An Analysis of Low-Carbon Economy Efficiency in 30 Provinces of China Based on the Multi-Directional Efficiency Method
Abstract
1. Introduction
2. Literature Review
2.1. Research on Efficiency Theory of Low-Carbon Economy
2.2. Research on Low-Carbon Economy Efficiency
2.3. Development of Multi-Directional Efficiency Analysis
3. Research Methodology
3.1. Overview of Multi-Directional Efficiency Analysis Methods
3.2. Global Malmquist
3.3. Analysis of Spatial Autocorrelation
3.3.1. Global Moran Index
3.3.2. Local Moreland Index
4. Variables and Data Description
- (1)
- Labor input: Labor input is represented by the number of employees per unit at the end of the year. The data is sourced from the Statistical Yearbooks of Chinese Provinces from 2010 to 2021.
- (2)
- Capital investment: Capital stock is considered a capital input. Due to the absence of specific data in the statistical yearbooks, this research utilizes the perpetual inventory method to estimate capital stock across 30 provinces in China. A depreciation rate of 9.6% is applied to the capital. Furthermore, the “investment goods price index” is replaced by the fixed capital investment price index, and the total investment in fixed assets by society is treated as the annual aggregate of fixed asset investments. To ensure data integrity, the total fixed asset investment figures for all years are standardized, using 2010 as the base year for comparison. The data is sourced from provincial Statistical Yearbooks (2010–2021) and individual provinces’ Annual Statistical Yearbooks.
- (3)
- Energy consumption: Total energy expenditure at the prefectural city level serves as the metric for energy consumption assessment. According to the National Eleventh Five-Year Plan outline, the energy usage per GDP unit is an essential indicator for evaluating energy efficiency. It can be utilized to compare energy consumption levels among different cities. The data from 2000 to 2019 is sourced from the China Energy Statistical Yearbook. After 2020, the data energy yearbook was updated, and some provinces and cities did not disclose their total energy consumption, which was calculated using Formula (15). The data in the formula comes from the Annual Statistical Yearbook of each province from 2010 to 2021.Total energy consumption = energy consumption per unit of GDP × regional GDP
- (4)
- Expected output: The regional gross domestic product (GDP) is utilized as a measure of expected output. This metric reflects the economic benefits derived from the economic activities of resident units within a region, accounting for the contributions of energy, labor, capital, and environmental pollution to economic value. To ensure consistency with the capital stock measurement, the GDP is adjusted to reflect constant prices, using 2010 as the base year. GDP data comes from the China Statistical Yearbook (2010–2021).
- (5)
5. Efficiency Analysis of Low-Carbon Economy in China
5.1. Efficiency Measurement of Low-Carbon Economy in China
5.2. Dynamic Evolution and Driving Mechanism Analysis of LCEE
5.3. Improvement Potential and Path Analysis
5.3.1. Analysis of the Average Efficiency of Provincial MEA and Its Improvement Approach
5.3.2. Improvement Potential Analysis
6. Spatial Analysis of Efficiency of Low-Carbon Economy in China
6.1. Spatial Autocorrelation Analysis
6.1.1. Global Autocorrelation Analysis
6.1.2. Local Autocorrelation Analysis
6.2. Examination of Spatial Distribution Traits
6.2.1. Spatial Evolution of Interprovincial MEA Efficiency
6.2.2. Spatial Evolution of GDP-MEA Efficiency
6.2.3. Spatial Evolution of CO2 MEA Efficiency
6.3. Regional Heterogeneity Analysis
7. Conclusions and Policy Implications
7.1. Main Conclusions
7.2. Policy Implications
- Strengthen regional coordinated development and optimize resource allocation. The findings of the experiment indicate that the LCEE in the coastal provinces of eastern China, including Beijing, Shanghai, and Guangdong, is markedly superior to that in the central and western regions. This disparity is particularly pronounced in the western provinces, such as Qinghai and Xinjiang, which exhibit lower efficiency levels. The observed regional variation can primarily be attributed to the unequal distribution of economic development, technological capabilities, and resource allocation. In light of the pronounced regional disparities, it is imperative for the central region to prioritize the establishment of a balance between fostering economic development and environmental protection while striving to create an LCE. Additionally, there is a need to promote the enhancement and modernization of industrial infrastructure. The western region must bolster policy support and attract further resources and funding to facilitate investments in green economic development. Meanwhile, coastal provinces that are already developed should concentrate on adjusting and optimizing their industrial structures, as well as increasing the research and application of green technologies in the pursuit of advancing an LCE. Furthermore, inland provinces should capitalize on their resource advantages to achieve significant progress in the development of a low-carbon economy [49].
- Promote technological innovation and improve technical efficiency. An analysis of the global Malmquist index decomposition reveals that EC is the primary constraint on the enhancement of low-carbon economic efficiency, whereas TC contributes positively to its advancement. Consequently, it is imperative that policy initiatives prioritize the promotion of green technology innovation, particularly in the central and western regions, where EC remains comparatively low. To optimize the advantages of local resources and identify opportunities for improving energy efficiency across various regions, it is imperative to prioritize technological innovation. The economic structure of China is significantly influenced by the distinctive contributions of its eastern, central, and western regions. The eastern region is at the forefront of technological innovation and is increasing investments in research and development of green technologies. The central region, characterized by its unique geographic location and resource abundance, serves as a crucial intermediary between the eastern and western regions. It can capitalize on its geographical position to facilitate the sustainable management of agricultural resources. Meanwhile, the western region, endowed with rich natural resources and extensive land, has the potential to actively advance the development of clean energy and green industries, enhance ecological protection and environmental governance, and improve the stability and functional services of its ecosystems.
- Promote interregional collaboration to enhance spatial spillover effects. From a spatial analysis perspective, LCEE exhibits distinct spatial distribution characteristics and significant clustering effects. To address these spatial disparities and leverage clustering effects, policymakers should adopt a multi-pronged approach. First, interregional collaboration should be strengthened to enhance spatial spillovers, such as promoting technology transfer from high-efficiency provinces to neighboring low-efficiency regions and expanding cross-provincial carbon trading mechanisms. Second, differentiated low-carbon policies should be implemented based on regional clustering characteristics—high-efficiency clusters should focus on maintaining technological leadership through green innovation, while low-efficiency clusters require targeted industrial restructuring and energy transition strategies to break the “low–low” lock-in effect. Finally, spatial planning should be integrated into national low-carbon strategies, optimizing infrastructure investments and providing spatially targeted fiscal incentives to support lagging regions. By leveraging these spatial dynamics, China can achieve more balanced and sustainable low-carbon development across all provinces.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Code | Year | Province | Number of Employees (in 10,000) | Capital Stock (in Billions of CNY) | Energy Consumption (10,000 tons of Standard Coal) | Carbon Dioxide Emissions (million tons) | GDP (CNY 100 mn) |
---|---|---|---|---|---|---|---|
1 | 2010 | Beijing | 1031.600 | 28,200.077 | 4895.470 | 105.040 | 14,113.580 |
2 | 2010 | Tianjin | 728.700 | 31,826.111 | 4702.349 | 139.152 | 9224.460 |
3 | 2010 | Hebei | 4135.000 | 53,441.025 | 19,636.679 | 681.786 | 20,394.260 |
4 | 2010 | Shanxi | 1802.000 | 31,372.733 | 10,881.532 | 443.010 | 9200.860 |
5 | 2010 | Neimenggu | 1398.000 | 45,523.720 | 11,077.777 | 490.622 | 11,672.000 |
6 | 2010 | Liaoning | 2317.500 | 85,219.265 | 14,102.996 | 458.760 | 18,457.270 |
7 | 2010 | Jilin | 1563.980 | 42,717.766 | 6347.846 | 202.648 | 8667.580 |
8 | 2010 | Heilongjiang | 2102.000 | 24,744.773 | 6588.176 | 224.859 | 10,368.600 |
9 | 2010 | Shanghai | 1090.760 | 36,469.457 | 7519.280 | 195.503 | 17,165.980 |
10 | 2010 | Jiangsu | 4724.680 | 114,829.715 | 16,953.595 | 589.821 | 41,425.480 |
11 | 2010 | Zhejiang | 3352.000 | 65,219.937 | 10,977.988 | 361.120 | 27,722.310 |
12 | 2010 | Anhui | 4050.000 | 26,934.958 | 6984.867 | 271.441 | 12,359.330 |
13 | 2010 | Fujian | 2114.000 | 30,809.041 | 6988.317 | 201.084 | 14,737.120 |
14 | 2010 | Jiangxi | 2388.000 | 23,825.058 | 4533.456 | 151.893 | 9451.260 |
15 | 2010 | Shandong | 5940.000 | 106,506.700 | 24,383.999 | 795.492 | 39,169.920 |
16 | 2010 | Henan | 5156.000 | 72,103.757 | 14,535.204 | 513.612 | 23,092.360 |
17 | 2010 | Hubei | 3375.000 | 33,932.600 | 11,592.734 | 337.659 | 15,967.610 |
18 | 2010 | Hunan | 3982.730 | 41,891.497 | 9975.678 | 262.154 | 16,037.960 |
19 | 2010 | Guangdong | 6051.000 | 78,055.054 | 16,635.550 | 476.841 | 46,013.060 |
20 | 2010 | Guangxi | 2666.000 | 44,629.415 | 5741.008 | 174.605 | 9569.850 |
21 | 2010 | Hainan | 457.650 | 4808.526 | 1148.770 | 28.926 | 2064.500 |
22 | 2010 | Chongqing | 1551.030 | 19,469.290 | 5999.865 | 145.416 | 7925.580 |
23 | 2010 | Sichuan | 4677.000 | 44,445.968 | 12,150.170 | 304.461 | 17,185.480 |
24 | 2010 | Guizhou | 1779.000 | 7898.213 | 5501.504 | 192.423 | 4602.160 |
25 | 2010 | Yunnan | 2794.000 | 18,851.730 | 6266.565 | 198.126 | 7224.180 |
26 | 2010 | Shanxi | 2083.000 | 34,133.456 | 6450.824 | 225.257 | 10,123.480 |
27 | 2010 | Gansu | 1397.000 | 8694.012 | 3890.129 | 127.587 | 4120.750 |
28 | 2010 | Qinghai | 307.650 | 3067.580 | 1542.674 | 32.011 | 1350.430 |
29 | 2010 | Ningxia | 342.000 | 5226.386 | 2400.289 | 97.915 | 1689.650 |
30 | 2010 | Xinjiang | 1213.000 | 10,143.815 | 5766.230 | 169.464 | 5437.470 |
1 | 2011 | Beijing | 1069.700 | 30,742.139 | 4944.342 | 95.311 | 15,256.780 |
2 | 2011 | Tianjin | 763.160 | 35,972.728 | 5084.932 | 154.289 | 10,737.271 |
3 | 2011 | Hebei | 4087.000 | 60,559.007 | 22,386.270 | 760.702 | 22,698.811 |
4 | 2011 | Shanxi | 1817.000 | 34,812.120 | 11,847.345 | 474.816 | 10,396.972 |
5 | 2011 | Neimenggu | 1388.000 | 50,729.184 | 12,732.638 | 616.552 | 13,341.096 |
6 | 2011 | Liaoning | 2364.880 | 88,519.590 | 15,465.352 | 471.243 | 20,709.057 |
7 | 2011 | Jilin | 1524.990 | 45,948.333 | 7145.802 | 234.433 | 9863.706 |
8 | 2011 | Heilongjiang | 2066.000 | 28,171.583 | 7581.851 | 254.787 | 11,643.938 |
9 | 2011 | Shanghai | 1104.330 | 38,859.053 | 7798.422 | 201.495 | 18,573.590 |
10 | 2011 | Jiangsu | 4749.230 | 125,205.277 | 18,458.835 | 636.938 | 45,982.283 |
11 | 2011 | Zhejiang | 3385.000 | 70,930.344 | 11,831.879 | 382.706 | 30,217.318 |
12 | 2011 | Anhui | 4120.900 | 31,008.206 | 7641.912 | 294.086 | 14,027.840 |
13 | 2011 | Fujian | 2181.000 | 35,963.943 | 7376.609 | 238.137 | 16,549.786 |
14 | 2011 | Jiangxi | 2378.000 | 26,551.239 | 4841.810 | 165.333 | 10,632.668 |
15 | 2011 | Shandong | 5915.000 | 117,568.790 | 26,079.831 | 830.768 | 43,439.441 |
16 | 2011 | Henan | 5129.000 | 81,723.681 | 15,949.934 | 556.076 | 25,840.351 |
17 | 2011 | Hubei | 3387.000 | 40,090.399 | 13,196.276 | 384.300 | 18,171.140 |
18 | 2011 | Hunan | 4005.030 | 47,083.081 | 11,052.629 | 291.884 | 18,090.819 |
19 | 2011 | Guangdong | 6087.000 | 87,919.926 | 17,965.075 | 526.264 | 50,614.366 |
20 | 2011 | Guangxi | 2936.000 | 48,914.792 | 6504.861 | 195.175 | 10,746.942 |
21 | 2011 | Hainan | 465.210 | 5654.133 | 1494.486 | 34.922 | 2312.240 |
22 | 2011 | Chongqing | 1587.040 | 22,539.648 | 6230.535 | 166.606 | 9225.375 |
23 | 2011 | Sichuan | 4650.000 | 49,737.523 | 13,336.121 | 308.647 | 19,763.302 |
24 | 2011 | Guizhou | 1772.000 | 10,018.773 | 5760.118 | 212.560 | 5292.484 |
25 | 2011 | Yunnan | 2844.000 | 23,170.064 | 6653.068 | 209.161 | 8213.893 |
26 | 2011 | Shanxi | 2087.000 | 38,126.320 | 7196.849 | 247.483 | 11,530.644 |
27 | 2011 | Gansu | 1379.000 | 10,306.344 | 4264.228 | 140.316 | 4635.844 |
28 | 2011 | Qinghai | 309.180 | 4017.664 | 1799.266 | 36.855 | 1532.738 |
29 | 2011 | Ningxia | 347.000 | 6191.426 | 2767.898 | 139.838 | 1894.098 |
30 | 2011 | Xinjiang | 1235.000 | 12,719.140 | 6741.275 | 206.387 | 6089.966 |
1 | 2012 | Beijing | 1107.300 | 33,940.962 | 5139.757 | 97.998 | 16,431.552 |
2 | 2012 | Tianjin | 803.140 | 40,842.567 | 5612.977 | 160.325 | 12,219.015 |
3 | 2012 | Hebei | 4063.000 | 68,180.300 | 22,902.867 | 751.775 | 24,877.897 |
4 | 2012 | Shanxi | 1834.000 | 38,174.456 | 12,462.310 | 501.495 | 11,447.066 |
5 | 2012 | Neimenggu | 1379.000 | 57,163.927 | 12,622.687 | 635.165 | 14,875.322 |
6 | 2012 | Liaoning | 2423.820 | 92,795.886 | 16,122.898 | 481.317 | 22,676.417 |
7 | 2012 | Jilin | 1489.990 | 49,622.800 | 7145.009 | 229.937 | 11,047.351 |
8 | 2012 | Heilongjiang | 2039.000 | 32,304.437 | 8210.074 | 279.462 | 12,808.332 |
9 | 2012 | Shanghai | 1115.500 | 41,224.381 | 7839.914 | 195.926 | 19,966.610 |
10 | 2012 | Jiangsu | 4770.540 | 136,567.533 | 18,920.645 | 656.742 | 50,626.493 |
11 | 2012 | Zhejiang | 3407.000 | 76,854.399 | 12,087.389 | 380.758 | 32,634.703 |
12 | 2012 | Anhui | 4206.800 | 35,560.632 | 8265.124 | 323.996 | 15,725.208 |
13 | 2012 | Fujian | 2202.000 | 41,663.954 | 7685.882 | 233.895 | 18,436.461 |
14 | 2012 | Jiangxi | 2364.000 | 29,396.521 | 5219.769 | 166.157 | 11,802.261 |
15 | 2012 | Shandong | 5892.000 | 129,585.949 | 27,648.743 | 872.906 | 47,696.507 |
16 | 2012 | Henan | 5110.000 | 92,741.828 | 15,430.505 | 529.246 | 28,450.226 |
17 | 2012 | Hubei | 3398.000 | 46,741.622 | 13,954.270 | 376.940 | 20,224.479 |
18 | 2012 | Hunan | 4019.310 | 52,921.111 | 11,548.426 | 291.223 | 20,135.081 |
19 | 2012 | Guangdong | 6171.000 | 98,860.392 | 18,184.335 | 513.440 | 54,764.744 |
20 | 2012 | Guangxi | 2768.300 | 53,426.088 | 6967.252 | 208.201 | 11,961.346 |
21 | 2012 | Hainan | 475.900 | 6829.249 | 1518.727 | 37.264 | 2522.654 |
22 | 2012 | Chongqing | 1605.890 | 25,673.016 | 6636.668 | 171.646 | 10,480.026 |
23 | 2012 | Sichuan | 4635.000 | 55,670.735 | 14,196.545 | 338.287 | 22,253.478 |
24 | 2012 | Guizhou | 1780.000 | 12,722.568 | 6684.381 | 232.278 | 6012.262 |
25 | 2012 | Yunnan | 2835.000 | 28,125.610 | 7239.928 | 215.818 | 9281.699 |
26 | 2012 | Shanxi | 2091.000 | 42,875.256 | 7752.401 | 268.677 | 13,018.097 |
27 | 2012 | Gansu | 1358.000 | 12,103.540 | 4726.177 | 154.249 | 5219.960 |
28 | 2012 | Qinghai | 310.890 | 5319.011 | 2086.875 | 44.908 | 1721.265 |
29 | 2012 | Ningxia | 344.470 | 7315.737 | 2891.379 | 136.586 | 2111.919 |
30 | 2012 | Xinjiang | 1246.000 | 16,409.100 | 7902.556 | 256.081 | 6820.762 |
1 | 2013 | Beijing | 1141.000 | 37,321.707 | 4912.319 | 94.071 | 17,696.782 |
2 | 2013 | Tianjin | 847.460 | 46,291.753 | 5462.184 | 159.651 | 13,746.392 |
3 | 2013 | Hebei | 4032.000 | 76,001.492 | 23,504.685 | 823.113 | 26,917.885 |
4 | 2013 | Shanxi | 1855.000 | 42,092.608 | 12,572.079 | 508.758 | 12,465.855 |
5 | 2013 | Neimenggu | 1370.000 | 65,110.251 | 12,842.231 | 590.556 | 16,214.101 |
6 | 2013 | Liaoning | 2518.880 | 97,931.868 | 14,968.254 | 502.555 | 24,649.266 |
7 | 2013 | Jilin | 1457.000 | 53,381.717 | 7088.679 | 223.478 | 11,964.281 |
8 | 2013 | Heilongjiang | 1997.000 | 37,202.700 | 8346.872 | 266.449 | 13,832.998 |
9 | 2013 | Shanghai | 1368.910 | 43,887.234 | 8129.935 | 207.634 | 21,504.039 |
10 | 2013 | Jiangsu | 4791.900 | 147,783.954 | 19,152.204 | 706.624 | 55,486.637 |
11 | 2013 | Zhejiang | 3436.000 | 83,565.910 | 12,355.585 | 382.429 | 35,310.749 |
12 | 2013 | Anhui | 4275.900 | 40,565.533 | 8749.249 | 356.732 | 17,360.630 |
13 | 2013 | Fujian | 2210.000 | 48,050.519 | 7582.337 | 236.147 | 20,464.472 |
14 | 2013 | Jiangxi | 2362.000 | 32,337.418 | 5588.130 | 202.405 | 12,994.289 |
15 | 2013 | Shandong | 5840.000 | 142,444.850 | 25,525.354 | 794.206 | 52,275.371 |
16 | 2013 | Henan | 5094.000 | 105,071.600 | 14,514.155 | 492.902 | 31,010.747 |
17 | 2013 | Hubei | 3404.000 | 54,100.216 | 11,426.770 | 319.456 | 22,267.151 |
18 | 2013 | Hunan | 4036.450 | 59,411.692 | 10,762.513 | 281.202 | 22,168.725 |
19 | 2013 | Guangdong | 6273.000 | 111,047.350 | 17,364.129 | 506.564 | 59,419.747 |
20 | 2013 | Guangxi | 2782.260 | 56,664.729 | 6740.465 | 213.714 | 13,181.403 |
21 | 2013 | Hainan | 490.560 | 8153.228 | 1527.688 | 39.474 | 2772.397 |
22 | 2013 | Chongqing | 1618.690 | 28,994.078 | 5495.703 | 149.122 | 11,769.069 |
23 | 2013 | Sichuan | 4634.000 | 61,832.127 | 13,808.728 | 351.769 | 24,478.826 |
24 | 2013 | Guizhou | 1796.000 | 16,091.532 | 6481.936 | 235.471 | 6763.795 |
25 | 2013 | Yunnan | 2835.000 | 33,726.279 | 7112.359 | 211.507 | 10,404.784 |
26 | 2013 | Shanxi | 2090.000 | 47,902.559 | 7675.833 | 273.347 | 14,450.087 |
27 | 2013 | Gansu | 1352.000 | 14,177.035 | 4886.231 | 160.899 | 5783.716 |
28 | 2013 | Qinghai | 314.210 | 6925.010 | 2242.612 | 48.149 | 1907.161 |
29 | 2013 | Ningxia | 345.000 | 8555.343 | 3034.112 | 144.108 | 2318.887 |
30 | 2013 | Xinjiang | 1260.000 | 21,023.330 | 8859.636 | 296.459 | 7571.046 |
1 | 2014 | Beijing | 1156.700 | 40,670.176 | 5023.514 | 93.255 | 18,988.647 |
2 | 2014 | Tianjin | 877.210 | 51,944.982 | 5655.173 | 158.105 | 15,121.031 |
3 | 2014 | Hebei | 3978.000 | 83,782.313 | 22,898.500 | 791.428 | 28,667.547 |
4 | 2014 | Shanxi | 1842.000 | 45,730.833 | 12,622.120 | 498.323 | 13,076.682 |
5 | 2014 | Neimenggu | 1360.000 | 70,506.465 | 12,816.033 | 600.610 | 17,478.801 |
6 | 2014 | Liaoning | 2562.230 | 102,968.012 | 15,414.968 | 506.387 | 26,078.923 |
7 | 2014 | Jilin | 1427.010 | 57,295.004 | 6923.352 | 223.314 | 12,741.959 |
8 | 2014 | Heilongjiang | 1946.000 | 41,688.150 | 8521.019 | 277.887 | 14,607.646 |
9 | 2014 | Shanghai | 1365.630 | 46,602.764 | 8055.706 | 194.220 | 23,009.321 |
10 | 2014 | Jiangsu | 4812.820 | 158,500.290 | 19,658.931 | 708.242 | 60,313.974 |
11 | 2014 | Zhejiang | 3459.000 | 90,254.341 | 12,666.533 | 378.778 | 37,994.366 |
12 | 2014 | Anhui | 4311.030 | 45,892.701 | 9045.740 | 363.274 | 18,957.808 |
13 | 2014 | Fujian | 2219.000 | 54,963.391 | 8277.500 | 249.350 | 22,490.455 |
14 | 2014 | Jiangxi | 2348.000 | 35,043.172 | 5944.951 | 207.660 | 14,254.735 |
15 | 2014 | Shandong | 5798.000 | 156,025.111 | 26,655.162 | 819.064 | 56,823.328 |
16 | 2014 | Henan | 5082.000 | 118,153.778 | 15,398.584 | 544.977 | 33,770.703 |
17 | 2014 | Hubei | 3408.000 | 62,098.962 | 11,966.537 | 320.146 | 24,427.065 |
18 | 2014 | Hunan | 4044.130 | 66,406.131 | 11,115.103 | 278.683 | 24,274.753 |
19 | 2014 | Guangdong | 6428.000 | 124,219.736 | 17,939.323 | 513.874 | 64,054.488 |
20 | 2014 | Guangxi | 2795.000 | 60,083.888 | 7150.204 | 212.203 | 14,301.823 |
21 | 2014 | Hainan | 504.100 | 9611.091 | 1568.473 | 40.736 | 3008.050 |
22 | 2014 | Chongqing | 1632.120 | 32,608.378 | 6304.950 | 162.897 | 13,051.898 |
23 | 2014 | Sichuan | 4638.000 | 68,104.947 | 14,266.963 | 351.480 | 26,559.526 |
24 | 2014 | Guizhou | 1820.000 | 19,760.626 | 6710.330 | 233.311 | 7494.284 |
25 | 2014 | Yunnan | 2859.000 | 40,111.582 | 7366.291 | 199.730 | 11,247.572 |
26 | 2014 | Shanxi | 2101.000 | 53,169.348 | 8173.575 | 285.344 | 15,851.746 |
27 | 2014 | Gansu | 1348.000 | 16,455.105 | 5092.175 | 164.619 | 6298.466 |
28 | 2014 | Qinghai | 317.300 | 8815.640 | 2360.910 | 48.753 | 2082.620 |
29 | 2014 | Ningxia | 344.000 | 10,339.573 | 3221.445 | 144.573 | 2504.398 |
30 | 2014 | Xinjiang | 1265.000 | 26,362.782 | 9643.783 | 332.082 | 8328.151 |
1 | 2015 | Beijing | 1186.100 | 44,024.386 | 5088.047 | 92.763 | 20,298.863 |
2 | 2015 | Tianjin | 896.800 | 56,191.811 | 5795.093 | 154.353 | 16,527.899 |
3 | 2015 | Hebei | 3927.000 | 91,264.723 | 22,955.228 | 788.413 | 30,616.941 |
4 | 2015 | Shanxi | 1872.760 | 49,124.484 | 12,415.194 | 461.609 | 13,482.059 |
5 | 2015 | Neimenggu | 1351.000 | 75,938.237 | 13,340.454 | 601.546 | 18,823.844 |
6 | 2015 | Liaoning | 2409.890 | 103,195.743 | 15,547.389 | 493.944 | 26,861.291 |
7 | 2015 | Jilin | 1399.000 | 61,625.694 | 6722.658 | 208.314 | 13,544.703 |
8 | 2015 | Heilongjiang | 1825.000 | 46,118.728 | 8904.216 | 273.278 | 15,434.339 |
9 | 2015 | Shanghai | 1361.510 | 50,198.617 | 8147.341 | 195.324 | 24,606.175 |
10 | 2015 | Jiangsu | 4832.500 | 170,217.286 | 20,405.266 | 721.655 | 65,460.668 |
11 | 2015 | Zhejiang | 3505.000 | 97,793.006 | 13,359.504 | 378.842 | 41,018.258 |
12 | 2015 | Anhui | 4342.100 | 51,308.575 | 9367.825 | 363.911 | 20,609.357 |
13 | 2015 | Fujian | 2255.000 | 62,376.699 | 8101.568 | 234.242 | 24,514.596 |
14 | 2015 | Jiangxi | 2338.000 | 38,437.385 | 6336.659 | 216.136 | 15,551.916 |
15 | 2015 | Shandong | 5773.000 | 170,298.172 | 26,049.925 | 854.463 | 61,341.283 |
16 | 2015 | Henan | 5075.000 | 131,415.588 | 15,508.759 | 527.431 | 36,573.671 |
17 | 2015 | Hubei | 3398.000 | 70,497.832 | 11,852.363 | 317.997 | 26,588.865 |
18 | 2015 | Hunan | 3980.300 | 72,531.586 | 11,140.369 | 292.526 | 26,338.108 |
19 | 2015 | Guangdong | 6566.000 | 137,413.888 | 19,081.410 | 515.080 | 69,176.022 |
20 | 2015 | Guangxi | 2595.000 | 63,991.955 | 7134.901 | 203.065 | 15,460.270 |
21 | 2015 | Hainan | 510.760 | 10,715.311 | 1610.542 | 42.282 | 3242.678 |
22 | 2015 | Chongqing | 1647.410 | 36,571.013 | 6635.846 | 164.197 | 14,487.607 |
23 | 2015 | Sichuan | 4652.000 | 74,374.878 | 14,311.716 | 332.377 | 28,657.729 |
24 | 2015 | Guizhou | 1842.000 | 24,033.231 | 6928.997 | 234.981 | 8296.173 |
25 | 2015 | Yunnan | 2823.000 | 46,970.591 | 6996.376 | 179.816 | 12,226.111 |
26 | 2015 | Shanxi | 2107.000 | 57,877.383 | 8243.214 | 284.025 | 17,096.805 |
27 | 2015 | Gansu | 1346.000 | 18,855.273 | 5059.680 | 160.085 | 6807.400 |
28 | 2015 | Qinghai | 321.410 | 10,867.448 | 2480.932 | 51.356 | 2253.395 |
29 | 2015 | Ningxia | 343.000 | 12,492.487 | 3656.689 | 141.821 | 2704.844 |
30 | 2015 | Xinjiang | 1292.000 | 31,674.744 | 9860.337 | 345.730 | 9061.028 |
1 | 2016 | Beijing | 1220.100 | 48,533.894 | 5042.248 | 89.982 | 21,677.938 |
2 | 2016 | Tianjin | 902.420 | 59,669.309 | 5767.930 | 148.946 | 18,031.938 |
3 | 2016 | Hebei | 3871.000 | 99,284.544 | 23,083.439 | 807.559 | 32,698.893 |
4 | 2016 | Shanxi | 1832.000 | 51,715.288 | 12,710.091 | 474.564 | 14,088.751 |
5 | 2016 | Neimenggu | 1326.000 | 79,546.467 | 13,604.535 | 606.107 | 20,179.160 |
6 | 2016 | Liaoning | 2301.160 | 100,683.435 | 14,806.199 | 480.469 | 26,189.758 |
7 | 2016 | Jilin | 1367.990 | 64,824.662 | 6410.124 | 201.394 | 14,479.287 |
8 | 2016 | Heilongjiang | 1776.000 | 49,637.718 | 9132.943 | 277.681 | 16,375.834 |
9 | 2016 | Shanghai | 1365.240 | 55,019.431 | 8305.926 | 194.710 | 26,304.001 |
10 | 2016 | Jiangsu | 4850.220 | 183,278.590 | 20,983.292 | 743.044 | 70,566.600 |
11 | 2016 | Zhejiang | 3552.000 | 106,963.500 | 13,480.138 | 374.572 | 44,115.563 |
12 | 2016 | Anhui | 4361.600 | 57,389.439 | 9549.636 | 376.145 | 22,400.893 |
13 | 2016 | Fujian | 2248.000 | 70,341.916 | 8178.259 | 217.927 | 26,573.822 |
14 | 2016 | Jiangxi | 2332.000 | 42,702.179 | 6441.281 | 219.103 | 16,951.589 |
15 | 2016 | Shandong | 5728.000 | 183,595.996 | 25,574.605 | 863.426 | 66,003.221 |
16 | 2016 | Henan | 5052.000 | 145,220.126 | 15,717.818 | 521.472 | 39,552.370 |
17 | 2016 | Hubei | 3385.000 | 79,554.982 | 11,833.154 | 319.762 | 28,742.563 |
18 | 2016 | Hunan | 3920.410 | 79,164.523 | 11,601.185 | 308.090 | 28,445.156 |
19 | 2016 | Guangdong | 6703.000 | 152,763.585 | 12,504.910 | 530.315 | 74,366.686 |
20 | 2016 | Guangxi | 2583.000 | 68,319.647 | 7498.864 | 216.804 | 16,588.870 |
21 | 2016 | Hainan | 513.140 | 11,876.139 | 1643.284 | 39.855 | 3485.879 |
22 | 2016 | Chongqing | 1658.320 | 41,199.234 | 6508.356 | 156.582 | 16,037.781 |
23 | 2016 | Sichuan | 4657.000 | 81,307.498 | 13,928.324 | 319.098 | 30,893.031 |
24 | 2016 | Guizhou | 1859.000 | 28,931.641 | 7094.241 | 250.966 | 9170.097 |
25 | 2016 | Yunnan | 2855.000 | 54,221.743 | 7214.414 | 183.885 | 13,289.782 |
26 | 2016 | Shanxi | 2111.000 | 62,913.699 | 8122.954 | 272.289 | 18,396.163 |
27 | 2016 | Gansu | 1341.000 | 21,512.778 | 4936.027 | 153.935 | 7324.763 |
28 | 2016 | Qinghai | 324.280 | 12,934.234 | 2608.322 | 56.672 | 2433.667 |
29 | 2016 | Ningxia | 343.000 | 14,648.010 | 3723.432 | 139.493 | 2923.937 |
30 | 2016 | Xinjiang | 1320.000 | 36,318.409 | 10,561.487 | 373.613 | 9749.666 |
1 | 2017 | Beijing | 1246.750 | 52,735.037 | 5099.582 | 86.769 | 23,139.122 |
2 | 2017 | Tianjin | 894.830 | 62,389.934 | 5548.663 | 143.991 | 18,688.546 |
3 | 2017 | Hebei | 3795.000 | 105,693.117 | 22,772.323 | 792.326 | 34,857.019 |
4 | 2017 | Shanxi | 1812.000 | 52,053.185 | 12,828.916 | 508.588 | 15,089.053 |
5 | 2017 | Neimenggu | 1317.000 | 80,428.996 | 13,489.708 | 656.847 | 20,986.327 |
6 | 2017 | Liaoning | 2284.660 | 98,539.147 | 15,268.965 | 496.832 | 27,289.728 |
7 | 2017 | Jilin | 1339.000 | 67,065.846 | 6221.765 | 204.336 | 15,246.689 |
8 | 2017 | Heilongjiang | 1699.000 | 52,942.092 | 9300.331 | 276.911 | 17,416.721 |
9 | 2017 | Shanghai | 1372.650 | 59,460.684 | 8391.165 | 196.154 | 28,118.977 |
10 | 2017 | Jiangsu | 4872.800 | 196,471.921 | 21,313.758 | 757.881 | 75,614.476 |
11 | 2017 | Zhejiang | 3613.000 | 115,114.733 | 13,747.525 | 384.564 | 47,540.722 |
12 | 2017 | Anhui | 4377.900 | 63,077.912 | 9654.027 | 382.216 | 24,296.965 |
13 | 2017 | Fujian | 2236.000 | 78,504.581 | 8467.852 | 234.970 | 28,726.301 |
14 | 2017 | Jiangxi | 2317.000 | 46,639.472 | 6674.407 | 228.980 | 18,443.329 |
15 | 2017 | Shandong | 5693.000 | 194,724.509 | 25,277.105 | 835.819 | 70,861.064 |
16 | 2017 | Henan | 5029.000 | 156,295.981 | 15,540.373 | 501.856 | 42,637.455 |
17 | 2017 | Hubei | 3379.000 | 88,456.789 | 12,140.559 | 331.613 | 30,984.483 |
18 | 2017 | Hunan | 3817.220 | 84,855.270 | 12,024.045 | 322.955 | 30,720.769 |
19 | 2017 | Guangdong | 6858.000 | 169,335.766 | 19,714.057 | 556.859 | 79,976.418 |
20 | 2017 | Guangxi | 2566.000 | 68,933.496 | 7820.286 | 227.892 | 17,766.680 |
21 | 2017 | Hainan | 525.870 | 13,075.544 | 1675.052 | 42.157 | 3729.891 |
22 | 2017 | Chongqing | 1659.330 | 45,598.550 | 6644.293 | 160.550 | 17,529.294 |
23 | 2017 | Sichuan | 4667.000 | 88,076.187 | 14,373.690 | 318.841 | 33,395.367 |
24 | 2017 | Guizhou | 1881.000 | 33,848.475 | 7208.396 | 257.658 | 10,105.446 |
25 | 2017 | Yunnan | 2831.000 | 61,433.814 | 7492.940 | 199.009 | 14,552.311 |
26 | 2017 | Shanxi | 2111.000 | 68,164.245 | 7991.876 | 274.030 | 19,867.856 |
27 | 2017 | Gansu | 1337.000 | 22,397.203 | 4955.851 | 151.959 | 7585.613 |
28 | 2017 | Qinghai | 326.970 | 14,903.978 | 2567.144 | 53.486 | 2611.324 |
29 | 2017 | Ningxia | 344.000 | 16,440.528 | 4301.153 | 178.624 | 3152.004 |
30 | 2017 | Xinjiang | 1336.000 | 42,026.871 | 11,333.737 | 407.756 | 10,490.641 |
1 | 2018 | Beijing | 1237.810 | 55,622.746 | 5298.616 | 89.691 | 24,666.304 |
2 | 2018 | Tianjin | 896.560 | 63,917.355 | 5620.816 | 154.337 | 19,361.333 |
3 | 2018 | Hebei | 3739.000 | 111,563.978 | 26,003.628 | 912.204 | 37,157.583 |
4 | 2018 | Shanxi | 1789.000 | 52,423.015 | 12,647.943 | 541.684 | 16,100.019 |
5 | 2018 | Neimenggu | 1304.000 | 78,258.562 | 15,808.897 | 723.569 | 22,098.602 |
6 | 2018 | Liaoning | 2260.600 | 96,647.054 | 15,854.139 | 521.003 | 28,845.243 |
7 | 2018 | Jilin | 1314.010 | 68,793.347 | 5425.635 | 196.247 | 15,932.790 |
8 | 2018 | Heilongjiang | 1635.000 | 55,207.082 | 7840.996 | 255.098 | 18,235.307 |
9 | 2018 | Shanghai | 1375.660 | 63,375.511 | 8111.315 | 190.642 | 29,974.830 |
10 | 2018 | Jiangsu | 4886.900 | 208,062.279 | 21,908.212 | 764.049 | 80,680.646 |
11 | 2018 | Zhejiang | 3691.000 | 122,635.828 | 14,053.076 | 388.825 | 50,916.113 |
12 | 2018 | Anhui | 4385.300 | 68,822.230 | 9715.303 | 398.984 | 26,240.723 |
13 | 2018 | Fujian | 2222.000 | 86,771.246 | 8649.303 | 261.456 | 31,110.584 |
14 | 2018 | Jiangxi | 2295.000 | 50,525.896 | 6815.951 | 236.629 | 20,047.898 |
15 | 2018 | Shandong | 5621.000 | 204,044.259 | 27,169.007 | 901.647 | 75,396.172 |
16 | 2018 | Henan | 4992.000 | 166,849.368 | 14,797.324 | 490.678 | 45,877.902 |
17 | 2018 | Hubei | 3377.000 | 97,110.280 | 11,814.760 | 329.078 | 33,401.273 |
18 | 2018 | Hunan | 3738.580 | 90,635.187 | 11,282.745 | 305.971 | 33,116.989 |
19 | 2018 | Guangdong | 6960.000 | 185,503.292 | 20,481.567 | 567.507 | 85,414.814 |
20 | 2018 | Guangxi | 2562.000 | 69,968.495 | 7441.603 | 231.833 | 18,974.814 |
21 | 2018 | Hainan | 535.500 | 13,703.106 | 1745.003 | 42.194 | 3946.224 |
22 | 2018 | Chongqing | 1663.230 | 49,685.507 | 5858.020 | 160.604 | 18,581.052 |
23 | 2018 | Sichuan | 4690.000 | 94,663.028 | 13,297.728 | 296.313 | 36,066.996 |
24 | 2018 | Guizhou | 1886.000 | 39,041.349 | 7052.525 | 252.724 | 11,025.042 |
25 | 2018 | Yunnan | 2822.000 | 68,695.641 | 8034.404 | 212.244 | 15,847.467 |
26 | 2018 | Shanxi | 2112.000 | 73,415.512 | 8248.036 | 276.166 | 21,516.888 |
27 | 2018 | Gansu | 1337.000 | 22,921.226 | 5028.364 | 162.990 | 8063.507 |
28 | 2018 | Qinghai | 329.260 | 16,755.268 | 2694.430 | 51.938 | 2799.340 |
29 | 2018 | Ningxia | 345.000 | 17,324.168 | 4581.568 | 191.589 | 3372.644 |
30 | 2018 | Xinjiang | 1331.000 | 44,409.483 | 11,563.005 | 421.423 | 11,130.570 |
1 | 2019 | Beijing | 1273.000 | 57,803.459 | 5334.419 | 89.184 | 26,170.948 |
2 | 2019 | Tianjin | 896.560 | 66,215.081 | 5813.112 | 158.466 | 20,290.677 |
3 | 2019 | Hebei | 3702.000 | 117,384.518 | 24,840.812 | 914.209 | 39,684.298 |
4 | 2019 | Shanxi | 1762.000 | 53,061.896 | 13,264.816 | 564.863 | 17,098.221 |
5 | 2019 | Neimenggu | 1272.000 | 76,652.684 | 17,230.702 | 794.279 | 23,247.729 |
6 | 2019 | Liaoning | 2238.430 | 94,720.414 | 16,821.134 | 533.388 | 30,431.731 |
7 | 2019 | Jilin | 1286.000 | 68,668.114 | 5472.135 | 203.662 | 16,410.774 |
8 | 2019 | Heilongjiang | 1551.000 | 57,664.016 | 8341.872 | 278.211 | 19,001.190 |
9 | 2019 | Shanghai | 1376.200 | 67,241.917 | 8351.955 | 192.912 | 31,773.320 |
10 | 2019 | Jiangsu | 4903.200 | 219,624.880 | 22,894.146 | 800.804 | 85,602.165 |
11 | 2019 | Zhejiang | 3771.000 | 130,890.765 | 14,342.405 | 381.407 | 54,378.408 |
12 | 2019 | Anhui | 4384.000 | 74,790.713 | 9999.822 | 408.064 | 28,208.777 |
13 | 2019 | Fujian | 2210.000 | 94,863.229 | 9185.727 | 278.109 | 33,474.989 |
14 | 2019 | Jiangxi | 2278.000 | 54,583.899 | 7016.836 | 242.308 | 21,651.730 |
15 | 2019 | Shandong | 5561.000 | 209,061.658 | 29,138.991 | 937.117 | 79,542.962 |
16 | 2019 | Henan | 4934.000 | 177,533.705 | 14,648.993 | 460.631 | 49,089.355 |
17 | 2019 | Hubei | 3375.000 | 105,997.406 | 12,260.518 | 354.752 | 35,906.368 |
18 | 2019 | Hunan | 3666.480 | 97,027.174 | 11,510.431 | 310.642 | 35,633.880 |
19 | 2019 | Guangdong | 6995.000 | 202,198.419 | 20,975.654 | 569.120 | 90,710.533 |
20 | 2019 | Guangxi | 2558.000 | 71,494.050 | 7656.171 | 246.717 | 20,113.303 |
21 | 2019 | Hainan | 536.110 | 14,012.535 | 1792.201 | 43.067 | 4175.105 |
22 | 2019 | Chongqing | 1668.160 | 53,517.822 | 5935.801 | 156.255 | 19,751.658 |
23 | 2019 | Sichuan | 4714.000 | 101,646.847 | 13,827.068 | 315.163 | 38,772.021 |
24 | 2019 | Guizhou | 1888.000 | 43,543.248 | 7229.946 | 261.129 | 11,940.121 |
25 | 2019 | Yunnan | 2812.000 | 76,009.753 | 8436.866 | 223.279 | 17,131.112 |
26 | 2019 | Shanxi | 2114.000 | 78,078.840 | 8866.133 | 296.273 | 22,807.901 |
27 | 2019 | Gansu | 1333.000 | 23,503.947 | 5095.742 | 164.488 | 8563.445 |
28 | 2019 | Qinghai | 330.200 | 18,488.650 | 2709.472 | 51.752 | 2975.698 |
29 | 2019 | Ningxia | 343.000 | 17,787.119 | 4892.344 | 212.414 | 3591.866 |
30 | 2019 | Xinjiang | 1343.000 | 46,510.566 | 12,117.897 | 455.275 | 11,820.665 |
1 | 2020 | Beijing | 1164.000 | 59,715.839 | 4772.528 | 76.785 | 26,484.999 |
2 | 2020 | Tianjin | 647.000 | 68,354.629 | 5741.815 | 161.873 | 20,595.038 |
3 | 2020 | Hebei | 3671.000 | 122,491.498 | 24,932.805 | 939.363 | 41,231.986 |
4 | 2020 | Shanxi | 1738.000 | 53,974.619 | 13,128.517 | 583.249 | 17,713.757 |
5 | 2020 | Neimenggu | 1242.000 | 74,976.477 | 18,512.553 | 839.743 | 23,294.225 |
6 | 2020 | Liaoning | 2231.000 | 92,903.064 | 17,685.000 | 543.874 | 30,614.322 |
7 | 2020 | Jilin | 1261.000 | 68,927.980 | 5379.147 | 200.594 | 16,804.633 |
8 | 2020 | Heilongjiang | 1473.000 | 60,072.086 | 8384.867 | 273.059 | 19,191.202 |
9 | 2020 | Shanghai | 1374.000 | 71,602.655 | 7743.370 | 179.899 | 32,313.466 |
10 | 2020 | Jiangsu | 4893.000 | 229,523.766 | 22,794.538 | 773.971 | 88,769.445 |
11 | 2020 | Zhejiang | 3857.000 | 138,861.573 | 16,034.393 | 386.973 | 56,336.031 |
12 | 2020 | Anhui | 3243.000 | 80,407.122 | 10,780.948 | 416.011 | 29,308.919 |
13 | 2020 | Fujian | 2206.000 | 101,692.882 | 8935.827 | 275.818 | 34,579.663 |
14 | 2020 | Jiangxi | 2264.000 | 58,687.545 | 6894.751 | 241.516 | 22,474.496 |
15 | 2020 | Shandong | 5510.000 | 213,589.937 | 29,837.717 | 930.639 | 82,406.508 |
16 | 2020 | Henan | 4884.000 | 187,149.072 | 14,915.788 | 473.657 | 49,727.516 |
17 | 2020 | Hubei | 3261.000 | 109,533.785 | 11,526.315 | 317.486 | 34,111.050 |
18 | 2020 | Hunan | 3280.000 | 103,652.398 | 11,235.243 | 302.314 | 36,987.967 |
19 | 2020 | Guangdong | 7039.000 | 217,917.151 | 21,195.039 | 566.572 | 92,796.875 |
20 | 2020 | Guangxi | 2558.000 | 72,996.026 | 8433.018 | 268.097 | 20,857.495 |
21 | 2020 | Hainan | 540.970 | 14,359.939 | 1745.893 | 40.250 | 4321.234 |
22 | 2020 | Chongqing | 1676.010 | 56,914.191 | 6084.825 | 152.856 | 20,521.973 |
23 | 2020 | Sichuan | 4745.000 | 108,015.945 | 13,605.251 | 307.553 | 40,245.358 |
24 | 2020 | Guizhou | 1892.000 | 47,601.893 | 7234.077 | 252.797 | 12,477.426 |
25 | 2020 | Yunnan | 2806.000 | 83,260.730 | 8910.436 | 235.642 | 17,816.356 |
26 | 2020 | Shanxi | 2105.000 | 82,373.641 | 8937.639 | 309.785 | 23,309.675 |
27 | 2020 | Gansu | 1331.000 | 24,161.671 | 5292.196 | 175.870 | 8897.419 |
28 | 2020 | Qinghai | 279.000 | 19,508.805 | 2578.169 | 47.927 | 3020.334 |
29 | 2020 | Ningxia | 344.000 | 18,238.484 | 5390.292 | 225.911 | 3731.948 |
30 | 2020 | Xinjiang | 1356.000 | 49,249.534 | 12,200.480 | 466.896 | 12,222.568 |
1 | 2021 | Beijing | 1158.000 | 61,568.408 | 5068.909 | 79.963 | 28,736.224 |
2 | 2021 | Tianjin | 641.000 | 70,494.249 | 5678.491 | 155.546 | 21,954.310 |
3 | 2021 | Hebei | 3643.000 | 126,819.432 | 24,410.223 | 885.507 | 43,912.065 |
4 | 2021 | Shanxi | 1715.000 | 54,964.960 | 13,812.249 | 613.728 | 19,325.708 |
5 | 2021 | Neimenggu | 1218.000 | 73,961.685 | 18,106.090 | 843.399 | 24,761.761 |
6 | 2021 | Liaoning | 2190.000 | 91,125.492 | 17,958.085 | 545.674 | 32,389.952 |
7 | 2021 | Jilin | 1228.000 | 69,709.759 | 5342.379 | 204.394 | 17,913.738 |
8 | 2021 | Heilongjiang | 1420.000 | 62,667.629 | 8938.770 | 287.536 | 20,361.866 |
9 | 2021 | Shanghai | 1365.000 | 76,183.361 | 7981.615 | 194.072 | 34,930.857 |
10 | 2021 | Jiangsu | 4863.000 | 239,727.574 | 23,725.465 | 817.680 | 96,403.618 |
11 | 2021 | Zhejiang | 3897.000 | 147,686.328 | 17,116.150 | 442.203 | 61,124.594 |
12 | 2021 | Anhui | 3215.000 | 86,222.854 | 11,096.187 | 433.782 | 31,741.559 |
13 | 2021 | Fujian | 2197.000 | 108,442.156 | 9816.587 | 299.817 | 37,346.036 |
14 | 2021 | Jiangxi | 2242.000 | 63,054.789 | 7086.260 | 245.415 | 24,452.251 |
15 | 2021 | Shandong | 5475.000 | 218,164.654 | 31,344.879 | 947.163 | 89,246.249 |
16 | 2021 | Henan | 4840.000 | 195,662.506 | 15,599.562 | 483.738 | 52,860.350 |
17 | 2021 | Hubei | 3286.000 | 114,854.169 | 12,848.079 | 361.055 | 38,511.375 |
18 | 2021 | Hunan | 3258.000 | 110,592.421 | 11,862.536 | 310.874 | 39,836.041 |
19 | 2021 | Guangdong | 7072.000 | 232,246.326 | 33,520.601 | 629.737 | 100,220.625 |
20 | 2021 | Guangxi | 2544.000 | 74,769.863 | 8929.303 | 288.032 | 22,421.807 |
21 | 2021 | Hainan | 544.000 | 14,772.790 | 1889.507 | 45.653 | 4805.212 |
22 | 2021 | Chongqing | 1668.000 | 60,056.635 | 6506.229 | 165.279 | 22,225.297 |
23 | 2021 | Sichuan | 4727.000 | 114,315.330 | 14,252.191 | 314.902 | 43,545.477 |
24 | 2021 | Guizhou | 1886.000 | 50,698.460 | 7574.526 | 265.863 | 13,488.098 |
25 | 2021 | Yunnan | 2774.000 | 89,884.798 | 8795.677 | 234.216 | 19,116.950 |
26 | 2021 | Shanxi | 2091.000 | 85,414.895 | 9877.801 | 339.104 | 24,824.804 |
27 | 2021 | Gansu | 1319.000 | 24,976.580 | 5487.736 | 189.453 | 9511.341 |
28 | 2021 | Qinghai | 277.000 | 20,235.373 | 2960.184 | 56.381 | 3192.493 |
29 | 2021 | Ningxia | 345.000 | 18,630.816 | 5639.759 | 235.318 | 3981.989 |
30 | 2021 | Xinjiang | 1360.000 | 52,529.152 | 13,640.782 | 615.574 | 13,078.148 |
References
- Iqbal, M.A.; Saheen, W.A.; Shabir, S.; Ullah, U.; Ionel-Alin, I.; Mihut, M.-I.; Raposo, A.; Han, H. Towards a green economy: Investigating the impact of sustainable finance, green technologies, and environmental policies on environmental degradation. J. Environ. Manag. 2025, 374, 124047. [Google Scholar] [CrossRef]
- Gbadeyan, O.J.; Muthivhi, J.; Linganiso, L.Z.; Deenadayalu, N. Decoupling Economic Growth from Carbon Emissions: A Transition toward Low-Carbon Energy Systems—A Critical Review. Clean Technol. 2024, 6, 1076–1113. [Google Scholar] [CrossRef]
- Goverment, U. Energy White Paper: Our Energy Future-Creating a Low Carbon Economy; Department of Trade and Industry: London, UK, 2003.
- Tan, L.; Yang, Z.; Irfan, M.; Ding, C.J.; Hu, M.; Hu, J. Toward low-carbon sustainable development: Exploring the impact of digital economy development and industrial restructuring. Bus. Strategy Environ. 2024, 33, 2159–2172. [Google Scholar] [CrossRef]
- Xu, X.; Pan, L.-C.; Ni, Q.-H.; Yuan, Q.-Q. Eco-efficiency evaluation model: A case study of the Yangtze River Economic Belt. Environ. Monit. Assess. 2021, 193, 457. [Google Scholar] [CrossRef]
- Meng, M.; Shang, W.; Zhao, X.; Niu, D.; Li, W. Decomposition and forecasting analysis of China’s energy efficiency: An application of three-dimensional decomposition and small-sample hybrid models. Energy 2015, 89, 283–293. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Y.; Qian, W. Efficiency evaluation and dynamic evolution of China’s regional green economy: A method based on the Super-PEBM model and DEA window analysis. J. Clean. Prod. 2020, 264, 121630. [Google Scholar] [CrossRef]
- Dellnitz, A.; Tavana, M.; Banker, R. A novel median-based optimization model for eco-efficiency assessment in data envelopment analysis. Ann. Oper. Res. 2023, 322, 661–690. [Google Scholar] [CrossRef]
- Ren, W.; Zhang, Z.; Wang, Y.; Yang, Z.; Ma, D.; Li, Y. The household resource efficiency and its economic determinants in China: A DEA and dynamic panel model. J. Clean. Prod. 2024, 451, 142134. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, P. Industrialization, urbanization, and carbon emission efficiency of Yangtze River Economic Belt-empirical analysis based on stochastic frontier model. Environ. Sci. Pollut. Res. 2021, 28, 66914–66929. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, G.; Wang, Q.; Zhou, D. U-shaped relationship between digitalization and low-carbon economy efficiency: Mediation and spillover effects. J. Clean. Prod. 2024, 458, 142535. [Google Scholar] [CrossRef]
- Niu, H.; Zhang, Z.; Luo, M. Evaluation and Prediction of Low-Carbon Economic Efficiency in China, Japan and South Korea: Based on DEA and Machine Learning. Int. J. Environ. Res. Public Health 2022, 19, 12709. [Google Scholar] [CrossRef]
- Jin, B.; Han, Y.; Kou, P. Dynamically evaluating the comprehensive efficiency of technological innovation and low-carbon economy in China?s industrial sectors. Socio-Econ. Plan. Sci. 2023, 86, 101480. [Google Scholar] [CrossRef]
- Yao, F.; Xue, L.; Liang, J. Research on coupling coordination and influencing factors between Urban low-carbon economy efficiency and digital finance-Evidence from 100 cities in China’s Yangtze River economic belt. PLoS ONE 2022, 17, e0271455. [Google Scholar] [CrossRef]
- Luo, H.; Lin, X. Empirical study on the low-carbon economic efficiency in Zhejiang province based on an improved DEA model and projection. Energies 2023, 16, 300. [Google Scholar] [CrossRef]
- Yang, G.; Gui, Q.; Zhang, F.; Gong, G.; Yang, Y. The Temporal and Spatial Characteristics and Influencing Factors of Low-Carbon Economy Efficiency and Science and Technology Development Level in China’s Provinces From the Perspective of Uncoordinated Coupling. Front. Environ. Sci. 2022, 10, 886886. [Google Scholar]
- Yang, G.; Gui, Q.; Supanyo, P.; Zhang, F.; Yang, X.; Gong, G. Temporal and spatial changes and influencing factors of low-carbon economy efficiency in China. Environ. Monit. Assess. 2023, 195, 55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zeng, W.; Wang, J.; Yang, F.; Jiang, H. Regional low-carbon economy efficiency in China: Analysis based on the Super-SBM model with CO2 emissions. J. Clean. Prod. 2017, 163, 202–211. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, X.; Wang, Y. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Ren, S.; Li, L.; Han, Y.; Hao, Y.; Wu, H. The emerging driving force of inclusive green growth: Does digital economy agglomeration work? Bus. Strategy Environ. 2022, 31, 1656–1678. [Google Scholar] [CrossRef]
- Bogetoft, P.; Hougaard, J.L. Efficiency Evaluations Based on Potential (Non-Proportional) Improvements. J. Product. Anal. 1999, 12, 233–247. [Google Scholar] [CrossRef]
- Bogetoft, P.; Hougaard, J.L. Super efficiency evaluations based on potential slack. Eur. J. Oper. Res. 2004, 152, 14–21. [Google Scholar] [CrossRef]
- Asmild, M.; Pastor, J.T. Slack free MEA and RDM with comprehensive efficiency measures. Omega 2010, 38, 475–483. [Google Scholar] [CrossRef]
- Asmild, M.; Matthews, K. Multi-directional efficiency analysis of efficiency patterns in Chinese banks 1997–2008. Eur. J. Oper. Res. 2012, 219, 434–441. [Google Scholar] [CrossRef]
- Manevska-Tasevska, G.; Hansson, H.; Asmild, M.; Surry, Y. Exploring the regional efficiency of the Swedish agricultural sector during the CAP reforms—multi-directional efficiency analysis approach. Land Use Policy 2021, 100, 104897. [Google Scholar] [CrossRef]
- Li, H.; Zhu, X.; Chen, J.; Jiang, F. Environmental regulations, environmental governance efficiency and the green transformation of China’s iron and steel enterprises. Ecol. Econ. 2019, 165, 106397. [Google Scholar] [CrossRef]
- Wang, S.; Xing, L.; Chen, X.; Song, M. Evaluating and enhancing natural resource asset management efficiency in China: A data envelopment analysis study. Resour. Policy 2024, 92, 105000. [Google Scholar] [CrossRef]
- Omrani, H.; Emrouznejad, A.; Teplova, T.; Amini, M. Efficiency evaluation of electricity distribution companies: Integrating data envelopment analysis and machine learning for a holistic analysis. Eng. Appl. Artif. Intell. 2024, 133, 108636. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, X.; Chen, J. Low-carbon efficiency analysis of rail-water multimodal transport based on cross efficiency network DEA approach. Energy 2024, 305, 132348. [Google Scholar] [CrossRef]
- Yap, W.K.; Kamarudin, F.; Gryzelius, J. External debt, state ownership and technical efficiency: A stochastic frontier analysis of emerging economies. Port. Econ. J. 2024, 24, 123–150. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, Q.; Zhang, W. How business environment of countries along the Belt and Road impacts China’s OFDI efficiency: A stochastic frontier gravity model approach. Humanit. Soc. Sci. Commun. 2024, 11, 491. [Google Scholar] [CrossRef]
- Lai, H.; Tran, K.C. Persistent and transient inefficiency in a spatial autoregressive panel stochastic frontier model. J. Product. Anal. 2022, 58, 1–13. [Google Scholar] [CrossRef]
- Wang, K.; Wei, Y.; Zhang, X. Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis. Appl. Energy 2013, 104, 105–116. [Google Scholar] [CrossRef]
- Asmild, M.; Holvad, T.; Hougaard, J.L.; Kronborg, D. Railway reforms: Do they influence operating efficiency? Transportation 2009, 36, 617–638. [Google Scholar] [CrossRef]
- Yang, J. Disentangling the sources of bank inefficiency: A two-stage network multi-directional efficiency analysis approach. Ann. Oper. Res. 2023, 326, 369–410. [Google Scholar] [CrossRef]
- Meng, M.; Fu, Y.; Wang, L. Low-carbon economy efficiency analysis of China’s provinces based on a range-adjusted measure and data envelopment analysis model. J. Clean. Prod. 2018, 199, 643–650. [Google Scholar] [CrossRef]
- Pastor, J.T.; Lovell, C.K. A global Malmquist productivity index. Econ. Lett. 2005, 88, 266–271. [Google Scholar] [CrossRef]
- Chen, Y. Spatial autocorrelation equation based on Moran’s index. Sci. Rep. 2023, 13, 19296. [Google Scholar] [CrossRef] [PubMed]
- Shojaee Barjoee, S.; Azizi, M.; Khaledi, A.; Kouhkan, M.; Soltani, M.; Farokhi, H. Street dust-bound metal(loid)s in industrial areas of Iran: Moran’s spatial autocorrelation distribution, eco-toxicological risk assessment, uncertainty and sensitivity analysis. Int. J. Environ. Sci. Technol. 2023, 20, 8509–8536. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, W.; Wang, M.; Chen, X.; Li, Y. Application of improved Moran?s I in the evaluation of urban spatial development. Spat. Stat. 2023, 54, 100736. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. Data Descriptor: China CO2 emission accounts 1997-2015. Sci. Data 2018, 5, 170201. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Huang, Q.; Guan, D.; Hubacek, K. China CO2 emission accounts 2016-2017. Sci. Data 2020, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Wang, W.; Wu, Y.; Zhang, J. How does digital economy affect green total factor productivity? Evidence from China. Sci. Total Environ. 2023, 857, 159428. [Google Scholar] [CrossRef]
- Nie, C.; Li, R.; Feng, Y.; Chen, Z. The impact of China’s energy saving and emission reduction demonstration city policy on urban green technology innovation. Sci. Rep. 2023, 13, 15168. [Google Scholar] [CrossRef]
- Nie, C.; Lee, C.-C. Synergy of pollution control and carbon reduction in China: Spatial-temporal characteristics, regional differences, and convergence. Environ. Impact Assess. Rev. 2023, 101, 107110. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Liang, L.; Wang, D.; Cui, X.; Wei, W. Spatial-temporal pattern evolution and driving factors of China’s energy efficiency under low-carbon economy. Sci. Total Environ. 2020, 739, 140197. [Google Scholar] [CrossRef]
- Peng, Y.; Fan, Y.; Liang, Y. A Green Technological Innovation Efficiency Evaluation of Technology-Based SMEs Based on the Undesirable SBM and the Malmquist Index: A Case of Hebei Province in China. Sustainability 2021, 13, 11079. [Google Scholar] [CrossRef]
- Wang, S.; Yang, C.; Li, Z. Spatio-Temporal Evolution Characteristics and Spatial Interaction Spillover Effects of New-Urbanization and Green Land Utilization Efficiency. Land 2021, 10, 1105. [Google Scholar] [CrossRef]
- Dzwigol, H.; Kwilinski, A.; Lyulyov, O.; Pimonenko, T. The Role of Environmental Regulations, Renewable Energy, and Energy Efficiency in Finding the Path to Green Economic Growth. Energies 2023, 16, 3090. [Google Scholar] [CrossRef]
Ref. | Year | Method Model Theory | Contribution | Constraint |
---|---|---|---|---|
[21] | 1999 | Efficiency assessment | The article axiomatizes the implicit Farrell selection used in DEA, separating the reference plan selection in decision unit efficiency evaluation from performance slack measurement, and proposing the MEA method. | Mixing the selection of reference schemes with performance relaxation measurements may lead to bias and inaccuracy in the evaluation results. |
[22] | 2004 | Super-efficiency evaluation, potential improvement methods, super-efficiency indicators, Farrell’s super-efficiency indicators, convex hull technology | The article introduces super-efficiency evaluation and defines reference selection and related super-efficiency indicators, expanding the methodology of super-efficiency analysis. | The lack of empirical data support in comparing different super-efficiency indicators in the paper may lead to insufficient reliability of the results. |
[23] | 2010 | MEA, Range Direction Model (RDM), Variable Return to Scale (VRS) | The article extends the MEA model and scope-oriented model to address directional and non-directional technical inefficiencies, and analyzes them under variable and constant scale returns. | The paper failed to clarify the effectiveness and limitations of the new model in real-world problems. |
[24] | 2012 | DEA, MEA | Based on data from joint stock banks and state-owned banks in China, the efficiency differences and influencing factors were studied using the MEA method. | The study failed to consider the impact of external environmental factors on bank efficiency. |
[25] | 2021 | MEA | The article observed the efficiency patterns of each input and output during three periods of common agricultural policies and analyzed the regional efficiency of agricultural resources. | This study may have hypothesized CRS, but this may not be applicable to all agricultural regions. |
Index Level | Representational Index |
---|---|
Input | Number of employees at the end of the year |
Capital stock | |
Total energy consumption | |
Expected output | Gross regional product |
Undesirable output | Carbon dioxide |
Variable | Mean Value | Standard Deviation | Maximum Value | Minimum Value | |
---|---|---|---|---|---|
Input index | Number of employees | 25.654 | 16.337 | 70.720 | 2.770 |
Capital stock | 6.748 | 4.807 | 23.973 | 0.307 | |
Energy consumption | 105.030 | 62.271 | 335.206 | 11.488 | |
Expected output | Gross regional product | 2.381 | 1.912 | 10.022 | 0.135 |
Undesirable output | Carbon dioxide emissions | 3.371 | 2.182 | 9.472 | 0.289 |
Serial Number | Province | GM | EC | TC | Overall Trend |
---|---|---|---|---|---|
1 | Beijing | 1.011 | 1.000 | 1.011 | Rising |
2 | Tianjin | 1.057 | 1.017 | 1.043 | Rising |
3 | Hebei | 0.999 | 0.989 | 1.012 | Descending |
4 | Shanxi | 1.012 | 1.018 | 0.994 | Rising |
5 | Inner Mongolia | 1.031 | 0.997 | 1.034 | Rising |
6 | Liaoning | 1.030 | 1.004 | 1.027 | Rising |
7 | Jilin | 1.023 | 1.027 | 0.998 | Rising |
8 | Heilongjiang | 0.994 | 0.985 | 1.012 | Descending |
9 | Shanghai | 1.035 | 1.000 | 1.035 | Rising |
10 | Jiangsu | 1.012 | 0.993 | 1.019 | Rising |
11 | Zhejiang | 0.995 | 0.986 | 1.017 | Descending |
12 | Anhui | 0.998 | 0.989 | 1.010 | Descending |
13 | Fujian | 0.984 | 0.982 | 1.003 | Descending |
14 | Jiangxi | 1.015 | 0.993 | 1.026 | Rising |
15 | Shandong | 1.024 | 0.997 | 1.035 | Rising |
16 | Henan | 1.013 | 0.994 | 1.021 | Rising |
17 | Hubei | 0.988 | 0.989 | 0.998 | Descending |
18 | Hunan | 1.004 | 0.999 | 1.006 | Rising |
19 | Guangdong | 0.969 | 0.966 | 1.007 | Descending |
20 | Guangxi | 1.013 | 0.997 | 1.017 | Rising |
21 | Hainan | 0.991 | 0.982 | 1.010 | Descending |
22 | Chongqing | 1.006 | 1.001 | 1.006 | Rising |
23 | Sichuan | 1.005 | 0.999 | 1.007 | Rising |
24 | Guizhou | 0.971 | 0.970 | 1.005 | Descending |
25 | Yunnan | 0.992 | 0.987 | 1.005 | Descending |
26 | Shanxi | 1.014 | 0.996 | 1.021 | Rising |
27 | Gansu | 1.016 | 0.988 | 1.031 | Rising |
28 | Qinghai | 0.973 | 0.976 | 0.996 | Descending |
29 | Ningxia | 1.028 | 0.997 | 1.030 | Rising |
30 | Xinjiang | 0.975 | 1.001 | 0.988 | Descending |
Mean value | 1.006 | 0.994 | 1.014 | Rising |
Province | Employment MEA Efficiency Value | Energy Consumption MEA Efficiency Value | MEA Efficiency Value of Capital Stock | GDP-MEA Efficiency Value | CO2 MEA Efficiency Value | Combined MEA Efficiency Value |
---|---|---|---|---|---|---|
Beijing | 0.940 | 0.981 | 0.956 | 0.989 | 0.821 | 0.893 |
Tianjin | 0.925 | 0.946 | 0.952 | 0.809 | 0.510 | 0.720 |
Hebei | 1.000 | 1.000 | 1.000 | 0.665 | 0.365 | 0.637 |
Shanxi | 0.886 | 0.936 | 0.955 | 0.659 | 0.236 | 0.571 |
Inner Mongolia | 0.984 | 0.972 | 0.980 | 0.717 | 0.152 | 0.594 |
Liaoning | 0.557 | 0.672 | 0.748 | 0.901 | 0.170 | 0.536 |
Jilin | 0.619 | 0.684 | 0.818 | 0.793 | 0.267 | 0.527 |
Heilongjiang | 0.754 | 0.880 | 0.872 | 0.830 | 0.326 | 0.618 |
Shanghai | 1.000 | 1.000 | 1.000 | 0.989 | 0.723 | 0.883 |
Jiangsu | 1.000 | 1.000 | 1.000 | 0.811 | 0.407 | 0.707 |
Zhejiang | 1.000 | 1.000 | 1.000 | 0.856 | 0.525 | 0.757 |
Anhui | 0.784 | 0.933 | 0.955 | 0.817 | 0.518 | 0.687 |
Fujian | 0.931 | 0.966 | 0.959 | 0.834 | 0.510 | 0.723 |
Jiangxi | 0.649 | 0.878 | 0.876 | 0.946 | 0.309 | 0.638 |
Shandong | 0.779 | 0.903 | 0.888 | 0.880 | 0.288 | 0.637 |
Henan | 0.525 | 0.705 | 0.825 | 0.903 | 0.259 | 0.558 |
Hubei | 0.637 | 0.811 | 0.788 | 0.955 | 0.347 | 0.626 |
Hunan | 0.570 | 0.789 | 0.754 | 1.000 | 0.257 | 0.600 |
Guangdong | 0.980 | 0.994 | 0.980 | 0.974 | 0.801 | 0.900 |
Guangxi | 0.351 | 0.537 | 0.714 | 1.000 | 0.196 | 0.514 |
Hainan | 0.472 | 0.696 | 0.685 | 1.000 | 0.260 | 0.563 |
Chongqing | 0.587 | 0.813 | 0.731 | 1.000 | 0.314 | 0.615 |
Sichuan | 0.597 | 0.827 | 0.740 | 1.000 | 0.263 | 0.609 |
Guizhou | 0.595 | 0.766 | 0.851 | 0.927 | 0.227 | 0.587 |
Yunnan | 0.333 | 0.568 | 0.666 | 1.000 | 0.204 | 0.510 |
Shanxi | 0.503 | 0.698 | 0.808 | 0.934 | 0.196 | 0.550 |
Gansu | 0.554 | 0.799 | 0.797 | 0.922 | 0.325 | 0.597 |
Qinghai | 0.389 | 0.504 | 0.483 | 0.989 | 0.181 | 0.478 |
Ningxia | 0.780 | 0.757 | 0.820 | 0.798 | 0.127 | 0.533 |
Xinjiang | 0.784 | 0.861 | 0.893 | 0.759 | 0.220 | 0.573 |
Year | Global Moran’s I | E(I) | sd(I) | z | p-Value |
---|---|---|---|---|---|
2010 | 0.069 | −0.034 | 0.049 | 2.088 | 0.037 |
2011 | 0.074 | −0.034 | 0.05 | 2.192 | 0.028 |
2012 | 0.082 | −0.034 | 0.05 | 2.339 | 0.019 |
2013 | 0.168 | −0.034 | 0.049 | 4.112 | 0.000 |
2014 | 0.166 | −0.034 | 0.049 | 4.082 | 0.000 |
2015 | 0.187 | −0.034 | 0.048 | 4.600 | 0.000 |
2016 | 0.153 | −0.034 | 0.048 | 3.925 | 0.000 |
2017 | 0.199 | −0.034 | 0.05 | 4.674 | 0.000 |
2018 | 0.212 | −0.034 | 0.05 | 4.922 | 0.000 |
2019 | 0.217 | −0.034 | 0.049 | 5.176 | 0.000 |
2020 | 0.217 | −0.034 | 0.049 | 5.113 | 0.000 |
2021 | 0.223 | −0.034 | 0.048 | 5.321 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, C.; Sun, Y.; Zhao, H. An Analysis of Low-Carbon Economy Efficiency in 30 Provinces of China Based on the Multi-Directional Efficiency Method. Sustainability 2025, 17, 8045. https://doi.org/10.3390/su17178045
Jin C, Sun Y, Zhao H. An Analysis of Low-Carbon Economy Efficiency in 30 Provinces of China Based on the Multi-Directional Efficiency Method. Sustainability. 2025; 17(17):8045. https://doi.org/10.3390/su17178045
Chicago/Turabian StyleJin, Chunhua, Yue Sun, and Haoran Zhao. 2025. "An Analysis of Low-Carbon Economy Efficiency in 30 Provinces of China Based on the Multi-Directional Efficiency Method" Sustainability 17, no. 17: 8045. https://doi.org/10.3390/su17178045
APA StyleJin, C., Sun, Y., & Zhao, H. (2025). An Analysis of Low-Carbon Economy Efficiency in 30 Provinces of China Based on the Multi-Directional Efficiency Method. Sustainability, 17(17), 8045. https://doi.org/10.3390/su17178045