Evaluation on the Rationality of Spatial Layout of Social Facilities in Inland Coastal Cross-River Cities Based on POI Data: A Case Study of Nanjing, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. POI Data
2.3. Basic Geographic Data
2.4. Kernel Density Estimation
2.5. Spatial Correlation Analysis
2.6. Average Nearest Neighbor Analysis
2.7. Standard Deviational Ellipse
2.8. Delphi Method
3. Results
3.1. Spatial Distribution Characteristics of Social Facilities in Nanjing
3.2. Spatial Imbalance of Social Facilities and Their Impact Weights
3.3. Spatial Correlation Analysis of Social Facilities
3.4. Nearest Neighbor Analysis of Social Facilities
3.5. Analysis of Standard Deviational Ellipse of Social Facilities and Transportation Accessibility Analysis in Nanjing City
3.6. Comprehensive Assessment of the Rationality of Social Facilities in Nanjing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Chen, M. Assessing the impact of urban amenities on people with disabilities in London: A multiscale geographically weighted regression analysis. Habitat. Int. 2025, 161, 103426. [Google Scholar] [CrossRef]
- Almasi, S.A. Evaluating the efficiency of spatial-geographical models for vehicle crash frequency estimation: A case study on the urban road network of hamadan province. Transp. Eng. 2025, 21, 100362. [Google Scholar] [CrossRef]
- Wei, G.; He, B.; Sun, P.; Liu, Y.; Li, R.; Ouyang, X.; Luo, K.; Li, S. Evolutionary trends of urban expansion and its sustainable development: Evidence from 80 representative cities in the belt and road initiative region. Cities 2023, 138, 104353. [Google Scholar] [CrossRef]
- Xu, G.; Zhu, M.; Chen, B.; Salem, M.; Xu, Z.; Cobbinah, P.B.; Li, X.; Sumari, N.S.; Zhang, X.; Jiao, L.; et al. Underlying rules of evolutionary urban systems in Africa. Nat. Cities 2025, 2, 327–335. [Google Scholar] [CrossRef]
- He, J.; Tan, Y. Evolution logic of urban spatial growth governance and its enlightenment in China: From a perspective of spatial governance. J. Urban Manag. 2025, 14, 590–606. [Google Scholar] [CrossRef]
- Latham, A.; Layton, J. Social infrastructure and the public life of cities: Studying urban sociality and public spaces. Geogr. Compass 2019, 13, e12444. [Google Scholar] [CrossRef]
- McShane, I.; Coffey, B. Rethinking community hubs: Community facilities as critical infrastructure. Curr. Opin. Env. Sust. 2022, 54, 101149. [Google Scholar] [CrossRef]
- Enneking, G.; Custers, G.; Engbersen, G. The rapid rise of social infrastructure: Mapping the concept through a systematic scoping review. Cities 2025, 158, 105608. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Ruan, Z.; Yang, H. Study on the optimal allocation of public service facilities from the perspective of living circle—A case study of Xiangyang High-tech Zone, China. J. Urban Manag. 2023, 12, 344–359. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, H.; Hua, Y.; Jin, B.; Qiu, Z. Theoretical framework of life circles in Chinese small towns and the optimization of spatial layout for public service facilities based on residents’ distance sensitivity. Humanit. Social Sci. Commun. 2024, 11, 1741. [Google Scholar] [CrossRef]
- Chen, C. Discussion on the Optimization Method of Public Service Facility Layout from the Perspective of Spatial Equity: A Study Based on the Central City of Shanghai. Land 2023, 12, 1780. [Google Scholar] [CrossRef]
- Yuan, F.; Gao, J.; Wu, J. Nanjing-an ancient city rising in transitional China. Cities 2016, 50, 82–92. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, X.; Wang, T.; Supriyadi, A.; Cirella, G.T. Spatial Pattern Characteristics of the Financial Service Industry: Evidence from Nanjing, China. Appl. Spat. Anal. Polic. 2022, 15, 595–620. [Google Scholar] [CrossRef]
- Gao, J.; Wei, Y.D.; Chen, W.; Yenneti, K. Urban Land Expansion and Structural Change in the Yangtze River Delta, China. Sustainability 2015, 7, 10281–10307. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.; Qin, S.; Li, X.; Zhu, Y.; Wang, Y. Analysis of Urban Vitality in Nanjing Based on a Plot Boundary-Based Neural Network Weighted Regression Model. ISPRS Int. J. Geo-Inf. 2022, 11, 624. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, W.; Zhu, J. The Construction of Chinese Metropolitan Area from the Perspective of Politics of Scale: A Case Study of Nanjing Metropolitan Area, China. Land 2023, 12, 1320. [Google Scholar] [CrossRef]
- Shi, C.; Roth, M.; Zhang, H.; Li, Z. Impacts of urbanization on long-term fog variation in Anhui Province, China. Atmos. Environ. 2008, 42, 8484–8492. [Google Scholar] [CrossRef]
- Tao, Y.; Ye, R. Analysis of the Spatio-Temporal Characteristics of Nanjing’s Urban Expansion and Its Driving Mechanisms. ISPRS Int. J. Geo-Inf. 2022, 11, 406. [Google Scholar] [CrossRef]
- Chao, R.; Xue, D.; Wang, B. Evaluating Human Needs: A Study on the Spatial Justice of Medical Facility Services in Social Housing Communities in Guangzhou. Land 2024, 13, 1109. [Google Scholar] [CrossRef]
- Alfalah, G.; Zayed, T. A review of sustainable facility management research. Sustain. Cities Soc. 2020, 55, 102073. [Google Scholar] [CrossRef]
- Papadakis, D.M.; Savvides, A.; Michael, A.; Michopoulos, A. Advancing sustainable urban mobility: Insights from best practices and case studies. Fuel Commun. 2024, 20, 100125. [Google Scholar] [CrossRef]
- Lin, X.; Yang, T.; Law, S. From points to patterns: An explorative POI network study on urban functional distribution. Comput. Environ. Urban Syst. 2025, 117, 102246. [Google Scholar] [CrossRef]
- Jiang, S.; Alves, A.; Rodrigues, F.; Ferreira, J.; Pereira, F.C. Mining point-of-interest data from social networks for urban land use classification and disaggregation. Comput. Environ. Urban Syst. 2015, 53, 36–46. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, J.; Liu, Y.; Luo, A. Detecting Urban Polycentric Structure from POI Data. ISPRS Int. J. Geo-Inf. 2019, 8, 283. [Google Scholar] [CrossRef]
- Niu, H.; Li, L.; Zhao, P. Analysing the dynamics of urban functional areas in a rapidly changing spatial structure: Using points of interest data. Cities 2025, 165, 106079. [Google Scholar] [CrossRef]
- Lu, C.; Pang, M.; Zhang, Y.; Li, H.; Lu, C.; Tang, X.; Cheng, W. Mapping Urban Spatial Structure Based on POI (Point of Interest) Data: A Case Study of the Central City of Lanzhou, China. ISPRS Int. J. Geo-Inf. 2020, 9, 92. [Google Scholar] [CrossRef]
- Liu, K.; Yin, L.; Lu, F.; Mou, N. Visualizing and exploring POI configurations of urban regions on POI-type semantic space. Cities 2020, 99, 102610. [Google Scholar] [CrossRef]
- Wu, H.; Wang, L.; Zhang, Z.; Gao, J. Analysis and optimization of 15-minute community life circle based on supply and demand matching: A case study of Shanghai. PLoS ONE 2021, 16, e256904. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Lin, T.; Li, X.; Prishchepov, A.V. Mapping Urban Functional Zones by Integrating Very High Spatial Resolution Remote Sensing Imagery and Points of Interest: A Case Study of Xiamen, China. Remote Sens. 2018, 10, 1737. [Google Scholar] [CrossRef]
- Andrade, R.; Alves, A.; Bento, C. POI Mining for Land Use Classification: A Case Study. ISPRS Int. J. Geo-Inf. 2020, 9, 493. [Google Scholar] [CrossRef]
- Fan, J.; Thakur, G. Towards POI-based large-scale land use modeling: Spatial scale, semantic granularity, and geographic context. Int. J. Digit. Earth 2023, 16, 430–445. [Google Scholar] [CrossRef]
- Luo, G.; Ye, J.; Wang, J.; Wei, Y. Urban Functional Zone Classification Based on POI Data and Machine Learning. Sustainability 2023, 15, 4631. [Google Scholar] [CrossRef]
- Xi, C.; Zhang, H.; Liu, Y. Modified extended spatial autocorrelation method for dispersion imaging of ambient seismic noise. J. Appl. Geophys. 2025, 241, 105799. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, L.; Yang, C.; Dong, Z.; Huang, R.; Meng, J.; Liu, M. Accounting for temporal and spatial autocorrelation to examine the effects of climate change on vegetation greenness trend in China. Int. J. Appl. Earth Obs. 2025, 139, 104548. [Google Scholar] [CrossRef]
- Kohl, S.; Li, B.; Cui, C. Housing segregation in Chinese major cities: A K-nearest neighbor analysis of longitudinal big data. Comput. Environ. Urban Syst. 2025, 121, 102326. [Google Scholar] [CrossRef]
- Duan, X.; Ma, Y.; Zhou, Y.; Huang, H.; Wang, B. A novel cluster validity index based on augmented non-shared nearest neighbors. Expert. Syst. Appl. 2023, 223, 119784. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, J. Multi-GPU-Parallel and Tile-Based Kernel Density Estimation for Large-Scale Spatial Point Pattern Analysis. ISPRS Int. J. Geo-Inf. 2023, 12, 31. [Google Scholar] [CrossRef]
- Plesovskaya, E.; Ivanov, S. An Empirical Analysis of KDE-based Generative Models on Small Datasets. Procedia Comput. Sci. 2021, 193, 442–452. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, D.H.; Lee, H.; Cho, K.H.; Park, Y.; Kang, J. Analysis of the norovirus contamination hotspots at a nationwide scale using physical and statistical mapping methods. J. Hydrol. 2025, 661, 133714. [Google Scholar] [CrossRef]
- Malmartel, A.; Pinot, J.; Ecollan, M.; De Chanaud, N.; Schwartz, J.; Sidorkiewicz, S.; Buffel Du Vaure, C. Developing a list of chronic conditions using a Delphi method to study multimorbidity in primary care. Public. Health 2025, 247, 105850. [Google Scholar] [CrossRef] [PubMed]
- Aini, B.K.; Chen, M. Exploring barriers and developing strategies for implementing smart supply chain management with Delphi method and ISM-MICMAC. Res. Transp. Bus. Manag. 2025, 62, 101439. [Google Scholar] [CrossRef]
- Gao, D.; Wang, G. Does the opening of high-speed rails improve urban carbon efficiency? Evidence from a spatial difference-in-difference method. Environ. Sci. Pollut. R 2023, 30, 101873–101887. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, L. Spatial correlation network of China’s carbon emissions and its influencing factors: Perspective from social network analysis. J. Clean. Prod. 2025, 516, 145671. [Google Scholar] [CrossRef]
- Qian, J.; Yang, C.; Han, D.; Ma, Y. Multi-scaling mix and non-universality between population and facility density. Phys. A Stat. Mech. Its Appl. 2012, 391, 5146–5152. [Google Scholar] [CrossRef]
- Gao, D.; Tan, L.; Chen, Y. Unlocking Carbon Reduction Potential of Digital Trade: Evidence from China’s Comprehensive Cross-border E-Commerce Pilot Zones. Sage Open 2025, 15, 1955653278. [Google Scholar] [CrossRef]
- Kennedy-Shaffer, L. Before p < 0.05 to Beyond p < 0.05: Using History to Contextualize p-Values and Significance Testing. Am. Stat. 2019, 73, 82–90. [Google Scholar] [PubMed]
- Fang, Y.; Yu, H.; Chen, Y.; Fu, X. Spatial Distribution Characteristics and Influencing Factors of the Retail Industry in Ningbo City in Eastern China Based on POI Data. Sustainability 2024, 16, 7525. [Google Scholar] [CrossRef]
- Zhao, X.; Miao, C. Research on the Spatial Pattern of the Logistics Industry Based on POI Data: A Case Study of Zhengzhou City. Sustainability 2023, 15, 15574. [Google Scholar] [CrossRef]
- Huang, J.; Song, L.; Yu, M.; Zhang, C.; Li, S.; Li, Z.; Geng, J.; Zhang, C. Quantitative spatial analysis of thermal infrared radiation temperature fields by the standard deviational ellipse method for the uniaxial loading of sandstone. Infrared Phys. Technol. 2022, 123, 104150. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, T.; Liu, X. The Urban Renewable Energy Transition: Impact Assessment and Transmission Mechanisms of Climate Policy Uncertainty. Energies 2025, 18, 2089. [Google Scholar] [CrossRef]
- Gao, D.; Cai, J.; Wu, K. The smart green tide: A bibliometric analysis of AI and renewable energy transition. Energy Rep. 2025, 13, 5290–5304. [Google Scholar] [CrossRef]
Category | Subcategory | POI Count | Proportion (%) |
---|---|---|---|
SC | Markets, convenience stores, supermarkets, commercial streets, fairs, shopping malls, etc. | 128,514 | 44.02 |
LS | Sports and fitness, leisure and entertainment, daily service facilities, etc. | 72,223 | 24.74 |
TF | Bus stops, subway stations, bus stations, service areas, parking lots, etc. | 43,224 | 14.80 |
ESC | Higher education, news media, libraries, training institutions, etc. | 29,807 | 10.21 |
MH | Medical centers, medical clinics, pharmaceutical sales, elderly care institutions, etc. | 16,011 | 5.48 |
TA | Parks, squares, museums, gardens, etc. | 2192 | 0.75 |
District | Area (km2) | Proportion (%) | POI Count | Proportion (%) | Population | Proportion (%) | Density |
---|---|---|---|---|---|---|---|
Qinghuai | 49.11 | 0.75 | 32,980 | 11.30 | 740,809 | 8.19 | 671.55 |
Xuanwu | 75.46 | 1.15 | 20,077 | 6.88 | 537,825 | 5.95 | 266.06 |
Yuhuatai | 132.39 | 2.01 | 20,508 | 7.02 | 608,780 | 6.73 | 154.91 |
Qixia | 395.44 | 6.00 | 23,469 | 8.04 | 987,835 | 10.92 | 59.35 |
Jianye | 81.75 | 1.24 | 21,207 | 7.26 | 534,257 | 5.91 | 259.41 |
Pukou | 913.75 | 13.87 | 31,841 | 10.91 | 1,171,603 | 12.96 | 34.847 |
Liuhe | 1470.99 | 22.33 | 27,569 | 9.44 | 946,563 | 10.47 | 18.74 |
Lishui | 1063.57 | 16.15 | 15,362 | 5.26 | 491,336 | 5.43 | 14.44 |
Gaochun | 790.22 | 12.00 | 13,578 | 4.65 | 429,173 | 4.74 | 17.18 |
Jiangning | 1563.33 | 23.73 | 52,803 | 18.08 | 1,926,117 | 21.30 | 33.78 |
Gulou | 51.48 | 0.78 | 32,577 | 11.16 | 669,090 | 7.40 | 632.81 |
Nanjing | 6587.49 | 100 | 291,971 | 100.00 | 9,043,388 | 100.00 | 44.32 |
Facility Type | Average Observation Distance (m) | Expected Average Distance (m) | Nearest Neighbor Ratio (R Value, %) | Z-Score | p-Value | Pattern |
---|---|---|---|---|---|---|
SC | 21.574 | 152.942 | 14.11 | −589.07 | <0.05 | Clustered |
LS | 34.780 | 203.426 | 17.10 | −426.22 | <0.05 | Clustered |
TF | 68.366 | 264.692 | 25.83 | −295.01 | <0.05 | Clustered |
ESC | 52.784 | 312.970 | 16.87 | −274.58 | <0.05 | Clustered |
MH | 76.641 | 421.222 | 18.20 | −198.02 | <0.05 | Clustered |
TAs | 414.031 | 1151.794 | 35.95 | −57.36 | <0.05 | Clustered |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, J.; Hou, K.; Xu, X.; Wang, Z. Evaluation on the Rationality of Spatial Layout of Social Facilities in Inland Coastal Cross-River Cities Based on POI Data: A Case Study of Nanjing, China. Sustainability 2025, 17, 7847. https://doi.org/10.3390/su17177847
Zou J, Hou K, Xu X, Wang Z. Evaluation on the Rationality of Spatial Layout of Social Facilities in Inland Coastal Cross-River Cities Based on POI Data: A Case Study of Nanjing, China. Sustainability. 2025; 17(17):7847. https://doi.org/10.3390/su17177847
Chicago/Turabian StyleZou, Jiacheng, Kun Hou, Xia Xu, and Zhen Wang. 2025. "Evaluation on the Rationality of Spatial Layout of Social Facilities in Inland Coastal Cross-River Cities Based on POI Data: A Case Study of Nanjing, China" Sustainability 17, no. 17: 7847. https://doi.org/10.3390/su17177847
APA StyleZou, J., Hou, K., Xu, X., & Wang, Z. (2025). Evaluation on the Rationality of Spatial Layout of Social Facilities in Inland Coastal Cross-River Cities Based on POI Data: A Case Study of Nanjing, China. Sustainability, 17(17), 7847. https://doi.org/10.3390/su17177847