Chinese Urban Carbon Emission Correlation Network: Construction, Structural Characteristics, and Driving Factors
Abstract
1. Introduction
2. Literature Review and Research Hypotheses
3. Methodology and Data
3.1. Determination of the Spatial Correlation Network of Carbon Emissions
3.2. Characterization of Network Structure
3.3. Network Formation Influencing Factors
3.4. Data Sources
4. Results and Discussion
4.1. Characterization of the Network
4.1.1. Characterization of the Overall Network Structure
4.1.2. Characterization of the Structure of Individual Networks
4.1.3. Regional Characterization of the Network
4.2. Network Impact Factor Analysis
4.3. Discussion
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Policy Implications
5.3. Limitations and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lv, K.; Feng, X.; Kelly, S.; Zhu, L.; Deng, M. A study on embodied carbon transfer at the provincial level of China from a social network perspective. J. Clean. Prod. 2019, 225, 1089–1104. [Google Scholar] [CrossRef]
- Zheng, J.; Mi, Z.; Coffman, D.M.; Shan, Y.; Guan, D.; Wang, S. The Slowdown in China’s Carbon Emissions Growth in the New Phase of Economic Development. One Earth 2019, 1, 240–253. [Google Scholar] [CrossRef]
- Hou, H.; Qu, P.; Zhang, M. Does green finance boost carbon–neutral performance? Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 108212–108229. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Dong, L.; Chen, D.; Gu, B.; Zeng, Y. China’s regional CO2 emissions reduction potential: A study of Chongqing city. Appl. Energy 2016, 162, 1345–1354. [Google Scholar] [CrossRef]
- Cai, H.; Wang, Z.; Zhu, Y. Understanding the structure and determinants of intercity carbon emissions association network in China. J. Clean. Prod. 2022, 352, 131535. [Google Scholar] [CrossRef]
- Ning, Y.; Miao, L.; Ding, T.; Zhang, B. Carbon emission spillover and feedback effects in China based on a multiregional input-output model. Resour. Conserv. Recycl. 2019, 141, 211–218. [Google Scholar] [CrossRef]
- Wu, J.; Cui, C.; Mei, X.; Xu, Q.; Zhang, P. Migration of manufacturing industries and transfer of carbon emissions embodied in trade: Empirical evidence from China and Thailand. Environ. Sci. Pollut. Res. 2023, 30, 25037–25049. [Google Scholar] [CrossRef]
- Franzen, A.; Mader, S. Consumption-based versus production-based accounting of CO2 emissions: Is there evidence for carbon leakage? Environ. Sci. Policy 2018, 84, 34–40. [Google Scholar] [CrossRef]
- Cao, Y.R.; Wu, Y.R.; Li, Z.R.; Wang, Q.W. Climate policy and carbon leakage: Evidence from the low-carbon city pilot program in China. Environ. Impact Assess. Rev. 2025, 110, 107730. [Google Scholar] [CrossRef]
- Wang, X.C.; Tang, X.; Feng, Z.H.; Zhang, Y. Characterizing the Embodied Carbon Emissions Flows and Ecological Relationships among Four Chinese Megacities and Other Provinces. Sustainability 2019, 11, 2591. [Google Scholar] [CrossRef]
- Xu, D.; Liu, G.Y.; Meng, F.X.; Yan, N.Y.; Li, H.; Agostinho, F.; Almeida, C.; Giannetti, B.F. Sector aggregation effect on embodied carbon emission based on city-centric global multi-region input-output (CCG-MRIO) model. Ecol. Modell. 2023, 484, 110487. [Google Scholar] [CrossRef]
- Guo, S.; Tian, T.; Gong, B.; Wan, Y.H.; Zhou, J.X.; Wu, X.F. Urban shrinkage and carbon emissions: Demand-side accounting for Chinese cities. Appl. Energy 2025, 384, 125501. [Google Scholar] [CrossRef]
- Bu, Y.; Wang, E.; Qiu, Y.; Möst, D. Impact assessment of population migration on energy consumption and carbon emissions in China: A spatial econometric investigation. Environ. Impact Assess. Rev. 2022, 93, 106744. [Google Scholar] [CrossRef]
- Yao, S.J.; Zhang, X.Q.; Wang, Z.T. On economic agglomeration and carbon productivity in Chinese cities: A spatial econometric analysis. Environ. Dev. Sustain. 2024, 26, 7775–7798. [Google Scholar] [CrossRef]
- Wang, L.; Luo, M.Z.; Dai, J.Y.; Tan, Y. Effects of local government environmental attention on agricultural-land carbon emissions in China: A spatial survey. Environ. Dev. Sustain. 2025. [Google Scholar] [CrossRef]
- Liu, S.; Chevallier, J.; Xiao, Q. Identifying influential countries in air pollution control technologies: A social network analysis approach. J. Clean. Prod. 2023, 389, 136018. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, W.; Zhang, C. Towards COP26 targets: Characteristics and influencing factors of spatial correlation network structure on U.S. carbon emission. Res. Policy 2023, 81, 103285. [Google Scholar] [CrossRef]
- Liu, X.; Yang, X.; Guo, R. Regional Differences in Fossil Energy-Related Carbon Emissions in China’s Eight Economic Regions: Based on the Theil Index and PLS-VIP Method. Sustainability 2020, 12, 2576. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Z.; Zhang, J. Analysis of carbon emission performance and regional differences in China’s eight economic regions: Based on the super-efficiency SBM model and the Theil index. PLoS ONE 2021, 16, e0250994. [Google Scholar] [CrossRef]
- Chen, H.; Yi, J.; Chen, A.; Peng, D.; Yang, J. Green technology innovation and CO2 emission in China: Evidence from a spatial-temporal analysis and a nonlinear spatial durbin model. Energy Policy 2023, 172, 113338. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Wang, W.; Wen, J.; Chen, Q.; Peng, J. Spatial econometric analysis of carbon emissions from energy consumption in China. J. Geogr. Sci. 2012, 22, 630–642. [Google Scholar] [CrossRef]
- Li, J.; Li, S. Energy investment, economic growth and carbon emissions in China—Empirical analysis based on spatial Durbin model. Energy Policy 2020, 140, 111425. [Google Scholar] [CrossRef]
- Sun, Y.; Du, M.; Wu, L.; Li, C.; Chen, Y. Evaluating the Effects of Renewable Energy Consumption on Carbon Emissions of China’s Provinces: Based on Spatial Durbin Model. Land 2022, 11, 1316. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, Z. Impact of urban vitality on carbon emission—An analysis of 222 Chinese cities based on the spatial Durbin model. Humanit. Soc. Sci. Commun. 2024, 11, 1312. [Google Scholar] [CrossRef]
- Sun, X.S.; Li, M.R.; Hou, S.Y.; Zhang, C.W. Research on the Spatial Network Characteristics, Synergistic Emission Reduction Effects and Mechanisms of Carbon Emission in Beijing-Tianjin-Hebei Urban Agglomeration. Sustainability 2023, 15, 8176. [Google Scholar] [CrossRef]
- Jia, L.; Zhang, J.L.; Li, R.A.; Wang, L.; Wu, H.J.; Wang, P. Spatial correlation investigation of carbon emission efficiency in the Yangtze River Delta of China: The role of low-carbon pilot cities. Ecol. Indic. 2025, 172, 113282. [Google Scholar] [CrossRef]
- Cheng, H.; Wu, B.Y.; Jiang, X.K. Study on the spatial network structure of energy carbon emission efficiency and its driving factors in Chinese cities. Appl. Energy 2024, 371, 123689. [Google Scholar] [CrossRef]
- Sun, Z.R.; Cheng, X.H.; Zhuang, Y.M.; Sun, Y. Spatial correlation network structure characteristics of carbon emission efficiency and its influencing factors at city level in China. Environ. Dev. Sustain. 2024, 26, 5335–5366. [Google Scholar] [CrossRef]
- Bai, C.; Zhou, L.; Xia, M.; Feng, C. Analysis of the spatial association network structure of China’s transportation carbon emissions and its driving factors. J. Environ. Manag. 2020, 253, 109765. [Google Scholar] [CrossRef]
- Chen, G.; Hadjikakou, M.; Wiedmann, T. Urban carbon transformations: Unravelling spatial and inter-sectoral linkages for key city industries based on multi-region input–output analysis. J. Clean. Prod. 2017, 163, 224–240. [Google Scholar] [CrossRef]
- Xie, R.; Hu, G.; Zhang, Y.; Liu, Y. Provincial transfers of enabled carbon emissions in China: A supply-side perspective. Energy Policy 2017, 107, 688–697. [Google Scholar] [CrossRef]
- Yin, X.; Hao, Y.; Yang, Z.; Zhang, L.; Su, M.; Cheng, Y.; Zhang, P.; Yang, J.; Liang, S. Changing carbon footprint of urban household consumption in Beijing: Insight from a nested input-output analysis. J. Clean. Prod. 2020, 258, 120698. [Google Scholar] [CrossRef]
- Han, M.; Yao, Q.; Lao, J.; Tang, Z.; Liu, W. China’s intra- and inter-national carbon emission transfers by province: A nested network perspective. Sci. China Earth Sci. 2020, 63, 852–864. [Google Scholar] [CrossRef]
- Sun, L.; Qin, L.; Taghizadeh-Hesary, F.; Zhang, J.; Mohsin, M.; Chaudhry, I.S. Analyzing carbon emission transfer network structure among provinces in China: New evidence from social network analysis. Environ. Sci. Pollut. Res. 2020, 27, 23281–23300. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, H.; Guo, B.; Liu, X.; Deng, C.; Zhao, Z.; Jiang, X.; Li, Y. Characteristics and formation mechanism of carbon emission efficiency spatial correlation network: Perspective from Shandong Province. Ecol. Indic. 2025, 170, 112996. [Google Scholar] [CrossRef]
- He, Y.-Y.; Wei, Z.-X.; Liu, G.-Q.; Zhou, P. Spatial network analysis of carbon emissions from the electricity sector in China. J. Clean. Prod. 2020, 262, 121193. [Google Scholar] [CrossRef]
- Jiang, M.; An, H.; Gao, X.; Liu, S.; Xi, X. Factors driving global carbon emissions: A complex network perspective. Resour. Conserv. Recycl. 2019, 146, 431–440. [Google Scholar] [CrossRef]
- Shao, H.; Wang, Z. Spatial network structure of transportation carbon emission efficiency in China and its influencing factors. Chin. J. Popul. Resour. Environ. 2021, 19, 295–303. [Google Scholar] [CrossRef]
- Li, X.; Qiu, Y.; Lin, C. Spatial network structure characteristics and dynamic evolution mechanisms of carbon emissions in the construction industry: An empirical study of East China coastal cities. Sustain. Cities Soc. 2025, 130, 106625. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, L. Spatial correlation network of China’s carbon emissions and its influencing factors: Perspective from social network analysis. J. Clean. Prod. 2025, 516, 145671. [Google Scholar] [CrossRef]
- Chen, P.; Gao, J.; Ji, Z.; Liang, H.; Peng, Y. Do Artificial Intelligence Applications Affect Carbon Emission Performance?—Evidence from Panel Data Analysis of Chinese Cities. Energies 2022, 15, 5730. [Google Scholar] [CrossRef]
- Shuai, C.; Shen, L.; Jiao, L.; Wu, Y.; Tan, Y. Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011. Appl. Energy 2017, 187, 310–325. [Google Scholar] [CrossRef]
- Wang, S.; Fang, C.; Wang, Y.; Huang, Y.; Ma, H. Quantifying the relationship between urban development intensity and carbon dioxide emissions using a panel data analysis. Ecol. Indic. 2015, 49, 121–131. [Google Scholar] [CrossRef]
- Ma, F.; Wang, Y.; Yuen, K.F.; Wang, W.; Li, X.; Liang, Y. The Evolution of the Spatial Association Effect of Carbon Emissions in Transportation: A Social Network Perspective. Int. J. Environ. Res. Public Health 2019, 16, 2154. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.F.; Li, C.Y. Spatiotemporal evolutionary patterns and influencing factors of urban carbon emissions in China. Ecol. Indic. 2025, 176, 113665. [Google Scholar] [CrossRef]
- Wang, F.; Gao, M.N.; Liu, J.; Fan, W.N. The Spatial Network Structure of China’s Regional Carbon Emissions and Its Network Effect. Energies 2018, 11, 2706. [Google Scholar] [CrossRef]
- Liu, P.Z.; Jia, S.M.; Liu, L. Study on the spatial correlation network of carbon emission efficiency and its influencing factors in the central plains urban agglomeration. Environ. Dev. Sustain. 2025. [Google Scholar] [CrossRef]
- Li, S.; Lv, X.; Meng, X.; Li, R. Exploring social-ecological network relationships and synergistic emission reduction in urban agglomeration. Int. J. Environ. Sci. Technol. 2025, 22, 11473–11490. [Google Scholar] [CrossRef]
- Xu, H.; Li, Y.; Zheng, Y.; Xu, X. Analysis of spatial associations in the energy–carbon emission efficiency of the transportation industry and its influencing factors: Evidence from China. Environ. Impact Assess. Rev. 2022, 97, 106905. [Google Scholar] [CrossRef]
- Tian, S.; Zhang, Y.; Xu, Y.; Xu, Y.; Yang, S.; Wang, Q.; Yuan, X.; Ma, Q. Spatial network characteristics and drivers of carbon emission reduction capability in urban agglomerations: A case study of Shandong Province. Chin. J. Popul. Resour. Environ. 2024, 22, 376–388. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.; Chen, S.; Wang, W. Spatial connection network of the co-benefits of reducing pollutants and carbon emissions in the Yangtze River Delta urban cluster. Urban Clim. 2025, 61, 102457. [Google Scholar] [CrossRef]
- Su, P.; Cong, X.; Wang, L.; Šaparauskas, J.; Ustinovičius, L.; Skibniewski, M.J. Spatial network characteristics and influencing factors of the synergistic effects of pollution reduction and carbon emission reduction in “Zero Waste City” clusters. J. Clean. Prod. 2025, 493, 144924. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, M. Spatial correlation network of municipal solid waste carbon emissions and its influencing factors in China. Environ. Impact Assess. Rev. 2024, 106, 107490. [Google Scholar] [CrossRef]
- Dong, J.; Li, C. Structure characteristics and influencing factors of China’s carbon emission spatial correlation network: A study based on the dimension of urban agglomerations. Sci. Total Environ. 2022, 853, 158613. [Google Scholar] [CrossRef] [PubMed]
- Barrios, J.; Verstraeten, W.; Maes, P.; Aerts, J.-M.; Farifteh, J.; Coppin, P. Using the gravity model to estimate the spatial spread of vector-borne diseases. Int. J. Environ. Res. Public Health 2022, 9, 4346–4364. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Peng, W. Effects of China’s regional industrial structure adjustment on carbon emission transfer based on gravity model. Environ. Eng. Manag. J. 2019, 18, 2475–2490. [Google Scholar] [CrossRef]
- Yu, Y.; Qayyum, M. Dynamics between carbon emission, imported cultural goods, human capital, income, and energy consumption: Renewed evidence from panel VAR approach. Environ. Sci. Pollut. Res. 2022, 29, 58360–58377. [Google Scholar] [CrossRef]
- Gan, C.; Voda, M.; Wang, K.; Chen, L.; Ye, J. Spatial network structure of the tourism economy in urban agglomeration: A social network analysis. J. Hosp. Tour. Manag. 2021, 47, 124–133. [Google Scholar] [CrossRef]
- Zhang, R.J.; Tai, H.W.; Cheng, K.T.; Zhu, Y.T.; Hou, J.J. Carbon emission efficiency network formation mechanism and spatial correlation complexity analysis: Taking the Yangtze River Economic Belt as an example. Sci. Total Environ. 2022, 841, 156719. [Google Scholar] [CrossRef]
- Bi, X.; Sun, R.J.; Hu, D.G.; Shi, H.L.; Zhang, H. Structural Characteristics and Influencing Factors of Carbon Emission Spatial Association Network: A Case Study of Yangtze River Delta City Cluster, China. Chin. Geogr. Sci. 2024, 34, 689–705. [Google Scholar] [CrossRef]
- Song, J.K.; Xiao, H.S.; Liu, Z.C. Analysis of the Driving Mechanism of Urban Carbon Emission Correlation Network in Shandong Province Based on TERGM. Sustainability 2024, 16, 4233. [Google Scholar] [CrossRef]
- Krugman, P. Increasing Returns and Economic Geography. J. Political Econ. 1991, 99, 483–499. [Google Scholar] [CrossRef]
- Zhong, J.J.; Duan, Y.; Sun, C.Z.; Wang, H.Y. Analysis of the Impact of the Digital Economy on Carbon Emission Reduction and Its Spatial Spillover Effect-The Case of Eastern Coastal Cities in China. ISPRS Int. J. Geo-Inf. 2024, 13, 293. [Google Scholar] [CrossRef]
- Chen, X.; Lin, B.Q. Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China. Energy Policy 2021, 157, 112510. [Google Scholar] [CrossRef]
- Lu, J.; Wang, T.H.; Liu, X.H. Can environmental governance policy synergy reduce carbon emissions? Econ. Anal. Policy 2023, 80, 570–585. [Google Scholar] [CrossRef]
- Feng, X.C.; Zhao, Y.P.; Yan, R.Y. Does carbon emission trading policy has emission reduction effect?-An empirical study based on quasi-natural experiment method. J. Environ. Manag. 2024, 351, 119791. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Kelly, S.; Shi, X.P.; Lv, K.J.; Lu, X.; Giurco, D. Maximizing the effectiveness of carbon emissions abatement in China across carbon communities. Energy Econ. 2022, 106, 105801. [Google Scholar] [CrossRef]
Sub-Group 1 | Sub-Group 2 | Sub-Group 3 | Sub-Group 4 | Sub-Group 5 | |
---|---|---|---|---|---|
Sub-group 1 | 668.27 | 150.36 | 13.82 | 77.64 | 58.18 |
Sub-group 2 | 146.55 | 402.91 | 51.27 | 24.55 | 41.55 |
Sub-group 3 | 28.91 | 63.09 | 124.18 | 9.82 | 5.09 |
Sub-group 4 | 90.18 | 41.00 | 11.73 | 77.18 | 10.64 |
Sub-group 5 | 53.91 | 35.18 | 0.73 | 6.45 | 26.82 |
Var. | Obs. Value | Sig. | Ave. | Std. Dev. | Min. | Max. | Prop ≥ 0 | Prop ≤ 0 |
---|---|---|---|---|---|---|---|---|
D | −0.2437 *** | 0.0002 | 0.0001 | 0.0165 | −0.0583 | 0.0645 | 1.0000 | 0.0002 |
P | 0.2271 *** | 0.0002 | −0.0002 | 0.0231 | −0.0640 | 0.1037 | 0.0002 | 1.0000 |
R | 0.2908 *** | 0.0002 | −0.0003 | 0.0159 | −0.0539 | 0.0669 | 0.0002 | 1.0000 |
T | 0.3146 *** | 0.0002 | 0.0002 | 0.0256 | −0.0703 | 0.1107 | 0.0002 | 1.0000 |
Variable | Unstandardized Coefficient | Standardized Coefficient | Significance | p ≥ 0 | p ≤ 0 |
---|---|---|---|---|---|
D | −0.1488 | −0.2520 *** | 0.0002 | 1.0000 | 0.0002 |
P | 0.0441 | 0.0663 *** | 0.0002 | 0.0002 | 1.000 |
R | 0.1321 | 0.2245 *** | 0.0002 | 0.0002 | 1.000 |
T | 0.1415 | 0.2010 *** | 0.0002 | 0.0002 | 1.000 |
Interception | 0.0568 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, F.; Shi, X.; Ding, C. Chinese Urban Carbon Emission Correlation Network: Construction, Structural Characteristics, and Driving Factors. Sustainability 2025, 17, 7818. https://doi.org/10.3390/su17177818
Sui F, Shi X, Ding C. Chinese Urban Carbon Emission Correlation Network: Construction, Structural Characteristics, and Driving Factors. Sustainability. 2025; 17(17):7818. https://doi.org/10.3390/su17177818
Chicago/Turabian StyleSui, Feixue, Xiaoyi Shi, and Chenhui Ding. 2025. "Chinese Urban Carbon Emission Correlation Network: Construction, Structural Characteristics, and Driving Factors" Sustainability 17, no. 17: 7818. https://doi.org/10.3390/su17177818
APA StyleSui, F., Shi, X., & Ding, C. (2025). Chinese Urban Carbon Emission Correlation Network: Construction, Structural Characteristics, and Driving Factors. Sustainability, 17(17), 7818. https://doi.org/10.3390/su17177818