Spatiotemporal Evolution of Coupling Coordination Degree Between Economy and Habitat Quality in the Shandong Peninsula Urban Agglomeration: Grid Scale Based on Night-Time Lighting Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Construction and Verification of the Optimized Regression Model
2.3.2. Measurement of Habitat Quality
2.3.3. Coupling Coordination Degree Model
2.3.4. Geo-Detector Model
2.3.5. Spatial Autocorrelation Model
3. Results
3.1. Spatiotemporal Evolution Characteristics of GDP Density
3.2. Spatiotemporal Evolution Characteristics of Habitat Quality
3.3. Spatiotemporal Evolution Characteristics of Coupling Coordination Degree of Economy and Habitat Quality (EHCCD)
3.4. The Driving Factors Influencing the EHCCD
3.4.1. Single-Factor Detection Results
3.4.2. Interaction-Factor Detection Results
4. Discussion
4.1. Significance of Integrating Night-Time Lighting Data and Statistical Data to Measure the GDP Density
4.2. Consideration on the Causes of the Fluctuating Decline in Habitat Quality
4.3. Scale Effect of Coupling Coordination Between Economy and Habitat Quality
4.4. Uncertainty and Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Huang, W. Research on Evolution of Population and Economy Spatial Distribution Pattern in Ecologically Fragile Areas: A Case Study of Ningxia, China. Front. Environ. Sci. 2022, 10, 814569. [Google Scholar] [CrossRef]
- Zambon, I.; Benedetti, A.; Ferrara, C.; Salvati, L. Soil Matters? A Multivariate Analysis of Socioeconomic Constraints to Urban Expansion in Mediterranean Europe. Ecol. Econ. 2018, 146, 173–183. [Google Scholar] [CrossRef]
- Lee, C.M.; Erickson, P. How does local economic development in cities affect global GHG emissions? Sustain. Cities Soc. 2017, 35, 626–636. [Google Scholar] [CrossRef]
- Sakti, A.D.; Deliar, A.; Hafidzah, D.R.; Chintia, A.V.; Anggraini, T.S.; Ihsan, K.T.N.; Virtriana, R.; Suwardhi, D.; Harto, A.B.; Nurmaulia, S.L.; et al. Machine learning based urban sprawl assessment using integrated multi-hazard and environmental-economic impact. Sci. Rep. 2024, 14, 13385. [Google Scholar] [CrossRef]
- Xie, P.; He, W.; An, M.; Fan, M.; Dong, X. Synergy of ecological environment quality and economic development at industrial park level. Ecol. Indic. 2023, 155, 111027. [Google Scholar] [CrossRef]
- Lei, X.; Liu, H.; Li, S.; Qingqu, L.; Cheng, S.; Hu, G.; Wang, X.; Bai, W. Coupling coordination analysis of urbanization and ecological environment in Chengdu-Chongqing urban agglomeration. Ecol. Indic. 2024, 161, 111969. [Google Scholar] [CrossRef]
- Fang, X.; Gao, S. An empirical study on relationship between island ecological environment and socio-economic development from perspective of environmental Kuznets curve (EKC). Ocean. Coast. Manag. 2023, 244, 106819. [Google Scholar] [CrossRef]
- Schirpke, U.; Ebner, M.; Pritsch, H.; Fontana, V.; Kurmayer, R. Quantifying Ecosystem Services of High Mountain Lakes across Different Socio-Ecological Contexts. Sustainability 2021, 13, 6051. [Google Scholar] [CrossRef]
- Islamutdinov, V.F. Entropy approach for managing the socio-economic development of the region. E3S Web Conf. 2023, 449, 01004. [Google Scholar] [CrossRef]
- Ohene-Asare, K.; Tetteh, E.N.; Asuah, E.L. Total factor energy efficiency and economic development in Africa. Energy Effic. 2020, 13, 1177–1194. [Google Scholar] [CrossRef]
- Han, X.; Fu, L.; Lv, C.; Peng, J. Measurement and spatio-temporal heterogeneity analysis of the coupling coordinated development among the digital economy, technological innovation and ecological environment. Ecol. Indic. 2023, 151, 110325. [Google Scholar] [CrossRef]
- Lv, T.; Geng, C.; Fu, S.; Zhao, Q.; Hu, H.; Zhang, X. Exploring the impact of the digital economy on carbon emission intensity: A case study of the urban agglomeration in the middle reaches of the Yangtze River. Environ. Dev. Sustain. 2025, 1–27. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Yang, F.; Hu, N.; Liang, L. Evaluation of the coordination between eco-environment and socioeconomy under the “Ecological County Strategy” in western China: A case study of Meixian. Ecol. Indic. 2021, 125, 107585. [Google Scholar] [CrossRef]
- Zhong, J.; Mai, X.; Li, X. Differences in intercity economic convergence in the Pearl River Delta based on nighttime light data and its interpretation. Cities 2024, 151, 105136. [Google Scholar] [CrossRef]
- Del Castillo, M.F.P.; Fujimi, T.; Tatano, H. Estimating medium-term regional monthly economic activity reductions during the COVID-19 pandemic using nighttime light data. Int. J. Appl. Earth Obs. Geoinf. 2024, 135, 104223. [Google Scholar] [CrossRef]
- Yu, J.; Liu, L.; Ban, Y.; Zhang, Q. Evaluating urban development and socio-economic disparity in India through nighttime light data. J. Geogr. Sci. 2024, 34, 2440–2456. [Google Scholar] [CrossRef]
- Ling, J.; Liu, X.; Wang, Q.; Niu, D. Temporal and Spatial Pattern Changes of Regional Economic Development Based on Night-time Light Data. J. Phys. Conf. Ser. 2020, 1646, 012083. [Google Scholar] [CrossRef]
- Liu, S.; Yin, Y.; Yang, Y.; An, N.; Wang, C.; Dong, S. Assessment of the influences of landscape fragmentation on regional habitat quality in the Manwan Basin. Acta. Ecol. Sin. 2017, 37, 619–627. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, Y.; Song, W.; Zhang, J.; Zhang, L.; Luo, X. The eco-environmental evaluation based on habitat quality and ecological response of Laizhou Bay. Acta. Ecol. Sin. 2014, 34, 105–114. [Google Scholar] [CrossRef]
- Meng, Q.; Li, M.; Ren, C.; Wqng, Z.; Tian, Y. Dynamic assessment of habitat quality in eastern Jilin Province based on HSI model. Remote Sens. Land Resour. 2019, 31, 140–147. [Google Scholar] [CrossRef]
- Haghi Vayghan, A.; Poorbagher, H.; Taheri Shahraiyni, H.; Fazli, H.; Nasrollahzadeh Saravi, H. Suitability indices and habitat suitability index model of Caspian kutum (Rutilus frisii kutum) in the southern Caspian Sea. Aquat. Ecol. 2013, 47, 441–451. [Google Scholar] [CrossRef]
- Huo, S.; Huang, L.; Yan, L. Valuation of cultural ecosystem services based on SolVES: A case study of the South Ecological Park in Wuyi County, Zhejiang Province. Acta. Ecol. Sin. 2018, 38, 3682–3691. [Google Scholar] [CrossRef]
- Sherrouse, B.C.; Semmens, D.J.; Clement, J.M. An application of Social Values for Ecosystem Services (SolVES) to three national forests in Colorado and Wyoming. Ecol. Indic. 2014, 36, 68–79. [Google Scholar] [CrossRef]
- Sherrouse, B.C.; Semmens, D.J.; Ancona, Z.H. Social Values for Ecosystem Services (SolVES): Open-source spatial modeling of cultural services. Environ. Model. Softw. 2022, 148, 105259. [Google Scholar] [CrossRef]
- Bian, C.; Yang, L.; Zhao, X.; Yao, X.; Xiao, L. The Impact of Human Activity Expansion on Habitat Quality in the Yangtze River Basin. Land 2024, 13, 908. [Google Scholar] [CrossRef]
- Mondal, I.; Naskar, P.K.; Alsulamy, S.; Jose, F.; Hossain, S.A.; Mohammad, L.; De, T.K.; Khedher, K.M.; Salem, M.A.; Benzougagh, B.; et al. Habitat quality and degradation change analysis for the Sundarbans mangrove forest using invest habitat quality model and machine learning. Environ. Dev. Sustain. 2024, 1–26. [Google Scholar] [CrossRef]
- Louis, V.; Page, S.E.; Tansey, K.J.; Jones, L.; Bika, K.; Balzter, H. Tiger Habitat Quality Modelling in Malaysia with Sentinel-2 and InVEST. Remote Sens. 2024, 16, 284. [Google Scholar] [CrossRef]
- Setiawan, O.; Rahayu, A.A.D.; Samawandana, G.; Tata, H.L.; Dharmawan, I.W.S.; Rachmat, H.H.; Suharti, S.; Windyoningrum, A.; Khotimah, H. Unraveling land use land cover change, their driving factors, and implication on carbon storage through an integrated modelling approach. Egypt. J. Remote Sens. Space Sci. 2024, 27, 615–627. [Google Scholar] [CrossRef]
- Sharma, R.; Nehren, U.; Rahman, S.A.; Meyer, M.; Rimal, B.; Seta, G.A.; Baral, H. Modeling Land Use and Land Cover Changes and Their Effects on Biodiversity in Central Kalimantan, Indonesia. Land 2018, 7, 57. [Google Scholar] [CrossRef]
- Berta Aneseyee, A.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST Habitat Quality Model Associated with Land Use/Cover Changes: A Qualitative Case Study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef]
- Patel, A.; Singh, M.M.; Bhatt, S.C.; de Oliveira-Júnior, J.F.; Singh, S.K.; Rathore, V.K.S.; Sahu, S.K.; Sachan, H. Assessment of soil loss from a Trans-National Rapti River Basin using empirical and InVEST-based models. Geomatica 2024, 76, 100016. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, M. Spatio-temporal evolution and driving forces of habitat quality in Guizhou Province. Sci. Rep. 2023, 13, 6908. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Cheng, W.; Zhou, C.; Li, M.; Wang, N.; Liu, Q. GDP Spatialization and Economic Differences in South China Based on NPP-VIIRS Nighttime Light Imagery. Remote Sens. 2017, 9, 673. [Google Scholar] [CrossRef]
- Mi, Y.; Li, S.; Wang, Z. Spatial distribution and topographic gradient effects of habitat quality in the Chang-Zhu-Tan Urban Agglomeration, China. Sci. Rep. 2024, 14, 22563. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Chen, Y.; Li, L.; Chen, Z.; Chen, X.; Wu, T.; Li, Y. Spatiotemporal change of habitat quality in Hainan Island of China based on changes in land use. Ecol. Indic. 2022, 145, 109707. [Google Scholar] [CrossRef]
- Yan, S.; Yuan, Y.; Liu, L.; Wang, S.; Li, M. A Study of the Coupling Relationship Between Industry–Economy–Population and Habitat Quality in the Kuye River Basin. Sustainability 2024, 16, 9495. [Google Scholar] [CrossRef]
- Chen, S.; Liu, X. Spatio-temporal variations of habitat quality and its driving factors in the Yangtze River Delta region of China. Glob. Ecol. Conserv. 2024, 52, e02978. [Google Scholar] [CrossRef]
- Sun, X.; Shan, R.; Luan, Q.; Zhang, Y.; Chen, Z. Spatial (Mis)Matches Between Biodiversity and Habitat Quality Under Multi-Scenarios: A Case Study in Shandong Province, Eastern China. Land 2024, 13, 2215. [Google Scholar] [CrossRef]
- Zheng, H.; Li, H. Spatial–temporal evolution characteristics of land use and habitat quality in Shandong Province, China. Sci. Rep. 2022, 12, 15422. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Gou, A. Habitat quality evolution characteristics and multi-scenario prediction in Shenzhen based on PLUS and InVEST models. Front. Environ. Sci. 2023, 11, 1146347. [Google Scholar] [CrossRef]
- Li, S.; Hong, Z.; Xue, X.; Zheng, X.; Du, S.; Liu, X. Evolution characteristics and multi-scenario prediction of habitat quality in Yulin City based on PLUS and InVEST models. Sci. Rep. 2024, 14, 11852. [Google Scholar] [CrossRef]
- Huang, L.; Du, Y.; Tang, Y. Ecosystem service trade-offs and synergies and their drivers in severely affected areas of the Wenchuan earthquake, China. Land Degrad. Dev. 2024, 35, 3881–3896. [Google Scholar] [CrossRef]
- Wang, H.; Liu, W.; Dai, G.; Ma, Y.; Yang, L.; Zhang, Z. The effectiveness of natural reserves from the perspective of habitat quality in the southern section of the Hengduan Mountains, Southwestern China. J. Environ. Manag. 2024, 363, 121380. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tian, M.; Ding, Q.; Shao, H.; Xia, S. Study on coupling coordination degree of urbanization and ecological environment in Chengdu-Chongqing economic circle from 2002 to 2018. Environ. Sci. Pollut. Res. 2023, 31, 3134–3151. [Google Scholar] [CrossRef]
- Guo, X.; Li, J.; Ma, Y.; Chen, X.; Li, Y. Study on the Coupling and Coordination between Urban Resilience and Low-Carbon Development of Central Plains Urban Agglomeration. Sustainability 2023, 15, 16748. [Google Scholar] [CrossRef]
- Sui, G.; Wang, H.; Cai, S.; Cui, W. Coupling coordination analysis of resources, economy, and ecology in the Yellow River Basin. Ecol. Indic. 2023, 156, 111133. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, F.; Zhao, H.; Kang, P.; Tang, L. Evolution of habitat quality and analysis of influencing factors in the Yellow River Delta Wetland from 1986 to 2020. Front. Ecol. Evol. 2022, 10, 1075914. [Google Scholar] [CrossRef]
- Zhang, X. Coupling coordination between the ecological environment and urbanization in the middle reaches of the Yangtze River urban agglomeration. Urban Clim. 2023, 52, 101698. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Cui, G.; Zhang, Y.; Shi, F.; Jia, W.; Pan, B.; Han, C.; Liu, Z.; Li, M.; Zhou, H. Study of Spatiotemporal Changes and Driving Factors of Habitat Quality: A Case Study of the Agro-Pastoral Ecotone in Northern Shaanxi, China. Sustainability 2022, 14, 5141. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, C.; Su, Y.; Duan, H.; Wu, X.; Lu, R.; Su, Q.; Wu, Y.; Chu, Z. Study on Spatiotemporal Evolution and Driving Forces of Habitat Quality in the Basin along the Yangtze River in Anhui Province Based on InVEST Model. Land 2023, 12, 1092. [Google Scholar] [CrossRef]
- Sui, Y.; Hu, J.; Zhang, N.; Ma, F. Exploring the dynamic equilibrium relationship between urbanization and ecological environment —A case study of Shandong Province, China. Ecol. Indic. 2024, 158, 111456. [Google Scholar] [CrossRef]
- Song, Y.; Li, X.; Tao, G.; Liu, J. Exploring the Characteristics and Drivers of Expansion in the Shandong Peninsula Urban Agglomeration Based on Nighttime Light Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 8535–8549. [Google Scholar] [CrossRef]
- Ren, Q.; Liu, D.; Liu, Y.; Liu, Y. Spatio-temporal dynamics and socio-ecological determinants of ecosystem service interplays in Shandong Province′s coastal region (2000–2020): Implications for environmental protection and sustainable ecosystem management. Environ. Res. 2024, 243, 117824. [Google Scholar] [CrossRef]
- Zheng, W. The impacts of cropland balance policy on habitat quality in China: A multiscale administrative perspective. J. Environ. Manage 2022, 323, 116182. [Google Scholar] [CrossRef]
- Zhang, H.; Kong, X.; Ren, C. Influencing factors and forecast of carbon emissions from transportation - Taking Shandong province as an example. IOP Conf. Ser. Earth Environ. Sci. 2019, 300, 032063. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, P.; Liu, Z.; Xing, G.; Chen, Z.; Chang, Y.; Wang, Q. Dynamic analysis of soil erosion in the affected area of the lower Yellow River based on RUSLE model. Heliyon 2024, 10, e23819. [Google Scholar] [CrossRef]
- Li, J.; Hai, Q. Evaluation of Economic Security and Environmental Protection Benefits from the Perspective of Sustainable Development and Technological Ecological Environment. Sustainability 2023, 15, 6072. [Google Scholar] [CrossRef]
- Wang, D.; Li, X.; Duan, X.; Yang, H.; Zhang, B. Exploring the spatiotemporal patterns of county-scale PM2.5 drivers in Shandong Province from 2000 to 2020. PLoS ONE 2024, 19, e0310190. [Google Scholar] [CrossRef]
- Shan, M.; Ji, M.; Jin, F.; Li, Y.; Fang, Z.; Ji, H. Structural characteristics and influencing factors of agricultural carbon emissions spatial correlation network: Evidence from Shandong Province. Front. Sustain. Food Syst. 2025, 9, 1508492. [Google Scholar] [CrossRef]
Data Types | Sources |
---|---|
LULC | Resource and Environmental Science and Data Center http://www.resdc.cn/ (accessed on 10 May 2024) |
Night-time lighting data | National Oceanic and Atmospheric Administration and National Geographical Data Center, NOAA/NGDC |
Administrative Divisions | National Catalogue Service for Geographic Information https://www.webmap.cn/ (accessed on 6 May 2024) |
DEM | Resource and Environmental Science and Data Center http://www.resdc.cn/ (accessed on 13 May 2024) |
Precipitation | National Earth System Science Data Center |
Temperature | National Qinghai-Tibet Plateau Scientific Data Center |
Population | Shandong Statistical Yearbook |
Gross domestic product | |
Total retail sales of consumer goods | |
Built-up area | |
Municipal road area | |
Green coverage rate | |
Land use intensity | Calculated from land use data |
Cultivated land area |
GDP all | TNL | I | S | CNLI | GDP2 | TNL | I | S | CNLI |
---|---|---|---|---|---|---|---|---|---|
Linear | 0.752 | 0.307 | 0.435 | 0.674 | Linear | 0.520 | 0.305 | 0.391 | 0.612 |
logarithmic | 0.730 | 0.253 | 0.388 | 0.590 | logarithmic | 0.522 | 0.253 | 0.351 | 0.547 |
Exponential | 0.728 | 0.204 | 0.545 | 0.694 | Exponential | 0.595 | 0.223 | 0.443 | 0.595 |
Power | 0.759 | 0.166 | 0.495 | 0.653 | Power | 0.624 | 0.186 | 0.403 | 0.566 |
GDP3 | TNL | I | S | CNLI | GDP23 | TNL | I | S | CNLI |
Linear | 0.490 | 0.334 | 0.410 | 0.670 | Linear | 0.509 | 0.329 | 0.410 | 0.660 |
logarithmic | 0.472 | 0.276 | 0.361 | 0.571 | logarithmic | 0.498 | 0.272 | 0.363 | 0.572 |
Exponential | 0.646 | 0.208 | 0.553 | 0.711 | Exponential | 0.640 | 0.225 | 0.516 | 0.680 |
Power | 0.651 | 0.169 | 0.495 | 0.655 | Power | 0.656 | 0.185 | 0.466 | 0.634 |
Threat Factors | Weight | Maximum Distance of Influence/km | Decay Types |
---|---|---|---|
cultivated land | 0.6 | 4 | linear |
urban | 1 | 8 | exponential |
village | 0.8 | 7 | exponential |
road | 0.6 | 5 | linear |
railway | 0.8 | 6 | linear |
unused | 0.6 | 4 | linear |
Habitat Types | Suitability Score | Threat | |||||
---|---|---|---|---|---|---|---|
Cultivated Land | Urban | Village | Road | Railway | Unused | ||
Cultivated land | 0.4 | 0.3 | 0.5 | 0.7 | 0.5 | 0.5 | 0.2 |
Woodland | 0.8 | 0.7 | 0.6 | 0.7 | 0.6 | 0.5 | 0.3 |
Grassland | 0.7 | 0.5 | 0.6 | 0.6 | 0.4 | 0.4 | 0.2 |
Wetland | 0.9 | 0.5 | 0.8 | 0.6 | 0.6 | 0.5 | 0.3 |
Construction land | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Unused land | 0 | 0.1 | 0 | 0.1 | 0.2 | 0.2 | 0 |
Type | D Value Range | Subclass |
---|---|---|
Coordinated development | (0.8–1] | Coordination |
Transformation development | (0.6–0.8] | Intermediate coordination |
(0.5–0.6] | Primary coordination | |
(0.4–0.5] | Basic coordination | |
Uncoordinated development | (0.2–0.4] | Intermediate incoordination |
(0–0.2] | Extreme incoordination |
City | 2000 | 2010 | 2020 | Average Annual Growth Rate in 20 Years |
---|---|---|---|---|
Jinan | 3.241 | 4.068 | 5.478 | 3.45% |
Zibo | 2.811 | 3.946 | 5.372 | 4.55% |
Taian | 1.966 | 2.992 | 4.310 | 5.5% |
Liaocheng | 1.864 | 3.147 | 4.698 | 7.6% |
Dezhou | 2.115 | 2.958 | 3.695 | 3.75% |
Binzhou | 2.040 | 3.194 | 4.881 | 6.95% |
Dongying | 2.195 | 2.944 | 4.806 | 5.95% |
Qingdao | 3.287 | 4.237 | 6.337 | 4.65% |
Yantai | 2.449 | 3.273 | 5.120 | 5.50% |
Weifang | 2.435 | 3.578 | 5.120 | 5.50% |
Weihai | 2.946 | 4.152 | 4.888 | 3.30% |
Rizhao | 1.934 | 2.915 | 4.449 | 6.50% |
Linyi | 1.903 | 2.953 | 4.729 | 7.45% |
Zaozhuang | 2.823.59 | 3.970 | 5.421 | 4.60% |
Jining | 2.004.84 | 3.606 | 5.021 | 7.50% |
Heze | 1.387.66 | 2.926 | 4.530 | 11.30% |
Provincial Capital Economic Circle | 2.319.37 | 3.321 | 4.749 | 5.25% |
Jiaodong Economic Circle | 2.610.78 | 3.631 | 4.947 | 4.50% |
Lunan Economic Circle | 2.029.77 | 3.364 | 4.925 | 7.15% |
2000 | 2010 | 2020 | Total Changes | |
---|---|---|---|---|
Total retail sales of consumer goods (X1) | 0.7508 | 0.7328 | 0.8779 | 0.1271 |
Urban population density (X2) | 0.3312 | 0.3278 | 0.3357 | 0.0046 |
Average Temperature (X3) | 0.3502 | 0.3544 | 0.3477 | −0.0044 |
Precipitation (X4) | 0.4125 | 0.4521 | 0.4831 | 0.0706 |
Municipal road area (X5) | 0.1291 | 0.1368 | 0.2378 | 0.1086 |
Bulit-up area (X6) | 0.5947 | 0.6943 | 0.7087 | 0.1140 |
Green coverage rate (X7) | 0.1126 | 0.1452 | 0.3190 | 0.2064 |
Cultivated land use (X8) | 0.6169 | 0.5028 | 0.6514 | 0.0318 |
Land use intensity (X9) | 0.4032 | 0.5162 | 0.5336 | 0.1304 |
2000 | 2010 | 2020 | |||
---|---|---|---|---|---|
Interaction Factor | q-Value | Interaction Factor | q-Value | Interaction Factor | q-Value |
X1 ∩ X5 | 0.9813 | X1 ∩ X2 | 0.9847 | X2 ∩ X8 | 0.9170 |
X1 ∩ X7 | 0.9913 | X1 ∩ X4 | 0.9834 | X3 ∩ X4 | 0.9958 |
X1 ∩ X9 | 0.9897 | X1 ∩ X7 | 0.9815 | X3 ∩ X5 | 0.9918 |
X4 ∩ X6 | 0.9826 | X3 ∩ X5 | 0.9813 | X3 ∩ X7 | 0.9584 |
X5 ∩ X9 | 0.9913 | X5 ∩ X9 | 0.9843 | X4 ∩ X8 | 0.9912 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Duan, Y.; An, S. Spatiotemporal Evolution of Coupling Coordination Degree Between Economy and Habitat Quality in the Shandong Peninsula Urban Agglomeration: Grid Scale Based on Night-Time Lighting Data. Sustainability 2025, 17, 7861. https://doi.org/10.3390/su17177861
Wu X, Duan Y, An S. Spatiotemporal Evolution of Coupling Coordination Degree Between Economy and Habitat Quality in the Shandong Peninsula Urban Agglomeration: Grid Scale Based on Night-Time Lighting Data. Sustainability. 2025; 17(17):7861. https://doi.org/10.3390/su17177861
Chicago/Turabian StyleWu, Xiaoman, Yifang Duan, and Shu An. 2025. "Spatiotemporal Evolution of Coupling Coordination Degree Between Economy and Habitat Quality in the Shandong Peninsula Urban Agglomeration: Grid Scale Based on Night-Time Lighting Data" Sustainability 17, no. 17: 7861. https://doi.org/10.3390/su17177861
APA StyleWu, X., Duan, Y., & An, S. (2025). Spatiotemporal Evolution of Coupling Coordination Degree Between Economy and Habitat Quality in the Shandong Peninsula Urban Agglomeration: Grid Scale Based on Night-Time Lighting Data. Sustainability, 17(17), 7861. https://doi.org/10.3390/su17177861