The Multiscale Assessment of Infrastructure Vulnerability to River Floods in Andean Areas: A Case Study of the Chibunga River in the Parish of San Luis, Ecuador
Abstract
1. Introduction
1.1. Problem
1.2. Prism Focus
1.3. Gaps and Limitations in Literature
2. Materials and Methods
2.1. Study Area
2.2. Overview of the Methodology
2.3. Phase I: Data Collection
2.4. Phase II: Data Processing and Analysis
3. Results
3.1. Determination of Doubtful Data
3.2. Extreme Precipitation and IDF Curves
3.3. Hyetograph and Hydrograph Analyses for Return Periods of 10, 50, 100, and 500 Years
3.4. Hydraulic Modeling of the Chibunga River Return Flows at 10, 50, 100, and 500 Years
3.4.1. Construction of the DEM
3.4.2. Manning’s Roughness
3.4.3. Model Calibration and Validation
3.5. Identification and Analysis of Elements Exposed to Flooding in Different Return Periods: 10, 50, 100, and 500 Years
3.5.1. Exposure of Drinking Water and Sewage to Flooding for a Return Period of 10, 50, 100, and 500 Years
3.5.2. Electrical System Exposure to Flooding for a Return Period of 10, 50, 100, and 500 Years
3.6. Direct Economic Damage
3.7. Proposals to Reduce the Risk of Flooding
- (i)
- Protective margins that include exclusion zones and vegetated riparian strips: Their implementation protects the river’s buffer zone, reduces bank erosion, and maintains storage capacity in the plain. There is evidence that riparian buffers and vegetation restoration mitigate the hydrological response, representing a cost-effective measure in urban and peri-urban contexts [33].
- (ii)
- Reinforcement of critical infrastructure: Based on a worst-case scenario with a 500-year return time, these areas, categorized as very high-threat, should consider the selective oversizing of collectors and backflow preventers, the elevation or shielding of electrical equipment above the elevation mark, and the improvement in bridge and culvert crossings using risk-based design criteria [34].
- (iii)
- Telemetry sensors for early warning and adaptive operation: The installation of level-rainfall nodes in control sections of the Chibunga River makes it possible to anticipate overloads and activate protocols that allow for the evacuation of people in the event of river flooding, safeguarding their safety [35].
4. Discussion
4.1. Impact of Flooding on Infrastructure Vulnerability
4.2. Comparison with Existing Literature
4.3. Future Research and Limitations
5. Conclusions
- The flooded area increases from 7.29 to 17.92 hectares and the maximum flow increases from 104.6 to 1728.9 m3/s over the analyzed return periods of 10, 50, 100, and 500 years, demonstrating a nonlinear runoff–conveyance response. This behavior underscores the importance of considering design scenarios with long return periods to ensure resilient infrastructure and appropriate territorial planning.
- The drinking water network is highly resilient, with only 0.08% of its length classified as high-to-very high risk under a 500-year scenario. This implies limited operational loss at modeled extremes. In contrast, 49.15% of the sewer network’s pipe length is classified as high-to-very high risk under the worst-case scenario, particularly in low-lying areas. This asymmetry underscores the importance of sewer hydraulics, such as overload control and backflow prevention, as well as right-of-way management, in peripheral sectors. These measures are crucial for mitigating overflows, infiltration, and wastewater diversion during peak demand.
- For high-voltage lines, the proportion of assets in the high-very high class increases from 0.60% in a 10-year scenario to 6.88% in a 500-year scenario. For low-voltage lines, it rises from 0.00% to 18.03%, and for streetlights, it increases from 0.00% to 1.18%. These increases in likelihood, incidence of faults, and access constraints for restoration underscore the importance of span-level hardening, sectionalizing, and elevating or shielding flood-prone equipment.
- The adapted DaLA screening estimates USD 84,162.86 in direct losses under a 500-year scenario. Sewer repairs account for most of these losses, at USD 54,220.31 (64%), followed by low-voltage components, at USD 20,348.74, and drinking water, at USD 479. These figures validate exposure patterns and provide order-of-magnitude inputs for cost–benefit analyses and investment roadmaps.
- Based on these findings, a combined package consisting of the following is imperative: (1) riparian buffers and protective margins to preserve active storage in floodplains and reduce peak flows, (2) targeted reinforcement of sewer choke points and critical electrical components to meet performance targets under a 500-year scenario, and (3) telemetry and an early warning system for adaptive operation. These measures will reduce flood depth and velocity, limit cascading service disruptions, and will provide reproducible information for land use monitoring and sector prioritization.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hirabayashi, Y.; Alifu, H.; Yamazaki, D.; Imada, Y.; Shiogama, H.; Kimura, Y. Anthropogenic Climate Change Has Changed Frequency of Past Flood during 2010–2013. Prog. Earth Planet. Sci. 2021, 8, 36. [Google Scholar] [CrossRef]
- United Nations Office for Disaster Risk Reduction. La Agenda 2030 y Los Objetivos De Desarrollo Sostenible Una Oportunidad Para América Latina y Caribe; United Nations Office for Disaster Risk Reduction: Santiago, Chile, 2018; ISBN 978-92-1-058643-6. [Google Scholar]
- Nguyen, T.T.; Grote, U.; Neubacher, F.; Rahut, D.B.; Do, M.H.; Paudel, G.P. Security Risks from Climate Change and Environmental Degradation: Implications for Sustainable Land Use Transformation in the Global South. Curr. Opin. Environ. Sustain. 2023, 63, 101322. [Google Scholar] [CrossRef]
- Camacho, A.P.; Ilijama, M.V.; Aroca, G.B.; Betancourt, E.G. Perception of social vulnerability to the climate variability of the population of the microbasin of the Chazo Juan river, Ecuador. Rev. Geogr. Venez. 2021, 62, 146–159. [Google Scholar]
- Torremorell, A.; Hegoburu, C.; Brandimarte, A.; Costa Rodrigues, E.; Pompêo, M.; Silva, S.; Moschini-Carlos, V.; Caputo, L.; Fierro, P.; Mojica, J.; et al. Current and Future Threats for Ecological Quality Management of South American Freshwater Ecosystems. Inland Waters 2021, 11, 125–140. [Google Scholar] [CrossRef]
- Duque, L.-F.; O’Donnell, G.; Cordero, J.; Jaramillo, J.; O’Connell, E. Analysis of the Potential Impacts of Climate Change on the Mean Annual Water Balance and Precipitation Deficits for a Catchment in Southern Ecuador. Hydrology 2025, 12, 177. [Google Scholar] [CrossRef]
- Pinos, J.; Timbe, L. Mountain Riverine Floods in Ecuador: Issues, Challenges, and Opportunities. Front. Water 2020, 2, 545880. [Google Scholar] [CrossRef]
- Güneralp, B.; Güneralp, İ.; Liu, Y. Changing Global Patterns of Urban Exposure to Flood and Drought Hazards. Glob. Environ. Change 2015, 31, 217–225. [Google Scholar] [CrossRef]
- Muis, S.; Verlaan, M.; Winsemius, H.C.; Aerts, J.C.J.H.; Ward, P.J. A Global Reanalysis of Storm Surges and Extreme Sea Levels. Nat. Commun. 2016, 7, 11969. [Google Scholar] [CrossRef]
- Pinos, J.; Quesada-Román, A. Flood Risk-Related Research Trends in Latin America and the Caribbean. Water 2022, 14, 10. [Google Scholar] [CrossRef]
- Wei, Y.; Li, H.; Zhou, Y.; Commey, N.A.; Zhu, Z.; Ishidaira, H.; Jiang, Z.; Yang, D. Flood Vulnerability Assessment of Urban Agglomeration under the Background of Urban Expansion. J. Hydrol. 2025, 662, 133962. [Google Scholar] [CrossRef]
- Bush, S.T.; Dresback, K.M.; Szpilka, C.M.; Kolar, R.L. Use of 1D Unsteady HEC-RAS in a Coupled System for Compound Flood Modeling: North Carolina Case Study. J. Mar. Sci. Eng. 2022, 10, 306. [Google Scholar] [CrossRef]
- Ccanccapa-Puma, J.; Hidalgo-Valdivia, A.V.; Noriega-Aquise, G.Y.; Aguilar-Chávez, A.E.; Marques, M. Analysis and Risk Prevention of Flooding in High-Risk Gorges in the City of Arequipa, Peru. Tecnol. Cienc. Agua 2024, 15, 6. [Google Scholar] [CrossRef]
- Galarza-Villamar, J.A.; Leeuwis, C.; Cecchi, F. Rice Farmers and Floods in Ecuador: The Strategic Role of Social Capital in Disaster Risk Reduction and Livelihood Resilience. Int. J. Disaster Risk Reduct. 2024, 104, 104332. [Google Scholar] [CrossRef]
- Van Niekerk, D.; Nemakonde, L.D.; Kruger, L.; Forbes-Genade, K. Community-Based Disaster Risk Management. In Handbook of Disaster Research; Rodríguez, H., Donner, W., Trainor, J.E., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 411–429. ISBN 978-3-319-63254-4. [Google Scholar]
- Iglesias-Pascual, R.; Benassi, F.; Ojeda Casares, S.; García, M.Á.H. Social Infrastructure in Southern Europe: A Diagnostic Tool for Socio-Territorial Vulnerability in Public Policies. Sustain. Dev. 2025, 33, 1–13. [Google Scholar] [CrossRef]
- AL-Hussein, A.A.M.; Khan, S.; Ncibi, K.; Hamdi, N.; Hamed, Y. Flood Analysis Using HEC-RAS and HEC-HMS: A Case Study of Khazir River (Middle East—Northern Iraq). Water 2022, 14, 3779. [Google Scholar] [CrossRef]
- Gobierno Autónomo Descentralizado Municipal del Cantón Riobamba. Plan de Ordenamiento Territorial 2023–2035. Available online: https://www.gadmriobamba.gob.ec/index.php/la-municipalidad/la-alcaldia/plan-de-desarrollo-y-ordenamiento/pdot-2023-2035. (accessed on 15 June 2025).
- United Nations Office for Disaster Risk Reduction. GAR Special Report 2023: Mapping Resilience for the Sustainable Development Goals; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2023; ISBN 978-92-1-002830-1. [Google Scholar]
- Pérez-Montiel, J.I.; Cardenas-Mercado, L.; Nardini, A.G.C. Flood Modeling in a Coastal Town in Northern Colombia: Comparing MODCEL vs. IBER. Water 2022, 14, 3866. [Google Scholar] [CrossRef]
- Rivera Guzmán, E.F.; Mañay Chochos, E.D.; Chiliquinga Malliquinga, M.D.; Baldeón Egas, P.F.; Toasa Guachi, R.M. LoRa Network-Based System for Monitoring the Agricultural Sector in Andean Areas: Case Study Ecuador. Sensors 2022, 22, 6743. [Google Scholar] [CrossRef]
- Earth Science Data Systems Phased Array L-Band Synthetic Aperture Radar. Available online: https://www.earthdata.nasa.gov/data/instruments/palsar (accessed on 24 July 2025).
- Valdivia Pompa, H.A.; Cerdan Mendoza, J. Niveles de Precisión en Medición de Caudales Utilizando el Método Del Flotador; Universidad Privada del Norte: Cajamarca, Perú, 2023. [Google Scholar]
- SERCOP Búsqueda de Procesos de Contratación. Available online: https://www.compraspublicas.gob.ec/ProcesoContratacion/compras/PC/buscarProceso.cpe?sg=1 (accessed on 5 August 2025).
- Ávila Parra, K.; Martín Vide, J. Análisis estadístico de los eventos extremos de precipitación en la zona centro y sur de Chile continental. Cuad. Geográficos 2013, 52, 69–83. Available online: https://revistaseug.ugr.es/index.php/cuadgeo/article/view/926 (accessed on 5 August 2025).
- Tenesaca-Saca, M.E.; Reyes-Zambrano, J.L.; Vallejo-Vizhuete, D.P.; Chavarría-Párraga, J.E. Modelación Hidrológica e Hidráulica para la Identificación de Zonas de Inundación en la Quebrada Las Abras, Riobamba. Rev. Cient. INGENIAR Ing. Tecnol. Investig. 2024, 7, 323–343. Available online: https://journalingeniar.org/index.php/ingeniar/article/view/228 (accessed on 5 August 2025).
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill: New York, NY, USA, 1988; ISBN 0-07-010810-2. [Google Scholar]
- Zolghadr, M.; Rafiee, M.R.; Esmaeilmanesh, F.; Fathi, A.; Tripathi, R.P.; Rathnayake, U.; Gunakala, S.R.; Azamathulla, H.M. Computation of Time of Concentration Based on Two-Dimensional Hydraulic Simulation. Water 2022, 14, 3155. [Google Scholar] [CrossRef]
- Snyder, F.F. Synthetic Unit Graphs. Trans. Am. Geophys. Union 1938, 19, 447–454. [Google Scholar] [CrossRef]
- Chow, V.T. Open-Channel Hydraulics; The Blackburn Press: Caldwell, NJ, USA, 2009; ISBN 978-1-932846-18-8. [Google Scholar]
- Barnes, H. Roughness Characteristics of Natural Channels; USGS: Reston, VA, USA, 1967. [Google Scholar]
- Arcement, G.; Schneider, V. Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains; USGS: Reston, VA, USA, 1989. [Google Scholar]
- Valera, C.A.; Pissarra, T.C.T.; Filho, M.V.M.; Do Valle Júnior, R.F.; Oliveira, C.F.; Moura, J.P.; Sanches Fernandes, L.F.; Pacheco, F.A.L. The Buffer Capacity of Riparian Vegetation to Control Water Quality in Anthropogenic Catchments from a Legally Protected Area: A Critical View over the Brazilian New Forest Code. Water 2019, 11, 549. [Google Scholar] [CrossRef]
- Avcı, C.B.; Vanolya, M. Proposed Framework for Sustainable Flood Risk-Based Design, Construction and Rehabilitation of Culverts and Bridges Under Climate Change. Water 2025, 17, 1663. [Google Scholar] [CrossRef]
- Esposito, M.; Palma, L.; Belli, A.; Sabbatini, L.; Pierleoni, P. Recent Advances in Internet of Things Solutions for Early Warning Systems: A Review. Sensors 2022, 22, 2124. [Google Scholar] [CrossRef]
- Fekete, A.; Estrany, J.; Ramírez, M.Á.A. Cascading Impact Chains and Recovery Challenges of the 2024 Valencia Catastrophic Floods. Discov. Sustain. 2025, 6, 586. [Google Scholar] [CrossRef]
- Aziz, F.; Wang, X.; Qasim Mahmood, M.; Guild, R. Wastewater Flooding Risk Assessment for Coastal Communities: Compound Impacts of Climate Change and Population Growth. J. Hydrol. 2024, 645, 132136. [Google Scholar] [CrossRef]
- Asaridis, P.; Molinari, D.; Di Maio, F.; Ballio, F.; Zio, E. A Probabilistic Modeling and Simulation Framework for Power Grid Flood Risk Assessment. Int. J. Disaster Risk Reduct. 2025, 120, 105353. [Google Scholar] [CrossRef]
- Sauer, I.J.; Mester, B.; Frieler, K.; Zimmermann, S.; Schewe, J.; Otto, C. Limited Progress in Global Reduction of Vulnerability to Flood Impacts over the Past Two Decades. Commun. Earth Environ. 2024, 5, 239. [Google Scholar] [CrossRef]
- Mohammadi, S.; De Angeli, S.; Boni, G.; Pirlone, F.; Cattari, S. Review Article: Current Approaches and Critical Issues in Multi-Risk Recovery Planning of Urban Areas Exposed to Natural Hazards. Nat. Hazards Earth Syst. Sci. 2024, 24, 79–107. [Google Scholar] [CrossRef]
- Bashir, B.; Alsalman, A. Morphometric Characterization and Dual Analysis for Flash Flood Hazard Assessment of Wadi Al-Lith Watershed, Saudi Arabia. Water 2024, 16, 3333. [Google Scholar] [CrossRef]
- Annis, A.; Nardi, F.; Petroselli, A.; Apollonio, C.; Arcangeletti, E.; Tauro, F.; Belli, C.; Bianconi, R.; Grimaldi, S. UAV-DEMs for Small-Scale Flood Hazard Mapping. Water 2020, 12, 1717. [Google Scholar] [CrossRef]
Return Period T (Years) | Reduced Variate Yt | Precipitation (mm) Xt (mm) | Probability of Occurrence F(xT) | Fixed-Interval Correction Xt (mm) |
---|---|---|---|---|
10 | 2.250 | 38.6 | 0.900 | 43.6 |
50 | 3.902 | 60.8 | 0.980 | 68.7 |
100 | 4.600 | 70.3 | 0.990 | 79.4 |
500 | 6.214 | 92.0 | 0.998 | 104.0 |
Return Period | System | Low (%) | Medium (%) | High and Very High (%) | No Impact (%) |
---|---|---|---|---|---|
10 years | Drinking Water | 0.52 | 0.00 | 0.00 | 99.48 |
Sewerage | 32.30 | 6.09 | 8.04 | 53.57 | |
50 years | Drinking Water | 11.44 | 1.08 | 0.04 | 87.44 |
Sewerage | 28.83 | 24.60 | 16.78 | 29.79 | |
100 years | Drinking Water | 23.37 | 1.74 | 0.04 | 74.84 |
Sewerage | 12.66 | 24.31 | 28.57 | 34.46 | |
500 years | Drinking Water | 52.21 | 4.83 | 0.08 | 42.88 |
Sewerage | 25.04 | 24.00 | 49.15 | 25.81 |
Return Period | System | Low (%) | Medium (%) | High and Very High (%) | No Impact (%) |
---|---|---|---|---|---|
10 years | High Voltage | 6.69 | 0.60 | 0.60 | 92.11 |
Low Voltage | 1.50 | 0.60 | 0.00 | 97.90 | |
Electric Poles | 0.30 | 0.29 | 0.00 | 98.82 | |
50 years | High Voltage | 15.54 | 2.00 | 1.82 | 80.64 |
Low Voltage | 12.95 | 1.54 | 0.00 | 85.51 | |
Electric Poles | 10.65 | 1.78 | 0.00 | 87.57 | |
100 years | High Voltage | 22.00 | 4.00 | 5.84 | 68.16 |
Low Voltage | 22.46 | 3.02 | 0.00 | 74.52 | |
Electric Poles | 14.79 | 2.96 | 0.59 | 81.66 | |
500 years | High Voltage | 48.84 | 6.00 | 6.88 | 38.27 |
Low Voltage | 34.47 | 3.65 | 18.03 | 43.85 | |
Electric Poles | 42.01 | 8.88 | 1.18 | 47.93 |
Component | Estimated Unit Cost (USD/m) |
---|---|
PVC pipe PN10 Ø63–90 mm | 17 |
Excavation for installation (1.0–1.2 m) | 10 |
Valves, tees, fittings (proportional/m) | 15 |
Backfill, compaction, surface restoration | 12 |
Transport and installation | 11 |
Labor | 20 |
Total cost | 85 |
Component | Estimated Unit Cost (USD/m) |
---|---|
PVC sanitary pipe Ø160 mm SDR41 | 20 |
Trench excavation (1.5 m depth) | 12 |
Backfill, compaction, surface restoration | 15 |
Manholes (proportional/m) | 18 |
Transport and handling | 10 |
Labor | 25 |
Total cost | 100 |
Component | Estimated Unit Cost (USD/unit) |
---|---|
Concrete pole (12 m) | 330 |
Fittings, insulators, brackets | 120 |
Pole base excavation and foundation | 90 |
Mounting labor | 110 |
Transport and handling | 50 |
Total cost | 700 |
Component | Estimated Unit Cost (USD/m) |
---|---|
AAC aluminum cable (3 × 50 mm2) | 6 |
Insulators and brackets (proportional/m) | 3 |
Connection and protection accessories | 1.5 |
Labor and installation (proportional) | 6 |
Transport and mounting | 2.5 |
Total cost | 19 |
Component | Estimated Unit Cost (USD/m) |
---|---|
ACSR aluminum–steel-reinforced cable | 8 |
Polymeric or porcelain insulators | 4.5 |
Fittings and support structures (proportional) | 7 |
Skilled labor | 12 |
Supervision, safety, transportation | 6.5 |
Total cost | 38 |
Infrastructure | Total, Length/Quantity | Unit | High and Very High Damage Level (%) | Unit Cost (USD) | Affected Quantity | Estimated Damage (USD) |
---|---|---|---|---|---|---|
Low-Voltage Line | 5130.02 | m | 18.03 | 22 | 924.94 | 20,348.74 |
High-Voltage Line | 2952.46 | m | 6.88 | 38 | 203.13 | 7718.91 |
Electric Poles | 169 | units | 1.18 | 700 | 1.99 | 1395.94 |
Sanitary Sewer Network | 1103.16 | m | 49.15 | 100 | 542.2 | 54,220.31 |
Water Supply Network | 7043.53 | m | 0.08 | 85 | 5.63 | 478.96 |
Total Estimated Damage | 84,162.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paredes, D.S.; Rivera, E.F.; Baldeón-Egas, P.; Toasa, R.M. The Multiscale Assessment of Infrastructure Vulnerability to River Floods in Andean Areas: A Case Study of the Chibunga River in the Parish of San Luis, Ecuador. Sustainability 2025, 17, 7915. https://doi.org/10.3390/su17177915
Paredes DS, Rivera EF, Baldeón-Egas P, Toasa RM. The Multiscale Assessment of Infrastructure Vulnerability to River Floods in Andean Areas: A Case Study of the Chibunga River in the Parish of San Luis, Ecuador. Sustainability. 2025; 17(17):7915. https://doi.org/10.3390/su17177915
Chicago/Turabian StyleParedes, Daniel S., E. Fabián Rivera, Paúl Baldeón-Egas, and Renato M. Toasa. 2025. "The Multiscale Assessment of Infrastructure Vulnerability to River Floods in Andean Areas: A Case Study of the Chibunga River in the Parish of San Luis, Ecuador" Sustainability 17, no. 17: 7915. https://doi.org/10.3390/su17177915
APA StyleParedes, D. S., Rivera, E. F., Baldeón-Egas, P., & Toasa, R. M. (2025). The Multiscale Assessment of Infrastructure Vulnerability to River Floods in Andean Areas: A Case Study of the Chibunga River in the Parish of San Luis, Ecuador. Sustainability, 17(17), 7915. https://doi.org/10.3390/su17177915