Control of particulate nitrate air pollution in China. Nat. Geosci. 2021, 14, 389–395. [Google Scholar] [CrossRef]
- Afonso, N.F.; Pires, J.C.M. Characterization of Surface Ozone Behavior at Different Regimes. Appl. Sci. 2017, 7, 944. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, Y.; de Leeuw, G.; Liu, O.; Chen, Y.; Lv, Y.; Zhang, Y.; Li, Z. Relation between total-column and near-surface NO2 based on in-situ and PANDORA ground-based remote sensing observations. EGUsphere 2025, 2025, 1–35. [Google Scholar] [CrossRef]
- Dai, S.; Zhou, C.; Pang, X.; Li, J.; Chen, L.; Wu, Z.; Yuan, K.; Han, Z.; Wang, Q.; Wang, S.; et al. Vertical profiles characteristics of near surface layer ozone in Shangyu Economic Development Zone of Hangzhou Bay based on unmanned aerial vehicle. China Environ. Sci. 2022, 42, 2514–2522. [Google Scholar]
- Chen, W.; Zhang, S.; Tong, Q.; Zhang, X.; Zhao, H.; Ma, S.; Xiu, A.; He, Y. Regional Characteristics and Causes of Haze Events in Northeast China. Chin. Geogr. Sci. 2018, 28, 836–850. [Google Scholar] [CrossRef]
- Zhao, R.; Gu, X.; Xue, B.; Zhang, J.; Ren, W. Short period PM2.5 prediction based on multivariate linear regression model. PLoS ONE 2018, 13, e0201011. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ge, B.; Hao, S.; Xu, D.; Liu, Y.; Gan, L.; Wang, Z. Inversion of PM2.5 concentration in Beijing based on visibility and AOD data. Clim. Environ. Res. 2020, 25, 521–530. [Google Scholar]
- Song, Z.; Fu, D.; Zhang, X.; Han, X.; Song, J.; Zhang, J.; Wang, J.; Xia, X. MODIS AOD sampling rate and its effect on PM2.5 estimation in North China. Atmos. Environ. 2019, 209, 14–22. [Google Scholar] [CrossRef]
- Liu, S.; Bao, Y.; Jin, J.; Liu, C.; Xu, J.; Li, J.; Huang, J. Impact of aerosol radiative effect on surface ozone peaks during heavy haze events. Plateau Meteorol. 2018, 37, 296–304. [Google Scholar]
- Jiao, L.; Xu, G.; Zhao, S.; Ma, M.; Dong, T.; Li, J. LUR-based Simulation of the Spatial Distribution of PM2.5 of Wuhan. Geomat. Inf. Sci. Wuhan. Univ. 2015, 40, 1088–1094. [Google Scholar]
- Liu, Y.; He, L.; Qin, W.; Lin, A.; Yang, Y. The effect of urban form on PM2.5 concentration: Evidence from China’s 340 prefecture-level cities. Remote Sens. 2021, 14, 7. [Google Scholar] [CrossRef]
- Shi, T.; Hu, Y.; Liu, M.; Li, C.; Zhang, C.; Liu, C. Land use regression modelling of PM2.5 spatial variations in different seasons in urban areas. Sci. Total Environ. 2020, 743, 140744. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gao, Y.; Huang, X. The impact of urban agglomeration on ozone precursor conditions: A systematic investigation across global agglomerations utilizing multi-source geospatial datasets. Sci. Total Environ. 2020, 704, 135458. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Tang, L.; Hou, H.; Wang, Y.; Mai, Y.; He, W.; Wang, W.; Su, H. The spatial-temporal distribution of air pollution and its relationship with landscape pattern in Shenzhen. Acta Ecol. Sin. 2021, 41, 8758–8770. [Google Scholar] [CrossRef]
- Simon, H.; Fallmann, J.; Kropp, T.; Tost, H.; Bruse, M. Urban Trees and Their Impact on Local Ozone Concentration—A Microclimate Modeling Study. Atmosphere 2019, 10, 154. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Z.; Ge, Y.; Li, Q.; Wang, X.; Fu, H.; Zhu, J.; Zhou, B.; Wang, L.; George, C.; et al. Aerosol high water contents favor sulfate and secondary organic aerosol formation from fossil fuel combustion emissions. npj Clim. Atmos. Sci. 2023, 6, 173. [Google Scholar] [CrossRef]
- Zhu, Y.; Bai, Y.; Xiong, J.; Zhao, T.; Xu, J.; Zhou, Y.; Meng, K.; Meng, C.; Sun, X.; Hu, W. Mitigation Effect of Dense “Water Network” on Heavy PM2.5 Pollution: A Case Model of the Twain-Hu Basin, Central China. Toxics 2023, 11, 169. [Google Scholar] [CrossRef]
- Zhu, D.; Zhou, X. Effect of urban water bodies on distribution characteristics of particulate matters and NO2. Sust. Cities Soc. 2019, 50, 101679. [Google Scholar] [CrossRef]
Data Type | Variable | Source |
---|---|---|
Geographic information | Longitude | Geographic coordinate |
Latitude | ||
Elevation | Shuttle Radar Topography Mission (SRTM) digital elevation dataset Version 4, CGIAR-CSI, International Centre for Tropical Agriculture, Nairobi, Kenya. | |
Population | Population count | LandScan data by Oak Ridge National Laboratory (https://landscan.ornl.gov/, accessed on 20 February 2024) |
Road data | Total road length within buffer radius | Road vector data from Open Street Map (https://www.openstreetmap.org/, accessed on 2 January 2020) |
Distance to the nearest road | ||
Distance to the nearest road intersection | ||
Land use type | Cover ratio of 8 land use types (tree, shrubland, grassland, cropland, built-up, bare vegetation, permanent water bodies, and herbaceous wetland) within buffer radius | European Space Agency (ESA) WorldCover 10 m 2020 product, ESA WorldCover Consortium, Mol, Belgium. |
Building height | Average building height within buffer radius | Chinese building height dataset CNBH-10m (https://zenodo.org/records/7923866, accessed on 5 January 2024) |
Meteorological factor | Wind speed | Daily meteorological data from the 5th ECMWF atmospheric reanalysis of global climate, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), Reading, United Kingdom. |
Surface net solar radiation | ||
Air temperature of 2 m | ||
Relative humidity | ||
Surface pressure | ||
Land surface temperature | 8-day land surface temperature (LST) from MOD11A2 V6.1 product, NASA Land Processes Distributed Active Archive Center, Sioux Falls, United States. | |
Vegetation index | Normalized difference vegetation index | Normalized difference vegetation index (NDVI) from MOD13A2V6.1 product, NASA Land Processes Distributed Active Archive Center, Sioux Falls, United States. |
Atmospheric composition | Aerosol optical depth | Aerosol optical depth (AOD) retrieved in the MODIS Blue band (0.47 μm) from MCD19A2 V6.1 product, NASA Land Processes Distributed Active Archive Center, Sioux Falls, United States. |
Total atmospheric column of ozone | Sentinel-5 Precursor Offline (OFFL) datasets, Atmospheric Mission Performance Cluster (ATM-MPC) consortium, De Bilt, Netherlands. | |
Tropospheric formaldehyde column number density | ||
Tropospheric nitrogen dioxide column number density | ||
Landscape metrics | Aggregation index within buffer radius | Calculated based on 10 m land use data using the ‘landscape-metrics’ package in R. |
Interspersion and juxtaposition index within buffer radius | ||
Splitting index within buffer radius | ||
Mean fractal dimension index within buffer radius | ||
Perimeter-area fractal dimension within buffer radius | ||
Large patch index within buffer radius | ||
Shannon’s diversity index within buffer radius |
Model | Predictive Variable (Partial R2, Positive/Negative Direction) | Adj. R2 | LOOCV | |
---|---|---|---|---|
Rcv2 | RMSE | |||
Annual | X (0.47, −), dist_road (0.11, +), Cropland_5000 (0.12, +), Permanent water bodies_100 (0.15, +) | 0.57 | 0.49 | 0.71 |
Spring | X (0.45, −), pop_count (0.30, −), road_50 (0.20, +), dist_road (0.46, +), Tree_cover_100 (0.18, −), Cropland_500 (0.24, −), Grassland_500 (0.31, −), Permanent water bodies_100 (0.29, +), IJI_100 (0.29, −), SHDI_200 (0.18, +) | 0.77 | 0.62 | 0.63 |
Summer | DEM (0.58, +), pop_count (0.30, −), dist_road (0.45, +), Built up_500 (0.56, +), Permanent water bodies_1000 (0.45, +), RH (0.81, −), FRAC_MN_5000 (0.19, −), IJI_1000 (0.14, −), LPI_2000 (0.15, −) | 0.87 | 0.81 | 0.43 |
Autumn | dist_road (0.23, +), Cropland_5000 (0.20, +), RH (0.26, −), AOD (0.54, −), Permanent water bodies_100 (0.16, +), BH_50 (0.31, +), TEMP (0.18, +) | 0.71 | 0.62 | 0.62 |
Winter | DEM (0.21, +), road_5000 (0.21, −), dist_road (0.10, +), Permanent water bodies_100 (0.19, +), RH (0.18, −), NO2_TC (0.11, −), IJI_100 (0.26, −) | 0.68 | 0.57 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, T.; Yuan, X.; Li, C.; Li, F. Synergistic and Trade-Off Influences of Combined PM2.5-O3 Pollution in the Shenyang Metropolitan Area, China: A Comparative Land Use Regression Analysis. Sustainability 2025, 17, 8046. https://doi.org/10.3390/su17178046
Shi T, Yuan X, Li C, Li F. Synergistic and Trade-Off Influences of Combined PM2.5-O3 Pollution in the Shenyang Metropolitan Area, China: A Comparative Land Use Regression Analysis. Sustainability. 2025; 17(17):8046. https://doi.org/10.3390/su17178046
Chicago/Turabian StyleShi, Tuo, Xuemei Yuan, Chunjiao Li, and Fangyuan Li. 2025. "Synergistic and Trade-Off Influences of Combined PM2.5-O3 Pollution in the Shenyang Metropolitan Area, China: A Comparative Land Use Regression Analysis" Sustainability 17, no. 17: 8046. https://doi.org/10.3390/su17178046
APA StyleShi, T., Yuan, X., Li, C., & Li, F. (2025). Synergistic and Trade-Off Influences of Combined PM2.5-O3 Pollution in the Shenyang Metropolitan Area, China: A Comparative Land Use Regression Analysis. Sustainability, 17(17), 8046. https://doi.org/10.3390/su17178046