Towards Zero-Waste Cities: An Integrated and Circular Approach to Sustainable Solid Waste Management
Abstract
1. Introduction
2. Methodology
3. Proposed Approach
3.1. System Overview
3.2. Integrated Waste Processing Facilities
4. Expected Outcomes of the Proposed Approach
4.1. Operational Efficiency and Material Recovery
4.2. Environmental Performance and Impact Reduction
4.3. Economic Viability and Revenue Streams
4.4. Policy, Regulatory, and Social Considerations
5. Challenges and Limitations
6. Conclusions
- -
- A substantial reduction in landfill dependency through advanced sorting and valorization.
- -
- Enhanced climate change mitigation via reductions in greenhouse gas emissions from organic waste diversion, energy recovery, and substitution of virgin materials.
- -
- Resource conservation supported by high recovery rates of paper, plastics, metals, and glass, as well as the cascading use of industrial by-products.
- -
- Economic viability demonstrated through diverse revenue streams from recyclables, compost, secondary aggregates, and energy generation.
- -
- Alignment with international regulatory frameworks, such as the EU Circular Economy Action Plan, the Basel Convention, and the WHO Guidelines for Healthcare Waste Management, ensuring legal conformity and operational legitimacy.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaza, S.; Bhada-Tata, P.; Yao, L.C.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Ashokkumar, V.; Flora, G.; Venkatkarthick, R.; Senthilkannan, K.; Kuppam, C.; Mary Stephy, G.; Kamyab, H.; Chen, W.-H.; Thomas, J.; Ngamcharussrivichai, C. Advanced Technologies on the Sustainable Approaches for Conversion of Organic Waste to Valuable Bioproducts: Emerging Circular Bioeconomy Perspective. Fuel 2022, 324, 124313. [Google Scholar] [CrossRef]
- Offenhuber, D. Waste Is Information: Infrastructure Legibility and Governance; MIT Press: Cambridge, MA, USA, 2023. [Google Scholar]
- Agya, B.A.; Rückert, A.; Dornack, C. Effectiveness of Traditional Solid Waste Management System of Rural Communities: A Case Study in the Kwahu East District, Ghana. Environ. Chall. 2024, 15, 100869. [Google Scholar] [CrossRef]
- Di Maria, F.; Mastrantonio, M.; Uccelli, R. The Life Cycle Approach for Assessing the Impact of Municipal Solid Waste Incineration on the Environment and on Human Health. Sci. Total Environ. 2021, 776, 145785. [Google Scholar] [CrossRef] [PubMed]
- Siddiqua, A.; Hahladakis, J.N.; Al-Attiya, W.A.K.A. An Overview of the Environmental Pollution and Health Effects Associated with Waste Landfilling and Open Dumping. Environ. Sci. Pollut. Res. 2022, 29, 58514–58536. [Google Scholar] [CrossRef]
- Guo, H.; Xu, H.; Liu, J.; Nie, X.; Li, X.; Shu, T.; Bai, B.; Ma, X.; Yao, Y. Greenhouse Gas Emissions in the Process of Landfill Disposal in China. Energies 2022, 15, 6711. [Google Scholar] [CrossRef]
- Anshassi, M.; Sackles, H.; Townsend, T.G. A Review of LCA Assumptions Impacting Whether Landfilling or Incineration Results in Less Greenhouse Gas Emissions. Resour. Conserv. Recycl. 2021, 174, 105810. [Google Scholar] [CrossRef]
- Blair, J.; Mataraarachchi, S. A Review of Landfills, Waste and the Nearly Forgotten Nexus with Climate Change. Environments 2021, 8, 73. [Google Scholar] [CrossRef]
- Gupta, J.; Ghosh, P.; Kumari, M.; Thakur, I.S.; Swati, S. Chapter 14—Solid Waste Landfill Sites for the Mitigation of Greenhouse Gases. In Biomass, Biofuels, Biochemicals; Elsevier: Amsterdam, The Netherlands, 2022; pp. 315–340. [Google Scholar] [CrossRef]
- Lu, Z.-Q.; Wu, C.-G.; Wu, N.-Y.; Lu, H.-L.; Wang, T.; Xiao, R.; Liu, H.; Wu, X.-H. Change Trend of Natural Gas Hydrates in Permafrost on the Qinghai-Tibet Plateau (1960–2050) under the Background of Global Warming and Their Impacts on Carbon Emissions. China Geol. 2022, 5, 475–509. [Google Scholar] [CrossRef]
- Yang, M.; Chen, L.; Wang, J.; Msigwa, G.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Circular Economy Strategies for Combating Climate Change and Other Environmental Issues. Environ. Chem. Lett. 2022, 21, 55–80. [Google Scholar] [CrossRef]
- Gu, B.; Tang, X.; Liu, L.; Li, Y.; Fujiwara, T.; Sun, H.; Gu, A.; Yao, Y.; Duan, R.; Song, J.; et al. The Recyclable Waste Recycling Potential towards Zero Waste Cities—A Comparison of Three Cities in China. J. Clean. Prod. 2021, 295, 126358. [Google Scholar] [CrossRef]
- Rodríguez-Guerreiro, M.-J.; Torrijos, V.; Soto, M. A Review of Waste Management in Higher Education Institutions: The Road to Zero Waste and Sustainability. Environments 2024, 11, 293. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Chen, G.; Tan, Q.; Duan, L. The Road to “Zero-Waste” in Coastal Tourism Cities—Taking Sanya as an Example. Circ. Econ. 2025, 4, 100139. [Google Scholar] [CrossRef]
- Giordano, V.; Castagnoli, A.; Pecorini, I.; Chiarello, F. Identifying Technologies in Circular Economy Paradigm through Text Mining on Scientific Literature. PLoS ONE 2024, 19, e0312709. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Bhattacharya, A. Navigating the Shift: The Zero-Waste Paradigm in Apparel Manufacturing; Springer Nature: Cham, Switzerland, 2024; pp. 99–115. [Google Scholar] [CrossRef]
- Castagnoli, A.; Salem, A.M.; Desideri, U.; Pecorini, I. Environmental Assessment of Gasification and Green Hydrogen Potential Role in Waste Management Decarbonization. J. Clean. Prod. 2024, 482, 144174. [Google Scholar] [CrossRef]
- Fernando, Y.; Tseng, M.-L.; Aziz, N.; Ikhsan, R.B.; Wahyuni-Td, I.S. Waste-to-Energy Supply Chain Management on Circular Economy Capability: An Empirical Study. Sustain. Prod. Consum. 2022, 31, 26–38. [Google Scholar] [CrossRef]
- Lisbona, P.; Pascual, S.; Pérez, V. Waste to Energy: Trends and Perspectives. Chem. Eng. J. Adv. 2023, 14, 100494. [Google Scholar] [CrossRef]
- Lee, B.X.; Kjaerulf, F.; Turner, S.; Cohen, L.; Donnelly, P.D.; Muggah, R.; Davis, R.; Realini, A.; Kieselbach, B.; MacGregor, L.S.; et al. Transforming Our World: Implementing the 2030 Agenda Through Sustainable Development Goal Indicators. J. Public Health Policy 2016, 37 (Suppl. S1), 13–31. [Google Scholar] [CrossRef]
- Kim, J.; Latif, M.; Song, J.; Park, G.; Lee, J. Automated Sorting of Recyclable Domestic Waste; Elsevier: Amsterdam, The Netherlands, 2025; pp. 417–426. [Google Scholar] [CrossRef]
- Yin, J.; Xie, M.; Yu, X.; Feng, H.; Wang, M.; Zhang, Y.; Chen, T. A Review of the Definition, Influencing Factors, and Mechanisms of Rapid Composting of Organic Waste. Environ. Pollut. 2023, 342, 123125. [Google Scholar] [CrossRef]
- Serrano, D.; Sánchez-Delgado, S.; Horvat, A.; Marugán-Cruz, C.; Batuecas, E.; Kelebopile, L.; Kwapinska, M. Non-Recyclable Municipal Solid Waste Characterization and Pyrolysis for Energy Recovery. Bioresour. Technol. 2024, 415, 131641. [Google Scholar] [CrossRef]
- Rabnawaz Ahmed, R.; Zhang, X. Multi-Layer Value Stream Assessment of the Reverse Logistics Network for Inert Construction Waste Management. Resour. Conserv. Recycl. 2021, 170, 105574. [Google Scholar] [CrossRef]
- Zaki, M.T.; Rowles, L.S.; Adjeroh, D.A.; Orner, K.D. A Critical Review of Data Science Applications in Resource Recovery and Carbon Capture from Organic Waste. ACS EST Eng. 2023, 3, 1424–1467. [Google Scholar] [CrossRef] [PubMed]
- Makan, A.; Malamis, D.; Assobhei, O.; Loizidou, M.; Mountadar, M. Multi-Criteria Decision Aid Approach for the Selection of the Best Compromise Management Scheme for the Treatment of Municipal Solid Waste in Morocco. Int. J. Environ. Waste Manag. 2013, 12, 300–317. [Google Scholar] [CrossRef]
- Makan, A.; Fadili, A. Sustainability Assessment of Healthcare Waste Treatment Systems Using Surrogate Weights and PROMETHEE Method. Waste Manag. Res. J. Sustain. Circ. Econ. 2020, 39, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Makan, A.; Fadili, A. Sustainability Assessment of Large-Scale Composting Technologies Using PROMETHEE Method. J. Clean. Prod. 2020, 261, 121244. [Google Scholar] [CrossRef]
- Zargar, T.I.; Alam, P.; Khan, A.H.; Alam, S.S.; Abutaleb, A.; Abul Hasan, M.; Khan, N.A. Characterization of municipal solid waste: Measures towards management strategies using statistical analysis. J. Environ. Manag. 2023, 342, 118331. [Google Scholar] [CrossRef]
- Lee, R.P.; Meyer, B.; Huang, Q.; Voss, R. Sustainable Waste Management for Zero Waste Cities in China: Potential, Challenges and Opportunities. Clean Energy 2020, 4, 169–201. [Google Scholar] [CrossRef]
- Ragazou, K.; Zournatzidou, G.; Sklavos, G.; Sariannidis, N. Integration of Circular Economy and Urban Metabolism for a Resilient Waste-Based Sustainable Urban Environment. Urban Sci. 2024, 8, 175. [Google Scholar] [CrossRef]
- Tolstykh, T.; Shmeleva, N.; Gamidullaeva, L. Evaluation of Circular and Integration Potentials of Innovation Ecosystems for Industrial Sustainability. Sustainability 2020, 12, 4574. [Google Scholar] [CrossRef]
- Spani, R.C. The New Circular Economy Action Plan. FEEM Policy BRIEF, No. 09-2020. Available online: https://ssrn.com/abstract=3711331 (accessed on 15 May 2025).
- Chandrappa, R.; Das, D.B. Solid Waste Management: Principles and Practice; Springer Nature: Cham, Switzerland, 2024. [Google Scholar]
- Lederer, J.; Schuch, D. The Contribution of Waste and Bottom Ash Treatment to the Circular Economy of Metal Packaging: A Case Study from Austria. Resour. Conserv. Recycl. 2024, 203, 107461. [Google Scholar] [CrossRef]
- Antonopoulos, I.; Faraca, G.; Tonini, D. Recycling of Post-Consumer Plastic Packaging Waste in the EU: Recovery Rates, Material Flows, and Barriers. Waste Manag. 2021, 126, 694–705. [Google Scholar] [CrossRef]
- Gadaleta, G.; De Gisi, S.; Todaro, F.; D’Alessandro, G.; Binetti, S.; Notarnicola, M. Assessing the Sorting Efficiency of Plastic Packaging Waste in an Italian Material Recovery Facility: Current and Upgraded Configuration. Recycling 2023, 8, 25. [Google Scholar] [CrossRef]
- Tallentire, C.W.; Steubing, B. The Environmental Benefits of Improving Packaging Waste Collection in Europe. Waste Manag. 2020, 103, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Strezov, V.; Zhou, X.; Evans, T.J. Life Cycle Impact Assessment of Metal Production Industries in Australia. Sci. Rep. 2021, 11, 10116. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Berrill, P.; Zimmerman, J.B.; Hertwich, E.G. Copper Recycling Flow Model for the United States Economy: Impact of Scrap Quality on Potential Energy Benefit. Environ. Sci. Technol. 2021, 55, 5485–5495. [Google Scholar] [CrossRef]
- Milios, L.; Esmailzadeh Davani, A.; Yu, Y. Sustainability Impact Assessment of Increased Plastic Recycling and Future Pathways of Plastic Waste Management in Sweden. Recycling 2018, 3, 33. [Google Scholar] [CrossRef]
- Bułkowska, K.; Zielińska, M.; Bułkowski, M. Blockchain-Based Management of Recyclable Plastic Waste. Energies 2024, 17, 2937. [Google Scholar] [CrossRef]
- Yao, Z.; Qin, B.; Huang, Z.; Ruan, J.; Xu, Z. Green Combined Resource Recycling System for the Recycling of Waste Glass. ACS Sustain. Chem. Eng. 2021, 9, 7361–7368. [Google Scholar] [CrossRef]
- Bourtsalas, A.C.; Wei, J. Exhaust Steam Utilization in Waste-to-Energy Strategies: From District Heating to Desalination. J. Clean. Prod. 2023, 428, 139389. [Google Scholar] [CrossRef]
- Pelda, J.; Stelter, F.; Holler, S. Potential of Integrating Industrial Waste Heat and Solar Thermal Energy into District Heating Networks in Germany. Energy 2020, 203, 117812. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P.; Hanewinkel, J.; Flamme, S. Status of Waste-to-Energy in Germany, Part I—Waste Treatment Facilities. Waste Manag. Res. J. Sustain. Circ. Econ. 2020, 38 (Suppl. S1), 23–44. [Google Scholar] [CrossRef]
- Makan, A.; Fadili, A.; Oubenali, M. Interaction of Physicochemical Parameters during Pressurized In-Vessel Composting of Food Waste. Bioresour. Technol. Rep. 2019, 10, 100350. [Google Scholar] [CrossRef]
- Porterfield, K.K.; Hobson, S.A.; Neher, D.A.; Niles, M.T.; Roy, E.D. Microplastics in Composts, Digestates, and Food Wastes: A Review. J. Environ. Qual. 2023, 52, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Barbudo, A.; Ayuso, J.; Lozano, A.; Cabrera, M.; López-Uceda, A. Recommendations for the Management of Construction and Demolition Waste in Treatment Plants. Environ. Sci. Pollut. Res. 2019, 27, 125–132. [Google Scholar] [CrossRef]
- Pacheco, J.; de Brito, J. Recycled Aggregates Produced from Construction and Demolition Waste for Structural Concrete: Constituents, Properties and Production. Materials 2021, 14, 5748. [Google Scholar] [CrossRef]
- Pérez, T.; Vergara, S.E.; Silver, W.L. Assessing the Climate Change Mitigation Potential from Food Waste Composting. Sci. Rep. 2023, 13, 7608. [Google Scholar] [CrossRef]
- Rotthong, M.; Takaoka, M.; Oshita, K.; Rachdawong, P.; Gheewala, S.H.; Prapaspongsa, T. Life Cycle Assessment of Integrated Municipal Organic Waste Management Systems in Thailand. Sustainability 2022, 15, 90. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Li, S.; Bai, Z.; Ma, L. Advanced Composting Technologies Promotes Environmental Benefits and Eco-Efficiency: A Life Cycle Assessment. Bioresour. Technol. 2021, 346, 126576. [Google Scholar] [CrossRef]
- Lombardi, L.; Castaldi, M.J. Energy Recovery from Residual Municipal Solid Waste: State of the Art and Perspectives within the Challenge to Climate Change. Energies 2024, 17, 395. [Google Scholar] [CrossRef]
- Dastjerdi, B.; Strezov, V.; Kumar, R.; Behnia, M. Environmental Impact Assessment of Solid Waste to Energy Technologies and Their Perspectives in Australia. Sustainability 2022, 14, 15971. [Google Scholar] [CrossRef]
- De Souza, R.; Casisi, M.; Micheli, D.; Reini, M. A Review of Small–Medium Combined Heat and Power (CHP) Technologies and Their Role within the 100% Renewable Energy Systems Scenario. Energies 2021, 14, 5338. [Google Scholar] [CrossRef]
- Directive (EU) 2024/1785 of the European Parliament and of the Council of 24 April 2024 Amending Directive 2010/75/EU of the European Parliament and of the Council on Industrial Emissions (Integrated Pollution Prevention and Control) and Council Directive 1999/31/EC on the Landfill of Waste (Text with EEA Relevance), Official Journal of the European Union, 2024/1785. Available online: http://data.europa.eu/eli/dir/2024/1785/oj (accessed on 5 May 2025).
- Schiavon, M.; Ravina, M.; Zanetti, M.; Panepinto, D. State-of-the-Art and Recent Advances in the Abatement of Gaseous Pollutants from Waste-to-Energy. Energies 2024, 17, 552. [Google Scholar] [CrossRef]
- Guo, X.; Ma, Y.; Lin, X.; Li, X.; Xiang, Y.; Wu, A. Reduction of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans by Chemical Inhibition and Physisorption from a Municipal Solid Waste Incineration System. Energy Fuels 2020, 34, 11237–11247. [Google Scholar] [CrossRef]
- Tang, L.; Qu, J.; Mi, Z.; Bo, X.; Chang, X.; Anadon, L.D.; Wang, S.; Xue, X.; Li, S.; Wang, X.; et al. Substantial Emission Reductions from Chinese Power Plants after the Introduction of Ultra-Low Emissions Standards. Nat. Energy 2019, 4, 929–938. [Google Scholar] [CrossRef]
- Al-Alimi, S.; Yusuf, N.K.; Ghaleb, A.M.; Lajis, M.A.; Shamsudin, S.; Zhou, W.; Altharan, Y.M.; Abdulwahab, H.S.; Saif, Y.; Didane, D.H.; et al. Recycling Aluminium for Sustainable Development: A Review of Different Processing Technologies in Green Manufacturing. Results Eng. 2024, 23, 102566. [Google Scholar] [CrossRef]
- Borgert, T.; Homberg, W. Energy Saving Potentials of an Efficient Recycling Process of Different Aluminum Rejects. Energy Rep. 2022, 8, 399–404. [Google Scholar] [CrossRef]
- Sevelka, T. Sustainable Land Use Planning in Ontario: Protecting Against Aggregate Extraction Operations. Grassroots J. Nat. Resour. 2025, 8, 82–137. [Google Scholar] [CrossRef]
- Bampanis, I.; Vasilatos, C. Recycling Concrete to Aggregates. Implications on CO2 Footprint. Mater. Proc. 2023, 15, 28. [Google Scholar] [CrossRef]
- Jakhar, R.; Samek, L.; Styszko, K. A Comprehensive Study of the Impact of Waste Fires on the Environment and Health. Sustainability 2023, 15, 14241. [Google Scholar] [CrossRef]
- Wei, W.; Liu, Q.; Zhang, Z.; Lisak, G.; Yin, K.; Fei, X. Evaluation of Long-Term Leaching of a Full-Scale Carriageway Using Treated Incineration Bottom Ash as Subbase Material. Waste Manag. 2025, 196, 80–92. [Google Scholar] [CrossRef]
- Dobiszewska, M.; Bagcal, O.; Beycioğlu, A.; Goulias, D.; Köksal, F.; Niedostatkiewicz, M.; Ürünveren, H. Influence of Rock Dust Additives as Fine Aggregate Replacement on Properties of Cement Composites-A Review. Materials 2022, 15, 2947. [Google Scholar] [CrossRef]
- Abu-Qdais, H.A.; Shatnawi, N.; Al-Shahrabi, R. Modeling the Impact of Fees and Circular Economy Options on the Financial Sustainability of the Solid Waste Management System in Jordan. Resources 2023, 12, 32. [Google Scholar] [CrossRef]
- Hagelüken, C.; Goldmann, D. Recycling and Circular Economy—Towards a Closed Loop for Metals in Emerging Clean Technologies. Miner. Econ. 2022, 35, 539–562. [Google Scholar] [CrossRef]
- Lizárraga-Mendiola, L.; López-León, L.D.; Vázquez-Rodríguez, G.A. Municipal Solid Waste as a Substitute for Virgin Materials in the Construction Industry: A Review. Sustainability 2022, 14, 16343. [Google Scholar] [CrossRef]
- Pandey, D. Recycled Glass Market Size, Trends, Share, and Innovations 2034. Available online: https://www.towardspackaging.com/insights/recycled-glass-market-sizing (accessed on 5 May 2025).
- Couture, T.; Cory, K.; Williams, E.; Kreycik, C. A Policymaker’s Guide to Feed-in Tariff Policy Design; Office of Scientific Technical Information: Oak Ridge, TN, USA, 2010. [Google Scholar] [CrossRef]
- Nakano, S.; Arai, S.; Washizu, A. Economic Impacts of Japan’s Renewable Energy Sector and the Feed-in Tariff System: Using an Input–Output Table to Analyze a Next-Generation Energy System. Environ. Econ. Policy Stud. 2016, 19, 555–580. [Google Scholar] [CrossRef]
- Kim, S.-K.; Huh, J.-H. Blockchain of Carbon Trading for UN Sustainable Development Goals. Sustainability 2020, 12, 4021. [Google Scholar] [CrossRef]
- Hirvonen, J.; Kosonen, R. Waste Incineration Heat and Seasonal Thermal Energy Storage for Promoting Economically Optimal Net-Zero Energy Districts in Finland. Buildings 2020, 10, 205. [Google Scholar] [CrossRef]
- Sitzmann, T.J.; Sica, P.; Grignani, C.; Magid, J. Testing Biowaste Materials as Peat Replacement in Organo-Mineral Fertilizers. Front. Sustain. Food Syst. 2024, 8, 1330843. [Google Scholar] [CrossRef]
- Pergola, M.; Persiani, A.; Pastore, V.; Palese, A.M.; D’Adamo, C.; De Falco, E.; Celano, G. Sustainability Assessment of the Green Compost Production Chain from Agricultural Waste: A Case Study in Southern Italy. Agronomy 2020, 10, 230. [Google Scholar] [CrossRef]
- Van Fan, Y.; Lee, C.T.; Klemeš, J.J.; Bong, C.P.C.; Ho, W.S. Economic Assessment System towards Sustainable Composting Quality in the Developing Countries. Clean Technol. Environ. Policy 2016, 18, 2479–2491. [Google Scholar] [CrossRef]
- Stehouwer, R.; Cooperband, L.; Rynk, R.; Biala, J.; Bonhotal, J.; Antler, S.; Lewandowski, T.; Nichols, H. Chapter 15—Compost Characteristics and Quality. In The Composting Handbook; Elsevier: Amsterdam, The Netherlands, 2022; pp. 737–775. [Google Scholar] [CrossRef]
- Cucina, M. Integrating Anaerobic Digestion and Composting to Boost Energy and Material Recovery from Organic Wastes in the Circular Economy Framework in Europe: A Review. Bioresour. Technol. Rep. 2023, 24, 101642. [Google Scholar] [CrossRef]
- Contreras Llanes, M.; Romero Pérez, M.; Gázquez González, M.J.; Bolívar Raya, J.P. Construction and Demolition Waste as Recycled Aggregate for Environmentally Friendly Concrete Paving. Environ. Sci. Pollut. Res. 2021, 29, 9826–9840. [Google Scholar] [CrossRef] [PubMed]
- Haider, H.; Almarshod, S.Y.; Alsaleem, S.S.; Ali, A.A.M.; Alinizzi, M.; Alresheedi, M.T.; Shafiquzzaman, M. Life Cycle Assessment of Construction and Demolition Waste Management in Riyadh, Saudi Arabia. Int. J. Environ. Res. Public Health 2022, 19, 7382. [Google Scholar] [CrossRef] [PubMed]
- Pourkhorshidi, S.; Sangiorgi, C.; Torreggiani, D.; Tassinari, P. Using Recycled Aggregates from Construction and Demolition Waste in Unbound Layers of Pavements. Sustainability 2020, 12, 9386. [Google Scholar] [CrossRef]
- Shooshtarian, S.; Maqsood, T.; Wong, P.S.P.; Bettini, L. Application of Sustainable Procurement Policy to Improve the Circularity of Construction and Demolition Waste Resources in Australia. Mater. Circ. Econ. 2022, 4, 27. [Google Scholar] [CrossRef]
- Alhola, K.; Ryding, S.O.; Salmenperä, H.; Busch, N.J. Exploiting the Potential of Public Procurement: Opportunities for Circular Economy. J. Ind. Ecol. 2018, 23, 96–109. [Google Scholar] [CrossRef]
- Jagun, Z.T.; Daud, D.; Ajayi, O.M.; Samsudin, S.; Jubril, A.J.; Rahman, M.S.A. Waste Management Practices in Developing Countries: A Socio-Economic Perspective. Environ. Sci. Pollut. Res. 2022, 30, 116644–116655. [Google Scholar] [CrossRef]
- Sundram, M.S. Basel Convention on Transboundary Movement of Hazardous Wastes: Total Ban Amendment. Pace Int. Law Rev. 1997, 9, 1. [Google Scholar] [CrossRef]
- Chartier, Y. (Ed.) Safe Management of Wastes from Health-Care Activities; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Vehlow, J.; Bergfeldt, B.; Visser, R.; Wilén, C. European Union Waste Management Strategy and the Importance of Biogenic Waste. J. Mater. Cycles Waste Manag. 2007, 9, 130–139. [Google Scholar] [CrossRef]
- Kumar, A.; Thakur, A.K.; Gaurav, G.K.; Klemeš, J.J.; Sandhwar, V.K.; Pant, K.K.; Kumar, R. A Critical Review on Sustainable Hazardous Waste Management Strategies: A Step towards a Circular Economy. Environ. Sci. Pollut. Res. Int. 2023, 30, 105030–105055. [Google Scholar] [CrossRef]
- Okedu, K.E.; Barghash, H.F.; Al Nadabi, H.A. Sustainable Waste Management Strategies for Effective Energy Utilization in Oman: A Review. Front. Bioeng. Biotechnol. 2022, 10, 825728. [Google Scholar] [CrossRef]
- Okedele, P.O.; Aziza, O.R.; Oduro, P.; Ishola, A.O. Carbon Pricing Mechanisms and Their Global Efficacy in Reducing Emissions: Lessons from Leading Economies. Open Access Res. J. Eng. Technol. 2024, 7, 114–125. [Google Scholar] [CrossRef]
- Perez, A.P.; Sauma, E.E.; Munoz, F.D.; Hobbs, B.F. The Economic Effects of Interregional Trading of Renewable Energy Certificates in the U.S. WECC. Energy J. 2016, 37, 267–296. [Google Scholar] [CrossRef]
- Bao, W.; Chen, Y.; Cui, C.; Xia, B.; Ke, Y.; Skitmore, M.; Liu, Y. How to Shape Local Public Acceptance of Not-in-My-Backyard Infrastructures? A Social Cognitive Theory Perspective. Sustainability 2023, 15, 15835. [Google Scholar] [CrossRef]
- Eranti, V. NIMBY—“Not in My Backyard”. In Elgar Encyclopedia of Environmental Sociology; Edward Elgar: Cheltenham, UK, 2024; pp. 426–431. [Google Scholar] [CrossRef]
- Abubakar, I.R.; Maniruzzaman, K.M.; Dano, U.L.; AlShihri, F.S.; AlShammari, M.S.; Ahmed, S.M.S.; Al-Gehlani, W.A.G.; Alrawaf, T.I. Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South. Int. J. Environ. Res. Public Health 2022, 19, 12717. [Google Scholar] [CrossRef]
- Gubernatorov, A.M.; Kuznetsov, D.V.; Makunina, I.V.; Bystrenina, I.E. Funding the Management of Municipal Solid Waste Through Public-Private Partnerships. In Towards an Increased Security: Green Innovations, Intellectual Property Protection and Information Security; Springer: Cham, Switzerland, 2022; pp. 467–473. [Google Scholar] [CrossRef]
- Lubongo, C.; Alexandridis, P. Assessment of Performance and Challenges in Use of Commercial Automated Sorting Technology for Plastic Waste. Recycling 2022, 7, 11. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Liu, Q.; Luo, H.; Li, B.; Cheng, J.; Huang, Y. Emission Characteristics and Impact Factors of Air Pollutants from Municipal Solid Waste Incineration in Shanghai, China. J. Environ. Manag. 2022, 310, 114732. [Google Scholar] [CrossRef]
- Fu, Z.; Lin, S.; Tian, H.; Hao, Y.; Wu, B.; Liu, S.; Luo, L.; Bai, X.; Guo, Z.; Lv, Y. A Comprehensive Emission Inventory of Hazardous Air Pollutants from Municipal Solid Waste Incineration in China. Sci. Total Environ. 2022, 826, 154212. [Google Scholar] [CrossRef]
- Raffik, R.; Rakesh, D.; Venkatesh, M.; Samvasan, P. Supply Chain Control and Inventory Tracking System Using Industrial Automation Tools and IIoT. In Proceedings of the 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), Coimbatore, India, 8–9 October 2021; Volume 3, pp. 1–5. [Google Scholar] [CrossRef]
- Akbari, A. The Application of Radio-Frequency Identification (RFID) Technology in the Petroleum Engineering Industry: Mixed Review. Pet. Res. 2025. [Google Scholar] [CrossRef]
- Shaik, S.R.; Mahalingam, A.K.; Palanisamy, M.; Kalita, P.C. Comprehensive Review on Medical Waste Incineration. Int. J. Glob. Warm. 2022, 27, 16–54. [Google Scholar] [CrossRef]
- Manea, E.E.; Bumbac, C.; Dinu, L.R.; Bumbac, M.; Nicolescu, C.M. Composting as a Sustainable Solution for Organic Solid Waste Management: Current Practices and Potential Improvements. Sustainability 2024, 16, 6329. [Google Scholar] [CrossRef]
Function | To Refine and Recover High-Purity Recyclable Materials (Glass, Paper, Plastics, and Metals) from Household and Inert Waste Streams. |
---|---|
Input Stream |
|
Technological Components |
|
Output Streams |
|
Environmental Consideration |
|
Function | To Thermally Treat Contaminated, Hazardous (Especially Healthcare), and Non-Recyclable Waste to Generate Usable Energy While Ensuring Safe Disposal. |
---|---|
Input Stream |
|
Technological Components |
|
Output Streams |
|
Environmental Consideration |
|
Function | To Stabilize and Convert Green and Food Waste Into Compost Through Aerobic Decomposition for Agricultural and Landscaping Applications. |
---|---|
Input Stream |
|
Technological Components |
Optional additions:
|
Output Streams |
|
Environmental Consideration |
|
Function | To Process Inert Materials such as Concrete, Bricks, Soil, and Stone into Reusable Construction Materials. |
---|---|
Input Stream |
|
Technological Components |
|
Output Streams |
|
Environmental Consideration |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makan, A.; Salama, Y.; Mamouni, F.Z.; Makan, M. Towards Zero-Waste Cities: An Integrated and Circular Approach to Sustainable Solid Waste Management. Sustainability 2025, 17, 7884. https://doi.org/10.3390/su17177884
Makan A, Salama Y, Mamouni FZ, Makan M. Towards Zero-Waste Cities: An Integrated and Circular Approach to Sustainable Solid Waste Management. Sustainability. 2025; 17(17):7884. https://doi.org/10.3390/su17177884
Chicago/Turabian StyleMakan, Abdelhadi, Youssef Salama, Fatima Zahrae Mamouni, and Mustapha Makan. 2025. "Towards Zero-Waste Cities: An Integrated and Circular Approach to Sustainable Solid Waste Management" Sustainability 17, no. 17: 7884. https://doi.org/10.3390/su17177884
APA StyleMakan, A., Salama, Y., Mamouni, F. Z., & Makan, M. (2025). Towards Zero-Waste Cities: An Integrated and Circular Approach to Sustainable Solid Waste Management. Sustainability, 17(17), 7884. https://doi.org/10.3390/su17177884