Unveiling How the Digital Economy Empowers Green Productivity: Machine Learning and FsQCA Methods
Abstract
1. Introduction
2. Literature Review and Proposition Development
2.1. Green Productivity
2.2. Digital Economy
2.3. TOE Framework
3. Research Design
3.1. Research Methods
3.1.1. K-Means Clustering Algorithm
3.1.2. Entropy Weight and TOPSIS Methods
3.1.3. QCA Method
3.2. Sample and Data Sources
3.3. Theoretical Framework
3.4. Variable Measurement
3.4.1. Outcome Variable
3.4.2. Antecedent Variables
4. Analysis of Spatial and Temporal Evolution
4.1. Temporal Evolution
4.2. Spatial Evolution
5. Empirical Results and Analysis
5.1. Heterogeneous City Types and Characteristics
5.2. Examination of the Relationship Between Multidimensional Factors and the Advancement of Green Productivity
5.3. Findings from fsQCA
5.3.1. Data Calibration
5.3.2. Necessity Analysis of Individual Conditions
5.3.3. Sufficiency Analysis of Configuration Fit
5.3.4. Robustness Checks
5.3.5. Extensibility Analysis
6. Discussion and Implications
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.X.; Lu, G.Y.; Skitmore, M.; Ballesteros-Pérez, P. A critical review of the current research mainstreams and the influencing factors of green total factor productivity. Environ. Sci. Pollut. Res. 2021, 28, 35392–35405. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, M.; Li, R.; Fu, P.; Peng, J.; Wei, Y. Bibliometric Analysis of New Quality Productivity Research Using Knowledge Map. Mater. Rep. 2024, 38, 62–71. [Google Scholar] [CrossRef]
- Amowine, N.; Balezentis, T.; Zhou, Z.; Streimikiene, D. Transitions towards green productivity in Africa: Do sovereign debt vulnerability, eco-entrepreneurship, and institutional quality matter? Sustain. Dev. 2024, 32, 3405–3422. [Google Scholar] [CrossRef]
- Lange, S.; Pohl, J.; Santarius, T. Digitalization and energy consumption. Does ICT Reduce Energy Demand? Ecol. Econ. 2020, 176, 106760. [Google Scholar] [CrossRef]
- Ma, D.; Zhu, Q. Innovation in emerging economies: Research on the digital economy driving high-quality green development. J. Bus. Res. 2022, 145, 801–813. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.W.; Shang, Y.P.; Yang, Z.H.; Shahzad, U. Green economic growth and its inherent driving factors in Chinese cities: Based on the Metafrontier-global-SBM super-efficiency DEA model. Gondwana Res. 2022, 106, 315–328. [Google Scholar] [CrossRef]
- Peng, X. Strategic interaction of environmental regulation and green productivity growth in China: Green innovation or pollution refuge? Sci. Total Environ. 2020, 732, 139200. [Google Scholar] [CrossRef]
- Zhao, Q.; Jiang, M.; Zhao, Z.; Liu, F.; Zhou, L. The impact of green innovation on carbon reduction efficiency in China: Evidence from machine learning validation. Energy Econ. 2024, 133, 107525. [Google Scholar] [CrossRef]
- Lee, C.-C.; Lee, C.-C. How does green finance affect green total factor productivity? Evidence from China. Energy Econ. 2022, 107, 105863. [Google Scholar] [CrossRef]
- Hussain, M.; Wang, W.; Wang, Y.W. Natural resources, consumer prices and financial development in China: Measures to control carbon emissions and ecological footprints. Resour. Policy 2022, 78, 102880. [Google Scholar] [CrossRef]
- Zhou, S.; Qiao, G. The Overall Logic of General Secretary Xi Jinping’s Important Discourses on New Quality Productive Forces. Econ. Probl. 2024, 7, 11–19. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Li, Y. Digital economy and urban low-carbon sustainable development: The role of innovation factor mobility in China. Environ. Sci. Pollut. Res. 2022, 29, 48539–48557. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Xiao, X.; Zhang, J.N. Does the digital economy enhance green total factor productivity in China? The evidence from a national big data comprehensive pilot zone. Struct. Chang Econ. Dyn. 2024, 69, 183–196. [Google Scholar] [CrossRef]
- Deng, H.; Bai, G.; Shen, Z.; Xia, L. Digital economy and its spatial effect on green productivity gains in manufacturing: Evidence from China. J. Clean. Prod. 2022, 378, 134539. [Google Scholar] [CrossRef]
- Avom, D.; Nkengfack, H.; Fotio, H.K.; Totouom, A. ICT and environmental quality in Sub-Saharan Africa: Effects and transmission channels. Technol. Forecast. Soc. Change 2020, 155, 120028. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. The effect of information technology on environmental pollution in China. Environ. Sci. Pollut. Res. 2019, 26, 33109–33124. [Google Scholar] [CrossRef]
- Ahmed, Z.; Le, H.P. Linking Information Communication Technology, trade globalization index, and CO2 emissions: Evidence from advanced panel techniques. Environ. Sci. Pollut. Res. 2021, 28, 8770–8781. [Google Scholar] [CrossRef]
- Raheem, I.D.; Tiwari, A.K.; Balsalobre-Lorente, D. The role of ICT and financial development in CO2 emissions and economic growth. Environ. Sci. Pollut. Res. 2020, 27, 1912–1922. [Google Scholar] [CrossRef]
- Chen, P. Is the digital economy driving clean energy development? -New evidence from 276 cities in China. J. Clean. Prod. 2022, 372, 133783. [Google Scholar] [CrossRef]
- Duc, D.T.V.; Dat, T.T.; Linh, D.H.; Phong, B.X. Measuring the digital economy in Vietnam. Telecommun. Policy 2024, 48, 102683. [Google Scholar] [CrossRef]
- Shahbaz, M.; Wang, J.; Dong, K.; Zhao, J. The impact of digital economy on energy transition across the globe: The mediating role of government governance. Renew. Sustain. Energy Rev. 2022, 166, 112620. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, W. Formation Logic, Distinctive Characteristics, and Practical Direction of Green Productivity. J. Beijing Jiaotong Univ. (Soc. Sci. Ed.) 2025, 24, 38–49. [Google Scholar] [CrossRef]
- Adom, P.K.; Agradi, M.; Vezzulli, A. Energy efficiency-economic growth nexus: What is the role of income inequality? J. Clean. Prod. 2021, 310, 127382. [Google Scholar] [CrossRef]
- Amowine, N.; Li, H.; Boamah, K.B.; Zhou, Z. Towards Ecological Sustainability: Assessing Dynamic Total-Factor Ecology Efficiency in Africa. Int. J. Environ. Res. Public Health 2021, 18, 9323. [Google Scholar] [CrossRef]
- Xiong, Y. Improving the relationship between humans and nature—The number one issue in economics for the new millennium. Product. Res. 2002, 1, 4–5. [Google Scholar] [CrossRef]
- Meng, Q. China’s choice: A green path to productivity development. Product. Res. 2002, 1, 6–9. [Google Scholar] [CrossRef]
- Xue, Y. The third level of human productivity: “Green productivity”. Product. Res. 2002, 2, 4–5. [Google Scholar] [CrossRef]
- Liu, K. “Green Productivity Theory and China’s Economic Development. Product. Res. 2005, 2, 69–71. [Google Scholar] [CrossRef]
- Jiao, Y.; Qi, M. Digital Economy Empowers the Development of New Quality. Rev. Econ. Manag. 2024, 40, 17–30. [Google Scholar] [CrossRef]
- Lin, Z. The Theoretical Implication, Historical Approach and Practical Direction of Green Productivity. J. Eco-Civiliz. Stud. 2024, 4, 3–16. [Google Scholar]
- Li, G.; Zhao, Z. Exploring the Synergistic Development of New Quality Productivity and the Digital Economy. J. Dalian Univ. Technol. (Soc. Sci.) 2024, 45, 9–14. [Google Scholar] [CrossRef]
- Tong, J.; Zhang, Q. The Implications of Digital Economy and Its Remarkable Contributions to Future Economic Development. J. Nankai Univ. (Philos. Lit. Soc.) 2022, 3, 19–33. [Google Scholar]
- Chen, X.; Li, Y.; Song, L.; Wang, Y. Theoretical Framework and Research Prospect of Digital Economy. J. Manag. World 2022, 38, 208–224+213–216. [Google Scholar] [CrossRef]
- Zou, J.; Yao, L.; Wang, B.; Zhang, Y.; Deng, X. How Does Digit. Incl. Financ. Promot. Journey Common Prosper. China? Cities 2024, 150, 105083. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, A.; Luthra, S.; Joshi, S.; Upadhyay, A. The impact of environmental dynamism on low-carbon practices and digital supply chain networks to enhance sustainable performance: An empirical analysis. Bus. Strategy Environ. 2022, 31, 1776–1788. [Google Scholar] [CrossRef]
- Sun, H.; Chen, T.; Wang, C.N. Spatial impact of digital finance on carbon productivity. Geosci. Front. 2024, 15, 101674. [Google Scholar] [CrossRef]
- Ren, B.; Wang, Z. Digital Economy Drives the Formation of New Quality Productive Forces: Framework and Path of Technology-Economy Paradigm. Econ. Rev. J. 2025, 1, 76–87+136. [Google Scholar] [CrossRef]
- Tan, H.; Fan, Z.; Du, Y. Technical Management Capabilities, Attention Allocation, and Local Government Website Construction: A Configuration Analysis Based on the TOE Framework. J. Manag. World 2019, 35, 81–94. [Google Scholar] [CrossRef]
- Chen, S.; Li, Q.; Lei, B.; Wang, N. Configurational Analysis of the Driving Paths of Chinese Digital Economy Based on the Technology-Organization-Environment Framework. Sage Open 2021, 11, 21582440211054500. [Google Scholar] [CrossRef]
- Ta, V.A.; Lin, C.-Y. Exploring the Determinants of Digital Transformation Adoption for SMEs in an Emerging Economy. Sustainability 2023, 15, 7093. [Google Scholar] [CrossRef]
- Xia, M.; Xie, Z.; Lin, H.; He, X. Synergistic Mechanism of the High-Quality Development of the Urban Digital Economy from Blockchain Adoption Perspective-A Configuration Approach. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 704–721. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Y.; Guo, Z. The Impact of Digital Infrastructure Construction on the Development of New Quality Productivity. Shanghai J. Econ. 2024, 12, 16–29. [Google Scholar] [CrossRef]
- Liu, J.; Tao, L. The Talent Introduction and Cultivation Mechanism in the Digital Transformation of China’s Manufacturing Industry. Fudan J. (Soc. Sci. Ed.) 2024, 66, 161–169. [Google Scholar]
- Wang, X. Regulation. Research and Development Green Innovation. J. Tech. Econ. Manag. 2021, 8, 25–30. [Google Scholar]
- Zhao, X.; Wei, X. Effect and Mechanism of Digital Economy Empowering Regional Green Development —Based on the Mesomeric Effect if Technological Innovation and Industrial Upgrading. J. Southwest Univ. (Nat. Sci. Ed.) 2023, 45, 21–30. [Google Scholar] [CrossRef]
- Feng, N.; Ge, J.M. How does fiscal policy affect the green low-carbon transition from the perspective of the evolutionary game? Energy Econ. 2024, 134, 107578. [Google Scholar] [CrossRef]
- Deng, R.; Wu, F. Research on the Impact of Digital Economy on Urban Carbon Emissions: Effects and Mechanisms. Nanjing J. Soc. Sci. 2024, 5, 37–48. [Google Scholar] [CrossRef]
- Douzas, G.; Bacao, F.; Last, F. Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Inf. Sci. 2018, 465, 1–20. [Google Scholar] [CrossRef]
- Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. 2023, 622, 178–210. [Google Scholar] [CrossRef]
- Liao, Y.; Yu, C.; Lin, C. The Type and Path Selection of Tourism Industry Development from the Perspective of Configuration: An Exploration Based on Machine Learning Methods. Tour. Trib. 2024, 39, 31–46. [Google Scholar] [CrossRef]
- Rashidi, K.; Cullinane, K. A comparison of fuzzy DEA and fuzzy TOPSIS in sustainable supplier selection: Implications for sourcing strategy. Expert Syst. Appl. 2019, 121, 266–281. [Google Scholar] [CrossRef]
- Zhu, G.-N.; Hu, J.; Ren, H. A fuzzy rough number-based AHP-TOPSIS for design concept evaluation under uncertain environments. Appl. Soft Comput. 2020, 91, 106228. [Google Scholar] [CrossRef]
- Li, Y.; Wu, B. A Fuzzy MCDM-Based Deep Multi-View Clustering Approach for Large-Scale Multi-View Data Analysis. Symmetry 2025, 17, 1253. [Google Scholar] [CrossRef]
- Li, Z.; Luo, Z.; Wang, Y.; Fan, G.; Zhang, J. Suitability evaluation system for the shallow geothermal energy implementation in region by Entropy Weight Method and TOPSIS method. Renew. Energy 2022, 184, 564–576. [Google Scholar] [CrossRef]
- Park, Y.; Fiss, P.C.; El Sawy, O.A. Theorizing the multiplicity of digital phenomena: The ecology of configurations, causal recipes, and guidelines for applying QCA. Mis Q. 2020, 44, 1493–1520. [Google Scholar] [CrossRef]
- Avoyan, E. Collaborative Governance for Innovative Environmental Solutions: Qualitative Comparative Analysis of Cases from Around the World. Environ. Manag. 2023, 71, 670–684. [Google Scholar] [CrossRef] [PubMed]
- Fiss, P.C. Building Better Causal Theories: A Fuzzy Set Approach to Typologies in Organization Research. Acad. Manag. J. 2011, 54, 393–420. [Google Scholar] [CrossRef]
- Misangyi, V.F.; Greckhamer, T.; Furnari, S.; Fiss, P.C.; Crilly, D.; Aguilera, R. Embracing Causal Complexity: The Emergence of a Neo-Configurational Perspective. J. Manag. 2017, 43, 255–282. [Google Scholar] [CrossRef]
- Chen, H.; Tian, Z. Environmental uncertainty, resource orchestration and digital transformation: A fuzzy-set QCA approach. J. Bus. Res. 2022, 139, 184–193. [Google Scholar] [CrossRef]
- Du, Y.; Li, J.; Liu, Q.; Zhao, S.; Chen, K. Configurational Theory and QCA Method from a Complex Dynamic Perspective: Research Progress and Future Directions. J. Manag. World 2021, 37, 180–197+112–113. [Google Scholar] [CrossRef]
- Vis, B.; Woldendorp, J.; Keman, H. Examining variation in economic performance using fuzzy-sets. Qual. Quant. 2013, 47, 1971–1989. [Google Scholar] [CrossRef]
- Wu, D.; Li, T.; Cai, H.; Cai, S. Machine Learning-Based Prediction of Resilience in Green Agricultural Supply Chains: Influencing Factors Analysis and Model Construction. Systems 2025, 13, 615. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, Y.; Duan, T.; Dai, J. Configurational patterns for COVID-19 related social media rumor refutation effectiveness enhancement based on machine learning and fsQCA. Inf. Process. Manag. 2023, 60, 103303. [Google Scholar] [CrossRef] [PubMed]
- Capatina, A.; Cristea, D.S.; Micu, A.; Micu, A.E.; Empoli, G.; Codignola, F. Exploring causal recipes of startup acceptance into business incubators: A cross-country study. Int. J. Entrep. Behav. Res. 2023, 29, 1584–1612. [Google Scholar] [CrossRef]
- Lu, J.; Guo, Z.; Wang, Y. Levels of development of new quality productivity, regional differences and paths to enhancement. J. Chongqing Univ. (Soc. Sci. Ed.) 2024, 30, 1–17. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, K.; Chen, Z.; Liu, S.; Chang, Z. Developing Improved Time-Series DMSP-OLS-Like Data (19922019) in China by Integrating DMSP-OLS and SNPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Wu, J.; Niu, Y.; Peng, J.; Wang, Z.; Huang, X. Research on energy consumption dynamic among prefecture-level cities in China based on DMSP/OLS Nighttime Light. Geogr. Res. 2014, 33, 625–634. [Google Scholar] [CrossRef]
- Osmundsen, K.; Bygstad, B. Making sense of continuous development of digital infrastructures. J. Inf. Technol. 2022, 37, 144–164. [Google Scholar] [CrossRef]
- Yang, W.; Wang, H. Digital Infrastructure, Factor Allocation Efficiency and Modern Industrial System Construction. Stat. Decis. 2024, 40, 118–123. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y. Research on the grouping path of the digital economy to enhance green total factor productivity. Financ. Account. Mon. 2024, 45, 109–115. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, Z.; Ma, j. Analyzing the space-time dynamics of innovation in China. Acta Geogr. Sin. 2014, 69, 1779–1789. [Google Scholar]
- Sun, Y.; Zhang, S.; Zhao, T.; Zhang, Y. The Influence of Digital Technology Innovation on Industrial Structure Upgrade and Its Spatial Effect—Evidence from the Yangtze River Economic Belt. Soft Sci. 2022, 36, 9–16. [Google Scholar] [CrossRef]
- Bai, Y.; Song, S.; Jiao, J.; Yang, R. The impacts of government R&D subsidies on green innovation: Evidence from Chinese energy-intensive firms. J. Clean. Prod. 2019, 233, 819–829. [Google Scholar] [CrossRef]
- Lei, H.; Wang, Q. A Quantitative Study on Chinese Local Government Digital Economy Policy Texts. J. Tech. Econ. Manag. 2022, 5, 91–94. [Google Scholar]
- Liu, M.R.; Li, S.X.; Li, Y.; Shi, J.R.; Bai, J. Evaluating the synergistic effects of digital economy and government governance on urban low-carbon transition. Sustain. Cities Soc. 2024, 105, 105337. [Google Scholar] [CrossRef]
- Guo, F.; Wang, J.; Wang, F.; Long, T.; Zhang, X.; Cheng, Z. Measuring China’s Digital Financial Inclusion: Index Compilation and Spatial Characteristics. China Econ. Q. 2020, 19, 1401–1418. [Google Scholar] [CrossRef]
- Du, Y.; Jia, L. Group Perspective and Qualitative Comparative Analysis (QCA): A New Path for Management Research. J. Manag. World 2017, 6, 155–167. [Google Scholar] [CrossRef]
- Ragin, C.C. Set relations in social research: Evaluating their consistency and coverage. Political Anal. 2006, 14, 291–310. [Google Scholar] [CrossRef]
- Greckhamer, T.; Furnari, S.; Fiss, P.C.; Aguilera, R.V. Studying configurations with qualitative comparative analysis: Best practices in strategy and organization research. Strateg. Organ. 2018, 16, 482–495. [Google Scholar] [CrossRef]
- Pappas, I.O.; Woodside, A.G. Fuzzy-set Qualitative Comparative Analysis (fsQCA): Guidelines for research practice in Information Systems and marketing. Int. J. Inf. Manag. 2021, 58, 102310. [Google Scholar] [CrossRef]
- Zhang, M.; Du, Y. Qualitative Comparative Analysis (QCA) in Management and Organization Research:Position, Tactics, and Directions. Chin. J. Manag. 2019, 16, 1312–1323. [Google Scholar] [CrossRef]
- Litrico, J.B.; David, R.J. The Evolution of Issue Interpretation within Organizational Fields: Actor Positions, Framing Trajectories, and Field Settlement. Acad. Manag. J. 2017, 60, 986–1015. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Cui, D. Decarbonization process and productivity convergence: A global analysis of carbon total factor productivity. Carbon Balance Manag. 2025, 20, 27. [Google Scholar] [CrossRef]
- Yu, J.; Khattak, S.I.; Ahmad, M. Enhancing sustainable development through digital economy and natural resource management in one belt one road countries. Technol. Soc. 2025, 81, 102812. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Wang, T.; Zhang, X. Do all roads lead to Rome? Conditions and configurations of digital economy on carbon emission efficiency. J. Environ. Manag. 2024, 371, 123154. [Google Scholar] [CrossRef] [PubMed]
Goal Level | Criterion Level | Indicator Level | Measurement Indicator | Direction |
---|---|---|---|---|
Green productivity | Resource-saving productivity | Energy intensity | Energy consumption/GDP | Negative |
Energy structure | Fossil energy consumption/GDP | Negative | ||
Environmentally friendly productivity | Waste emissions | Industrial solid waste emissions/GDP | Negative | |
Exhaust gas emission | Industrial sulfur dioxide emissions/GDP | Negative |
Indicator Name | Measurement Dimension | References | |
---|---|---|---|
Technology (T) | Infrastructure | Telecommunications revenue/total population | Osmundsen and Bygstad [68]; Yang and Wang [69] |
Mobile phone subscribers/total population | |||
Internet broadband access users/total population | |||
Technical talent | Computer service and software employees/end number of employees in urban units | Wang and Liu [70] | |
Organization (O) | Innovations | Aggregate quantity of inventions and utility model patents related to the digital economy submitted in the current year/total population | Cheng, et al. [71]; Sun, et al. [72] |
R&D investment | Expenditure on research and experimental development | Bai, et al. [73] | |
Environment (E) | Government policy | Aggregate keywords pertinent to the digital economy as presented in the government’s annual work report | Lei and Wang [74]; Liu, et al. [75] |
Digital finance | Data from ‘The Peking University Digital Financial Inclusion Index of China’ | Guo, et al. [76] |
Type | Sample Size | Representative Cities |
---|---|---|
Cluster 0 | 26 | Baoding, Cangzhou, Chengde, Hengshui, Zhangjiakou |
Cluster 1 | 10 | Beijing |
Cluster 2 | 54 | Qinhuangdao, Tangshan, Xingtai |
Cluster 3 | 9 | Shijiazhuang |
Cluster 4 | 57 | Handan, Langfang, Tianjin |
Variable Name | Calibration Anchor Point | ||||||
---|---|---|---|---|---|---|---|
Fully Affiliated | |||||||
0 | 1 | 2 | 3 | 4 | |||
Outcome variables | Green productivity | 0.768 | 0.678 | 0.753 | 0.800 | 0.799 | |
Antecedent variable | (T) | Infrastructure | 0.246 | 0.691 | 0.206 | 0.195 | 0.239 |
Technical talent | 0.090 | 0.097 | 0.094 | 0.164 | 0.106 | ||
(O) | Innovations | 0.130 | 0.558 | 0.058 | 0.049 | 0.053 | |
R&D investment | 549.625 | 2747.000 | 440.910 | 235.080 | 211.671 | ||
(E) | Government policy | 38.000 | 34.500 | 13.000 | 32.800 | 17.000 | |
Digital finance | 302.071 | 343.558 | 157.323 | 302.442 | 280.338 |
Variable Name | Calibration Anchor Point | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Intersection Points | Fully Unaffiliated | |||||||||
0 | 1 | 2 | 3 | 4 | 0 | 1 | 2 | 3 | 4 | |
GP | 0.696 | 0.633 | 0.581 | 0.780 | 0.690 | 0.690 | 0.592 | 0.408 | 0.728 | 0.568 |
TI | 0.145 | 0.515 | 0.065 | 0.180 | 0.137 | 0.137 | 0.461 | 0.030 | 0.123 | 0.082 |
TT | 0.074 | 0.087 | 0.074 | 0.140 | 0.084 | 0.084 | 0.077 | 0.049 | 0.132 | 0.058 |
OI | 0.015 | 0.329 | 0.004 | 0.028 | 0.014 | 0.014 | 0.211 | 0.001 | 0.011 | 0.006 |
OR | 32.555 | 1725.250 | 19.601 | 130.618 | 37.966 | 37.966 | 1222.710 | 3.071 | 79.513 | 15.157 |
EG | 22.000 | 14.000 | 4.000 | 28.000 | 11.000 | 11.000 | 5.350 | 0.000 | 13.400 | 3.000 |
ED | 237.486 | 277.659 | 115.410 | 246.433 | 233.704 | 233.704 | 184.240 | 45.184 | 162.722 | 179.699 |
Antecedent Condition | 0 | 1 | 2 | 3 | 4 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Consistency | Coverage | Consistency | Coverage | Consistency | Coverage | Consistency | Coverage | Consistency | Coverage | |
TI | 0.675 | 0.654 | 0.522 | 0.541 | 0.721 | 0.764 | 0.708 | 0.619 | 0.705 | 0.679 |
~TI | 0.636 | 0.625 | 0.753 | 0.700 | 0.587 | 0.560 | 0.567 | 0.513 | 0.589 | 0.627 |
TT | 0.622 | 0.610 | 0.808 | 0.797 | 0.677 | 0.728 | 0.943 | 0.791 | 0.684 | 0.677 |
~TT | 0.655 | 0.636 | 0.396 | 0.386 | 0.696 | 0.655 | 0.440 | 0.416 | 0.642 | 0.665 |
OI | 0.537 | 0.612 | 0.818 | 0.810 | 0.672 | 0.835 | 0.790 | 0.702 | 0.597 | 0.647 |
~OI | 0.747 | 0.638 | 0.408 | 0.396 | 0.673 | 0.567 | 0.530 | 0.471 | 0.657 | 0.623 |
OR | 0.508 | 0.605 | 0.812 | 0.816 | 0.689 | 0.850 | 0.783 | 0.749 | 0.643 | 0.753 |
~OR | 0.769 | 0.635 | 0.392 | 0.375 | 0.654 | 0.553 | 0.570 | 0.473 | 0.689 | 0.613 |
EG | 0.624 | 0.624 | 0.780 | 0.797 | 0.667 | 0.746 | 0.565 | 0.513 | 0.619 | 0.643 |
~EG | 0.732 | 0.696 | 0.418 | 0.393 | 0.596 | 0.543 | 0.755 | 0.658 | 0.709 | 0.700 |
ED | 0.681 | 0.679 | 0.816 | 0.798 | 0.726 | 0.742 | 0.863 | 0.757 | 0.689 | 0.653 |
~ED | 0.652 | 0.652 | 0.406 | 0.399 | 0.544 | 0.537 | 0.562 | 0.507 | 0.570 | 0.618 |
Antecedent Condition | 0 | 1 | 2 | 3 | 4 | ||||
---|---|---|---|---|---|---|---|---|---|
A | B | C1 | C2 | C3 | C4 | C5 | D | E | |
Infrastructure | ◯ | ◯ | ★ | ★ | ★ | ★ | ◯ | ||
Technical talent | ◯ | ★ | ★ | ◯ | ⭑ | ◯ | ★ | ★ | ★ |
Innovations | ◯ | ★ | ★ | ★ | ★ | ◯ | ★ | ◯ | |
R&D investment | ◯ | ★ | ★ | ★ | ★ | ○ | ★ | ★ | |
Government policy | ◯ | ★ | ⭑ | ⭑ | ◯ | ⭑ | ◯ | ★ | |
Digital finance | ◯ | ★ | ★ | ★ | ★ | ★ | ★ | ★ | ★ |
Consistency | 0.914 | 0.934 | 0.936 | 0.903 | 0.957 | 0.924 | 0.921 | 0.926 | 0.935 |
Raw coverage | 0.303 | 0.692 | 0.283 | 0.333 | 0.257 | 0.377 | 0.324 | 0.500 | 0.238 |
Unique coverage | 0.303 | 0.692 | 0.006 | 0.004 | 0.012 | 0.036 | 0.058 | 0.500 | 0.238 |
Coverage of overall solution | 0.303 | 0.692 | 0.538 | 0.500 | 0.238 | ||||
Consistency of overall solution | 0.914 | 0.934 | 0.924 | 0.926 | 0.935 |
Antecedent Condition | 2011–2015 | 2016– 2020 | 2021–2022 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | B | C1 | C2 | C3 | C4 | C5 | ||
A1a | A1b | ||||||||||
Infrastructure | ○ | ★ | ★ | ★ | ◯ | ○ | ⭑ | ◯ | ◯ | ★ | |
Technical talent | ◯ | ◯ | ◯ | ◯ | ★ | ★ | ○ | ○ | ○ | ○ | ★ |
Innovations | ⭑ | ○ | ★ | ◯ | ◯ | ◯ | ◯ | ○ | ⭑ | ◯ | |
R&D investment | ⭑ | ★ | ★ | ◯ | ◯ | ○ | ⭑ | ★ | ★ | ◯ | |
Government policy | ⭑ | ◯ | ◯ | ★ | ★ | ○ | ○ | ⭑ | ○ | ★ | |
Digital finance | ★ | ★ | ★ | ◯ | ◯ | ★ | ★ | ◯ | ◯ | ◯ | |
Consistency | 0.9643 | 0.8748 | 0.9067 | 0.8799 | 0.8834 | 0.8086 | 0.8827 | 0.9480 | 0.8646 | 0.9159 | 0.9398 |
Raw coverage | 0.2286 | 0.1163 | 0.1020 | 0.1303 | 0.0574 | 0.1650 | 0.1070 | 0.1227 | 0.0912 | 0.0733 | 0.1167 |
Unique coverage | 0.1020 | 0.0385 | 0.0105 | 0.0387 | 0.0289 | 0.1650 | 0.0501 | 0.0673 | 0.0524 | 0.0142 | 0.0883 |
Coverage of overall solution | 0.3565 | 0.1650 | 0.3523 | ||||||||
Consistency of overall solution | 0.9085 | 0.8086 | 0.9126 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Fu, F.; Xu, H. Unveiling How the Digital Economy Empowers Green Productivity: Machine Learning and FsQCA Methods. Sustainability 2025, 17, 8023. https://doi.org/10.3390/su17178023
Chen L, Fu F, Xu H. Unveiling How the Digital Economy Empowers Green Productivity: Machine Learning and FsQCA Methods. Sustainability. 2025; 17(17):8023. https://doi.org/10.3390/su17178023
Chicago/Turabian StyleChen, Liuxin, Fan Fu, and Hao Xu. 2025. "Unveiling How the Digital Economy Empowers Green Productivity: Machine Learning and FsQCA Methods" Sustainability 17, no. 17: 8023. https://doi.org/10.3390/su17178023
APA StyleChen, L., Fu, F., & Xu, H. (2025). Unveiling How the Digital Economy Empowers Green Productivity: Machine Learning and FsQCA Methods. Sustainability, 17(17), 8023. https://doi.org/10.3390/su17178023