Comparative Analysis of the Occurrence of Entomopathogenic Fungi in Soils from Flower Strips and Lawns in Urban Space
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Location
2.2. Soil Analysis
2.3. Isolation of Fungi
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Dudkiewicz, M.; Kopacki, M.; Iwanek, M.; Hortyńska, P. Problems with the experience of biodiversity on the example of selected Polish cities. Agron. Sci. 2021, 76, 67–84. [Google Scholar] [CrossRef]
- Zhang, F.; Qian, H.A. Comprehensive review of the environmental benefits of urban green spaces. Environ. Res. 2024, 252, 118837. [Google Scholar] [CrossRef]
- Belčáková, I.; Świąder, M.; Bartyna-Zielińska, M. The green infrastructure in cities as a tool for climate change adaptation and mitigation: Slovakian and Polish experiences. Atmosphere 2019, 10, 552. [Google Scholar] [CrossRef]
- Pauleit, S.; Andersson, E.; Anton, B.; Buijs, A. Advancing Urban Green Infrastructure in Europe: Outcomes and Reflections from the GREEN SURGE Project. Urban For. Urban Green. 2019, 40, 4–16. [Google Scholar] [CrossRef]
- Kowalska, J.; Sienkiewicz, P.; Antkowiak, M.; Krzymińska, J. Flower Strips as an Element of Green Infrastructure That Enhances the Biodiversity of the Ecosystem; Instytut Ochrony Roślin-Państwowy Instytut Badawczy: Poznań, Poland, 2024; p. 87. [Google Scholar]
- Szulczewska, B. Green Infrastructure—The End of History; Komitet Przestrzennego Zagospodarowania Kraju Polskiej Akademii Nauk: Warszawa, Poland, 2018; pp. 48–59. [Google Scholar]
- Jarmuł-Pietraszczyk, J.; Kamionek, M.; Wilkowski, P. Effect of long fertilisation on seasonal variability of occurrence of entomopathogenic nematodes and fungi. Ecol. Chem. Eng. 2011, 18, 359–363. [Google Scholar]
- Tkaczuk, C. Occurrence and Infective Potential of Entomopathogenic Fungi in Soils of Agrocenoses and Seminatural Habitats in the Agricultural Landscape. D. Sc. Thesis, Akademia Podlaska w Siedlcach, Siedlce, Poland, 2008. [Google Scholar]
- Augustyniuk-Kram, A.; Kram, K.J. Entomopathogenic fungi as an important natural regulator of insect outbreaks in forests (Review). In Forest Ecosystems—More Than Just Trees; Blanco, J.A., Lo, Y.-H., Eds.; IntechOpen: Rijeka, Croatia, 2012; pp. 265–294. [Google Scholar]
- Sosnowska, D. The contribution of conservation biological control method to integrated plant protection and organic farming. Prog. Plant Prot. 2018, 58, 288–293. [Google Scholar] [CrossRef]
- Sosnowska, D. Parasitic and antagonistic fungi in biological plant protection in Poland. Prog. Plant Prot. 2019, 59, 223–231. [Google Scholar] [CrossRef]
- Tkaczuk, C.; Majchrowska-Safaryan, A.; Harasimiuk, M. The occurrence and infective potential of entomopathogenic fungi in the soil of arable fields, meadows and forest habitats. Prog. Plant Prot. 2016, 56, 5–11. [Google Scholar] [CrossRef]
- Labbè, R.M.; Gillespie, D.R.; Cloutier, C.; Brodeur, J. Compatibility of an entomopathogenic fungus with a predator and a parasitoid in the biological control of greenhouse whitefly. Biocontrol Sci. Technol. 2009, 19, 429–446. [Google Scholar] [CrossRef]
- Al-Mazra’aw, M.S.; Al-Abbadi, A.M.; Shatnawi, M.; Ateyyat, M. Effect of application method on the interaction between Beauveria bassiana and neem tree extract when combined for Thrips tabaci (Thysanoptera: Thripidae) control. J. Food Agric. Environ. 2009, 7, 869–873. [Google Scholar]
- Wraight, S.P.; Ramos, M.E. Characterization of the synergistic interaction between Beauveria bassiana strain GHA and Bacillus thuringiensis morrisoni strain tenebrionis applied against Colorado potato beetle. J. Invertebr. Pathol. 2017, 144, 47–57. [Google Scholar] [CrossRef]
- Niassy, S.; Maniania, N.K.; Subramanian, S.; Gitonga, M.P.; Ekesi, S. Performance of a semiochemical-baited autoinoculation device treated with Metarhizium anisopliae for control of Frankliniella occidentalis on French bean in field cages. Entomol. Exp. Appl. 2012, 142, 97–103. [Google Scholar] [CrossRef]
- Duarte, R.T.; Gonçalves, K.C.; Espinosa, D.J.L.; Moreira, L.F.; Bortoli, S.A.; Humber, R.A. Potential of entomopathogenic fungi as biological control agents of diamondback moth (Lepidoptera: Plutellidae) and compatibility with chemical insecticides. J. Econ. Entomol. 2016, 109, 594–601. [Google Scholar] [CrossRef]
- Khun, K.K.; Wilson, B.A.L.; Stevens, M.M.; Huwer, R.K.; Ash, G.J. Integration of Entomopathogenic Fungi into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops. Insects 2020, 11, 659. [Google Scholar] [CrossRef] [PubMed]
- Cuthbertson, A.; Audsley, N. Further screening of entomopathogenic fungi and nematodes as control agents for Drosophila suzukii. Insects 2016, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Strasser, H.; Forer, A.; Schinner, F. Development of media for the selective isolation and maintenance of virulence of Beauveria brongniartii. In Microbial Control of Soil Dwelling Pests; Jackson, T.A., Glare, T.R., Eds.; AgResearch: Lincoln, New Zealand, 1996; pp. 125–130. [Google Scholar]
- Kessler, P.; Enkerli, J.; Schweizer, C.; Keller, S. Survival of Beauveria brongniartii in the soil after application as a biocontrol agent against the European cockchafer Melolontha melolontha. Biocontrol 2004, 49, 563–581. [Google Scholar] [CrossRef]
- Shin, T.Y.; Choi, J.B.; Bae, S.M.; Koo, H.N.; Woo, S.D. Study on selective media for isolation of entomopathogenic fungi. Int. J. Indust. Entomol. 2010, 20, 7–12. [Google Scholar]
- Tkaczuk, C.; Tipping, C.; Majchrowska-Safaryan, A.; Król, A.; Wyrzykowska, M.; Wegensteiner, R. The occurrence of entomopathogenic fungi in soils from apple orchards protected in different farming systems. Fresenius Environ. Bull. 2019, 28, 7906–7914. [Google Scholar]
- Majchrowska-Safaryan, A.; Tkaczuk, C. Abundance of entomopathogenic fungi in leaf litter and soil layers in forested habitats in Poland. Insects 2021, 12, 134. [Google Scholar] [CrossRef]
- Majchrowska-Safaryan, A.; Tkaczuk, C.; Baj-Wójtowicz, B. Occurrence of entomopathogenic fungi in the soils of habitats of various use. Agron. Sci. 2023, 78, 5–18. [Google Scholar] [CrossRef]
- Kuźmiar, A.; Włodarczyk, K.; Gromadzka, P.; Siara, A.; Wolińska, A. Aktualny Stan Wiedzy Na Temat Biopreparatów Stosowanych W Rolnictwie; Wydawnictwo KUL: Lublin, Poland, 2021; 32p. [Google Scholar]
- Medo, J.; Cagáň, Ĺ. Factors affecting the occurrence of entomopathogenic fungi in soils of Slovakia as revealed using two methods. Biol. Control 2011, 59, 200–208. [Google Scholar] [CrossRef]
- Sporleder, M.; Lacey, L.A. Biopesticides. In Insect Pests of Potato; Alyokhin, A., Vincent, C., Giordanengo, P., Eds.; Elsevier: Oxford, UK, 2021; pp. 463–497. [Google Scholar]
- Meyling, N.V.; Eilenberg, J. Occurrence and distribution of soil borne entomopathogenic fungi within a single organic agroecosystem. Agric. Ecosyst. Environ. 2006, 113, 336–341. [Google Scholar] [CrossRef]
- Rehner, S.A.; Buckley, E.A. Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005, 97, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Rehner, S.A.; Minnis, A.M.; Sung, G.H.; Luangsa-ard, J.J.; Devotto, L.; Humber, R.A. Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia 2011, 103, 1055–1073. [Google Scholar] [CrossRef]
- Humber, R.A. Identification of Entomopathogenic Fungi. In Manual of Techniques in Invertebrate Pathology; Lacey, L.A., Ed.; Academic Press: London, UK, 2012; pp. 151–187. [Google Scholar] [CrossRef]
- Inglis, G.D.; Enkerli, J.; Goettel, M.S. Laboratory techniques used for entomopathogenic fungi: Hypocreales. In Manual of Techniques in Invertebrate Pathology; Lacey, L.A., Ed.; Academic Press: London, UK, 2012; pp. 189–253. [Google Scholar] [CrossRef]
- Bischoff, J.F.; Rehner, S.A.; Humber, R.A. Metarhizium frigidum sp. nov.: A cryptic species of M. anisopliae and member of the M. flavoviride complex. Mycologia 2006, 98, 737–745. [Google Scholar] [CrossRef]
- Bischoff, J.F.; Rehner, S.A.; Humber, R.A. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 2009, 101, 512–530. [Google Scholar] [CrossRef]
- Kepler, R.M.; Luangsaard, J.J.; Hywel-Jones, N.L.; Quandt, C.A.; Sung, G.-H.; Rehner, S.A.; Aime, M.C.; Henkel, T.W.; Sanjuan, T.; Zare, R.; et al. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus 2017, 8, 335–353. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef]
- Akbari, H.; Pomerantz, M.; Taha, H. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol. Energy 2001, 70, 295–310. [Google Scholar] [CrossRef]
- Kim, S.K.; Peiser, R.B. The economic effects of green spaces in planned and unplanned communities. J. Archit. Plan. Res. 2018, 35, 323–342. [Google Scholar]
- Poje, M.; Vukelić, A.; Židovec, V.; Prebeg, T.; Kušen, M. Perception of the vegetation elements of urban green spaces with a focuson flower beds. Plants 2024, 13, 2485. [Google Scholar] [CrossRef] [PubMed]
- Tomalak, M. Rynek biologicznych środków ochrony roślin i przepisy legislacyjne. Prog. Plant Prot. 2010, 50, 1053–1063. [Google Scholar]
- Fenibo, E.O.; Grace, N.I.; Weiz, N.; Tonderayi, M. The potential and green chemistry attributes of biopesticides for sustainable agriculture. Sustainability 2022, 14, 14417. [Google Scholar] [CrossRef]
- Meyling, N.V.; Thorup-Kristensen, K.; Eilenberg, J. Below-and above ground abundance and distribution of fungal entomopathogens in experimental conventional and organic cropping systems. Biol. Control 2011, 59, 180–186. [Google Scholar] [CrossRef]
- Sánchez-Peña, S.R.; San-Juan Lara, J.; Medina, R.F. Occurrence of entomopathogenic fungi from agricultural and natural ecosystems in Saltillo, México, and their virulence towards thrips and whiteflies. J. Insect Sci. 2011, 11, 1. [Google Scholar] [CrossRef]
- Uzman, D.; Pliester, J.; Leyer, I.; Entling, M.H.; Reineke, A. Drivers of entomopathogenic fungi presence in organic and conventional vineyard soils. Appl. Soil Ecol. 2019, 133, 89–97. [Google Scholar] [CrossRef]
- Miętkiewski, R.; Tkaczuk, C.; Badowska-Czubik, T. Entomogenous fungi isolated from strawberry plantation soil infested by Otiorhynchus ovatus L. Rocz. Nauk Rol. Ser. E 1992, 22, 39–46. [Google Scholar]
- Vänninen, I. Distribution and occurrence of four entomopathogenic fungi in Finland: Effect of geographical location, habitat type and soil type. Mycol. Res. 1996, 100, 93–101. [Google Scholar] [CrossRef]
- Chandler, D.; Hay, D.; Reid, A.P. Sampling and occurrence of entomopathogenic fungi and nematodes in UK soils. Appl. Soil Ecol. 1997, 5, 133–141. [Google Scholar] [CrossRef]
- Quesada-Moraga, E.; Navas-Cortes, J.A.; Maranhao, A.A.; Ortiz-Urquiza, A.S.; Santiago-Alvarez, C. Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycol. Res. 2007, 111, 947–966. [Google Scholar] [CrossRef] [PubMed]
- Bidochka, M.J.; Kasperski, J.E.; Wild, G.A.M. Occurrence of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana in soils from temperate and near-northern habitats. Can. J. Bot. 1998, 76, 1198–1204. [Google Scholar] [CrossRef]
- Hummel, R.L.; Walegenbach, J.F.; Barbercheck, M.E.; Kennedy, G.G.; Hoyt, G.D.; Arellano, C. Effects of production practices on soil- borne entomopathogens in western North Karolina vegetable systems. Environ. Entomol. 2002, 31, 84–91. [Google Scholar] [CrossRef]
- Sun, B.D.; Yu, H.Y.; Chen, A.; Liu, X.Z. Insect- associated fungi in soils of field crops and orchards. Crop Prot. 2008, 27, 1421–1426. [Google Scholar] [CrossRef]
- Latch, G.C.M.; Fallon, R.E. Studies on the use of Metarhizium anisopliae to control Oryctes rhinoceros. Entomophaga 1976, 21, 39–48. [Google Scholar] [CrossRef]
- Vänninen, I.; Tyni-Juslin, J.; Hokkanen, H. Persistence of augmented Metarhizium anisopliae and Beauveria bassiana in Finnishagricultural soils. BioControl 2000, 45, 201–222. [Google Scholar] [CrossRef]
- Fargues, J.; Luz, C. Effects of fluctuating moisture and temperature regimes on the infection potential of Beauveria bassiana for Rhodinus prolixus. J. Invertebr. Pathol. 2000, 75, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Devi, K.U.; Sridevi, V.; Mohan, C.M.; Padmavathi, J. Effect of high temperature and water stress on in vitro germination and growth in isolates of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin. J. Invertebr. Pathol. 2005, 88, 181–189. [Google Scholar] [CrossRef]
- Alexandre, T.M.; Alves, L.F.A.; Neves, P.M.O.J.; Alves, S.B. Effect of temperature and poultry litter on Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch) virulence against the lesser mealworm Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Neotrop. Entomol. 2006, 35, 75–82. [Google Scholar] [CrossRef]
- Polar, P.; Aquino de Muro, M.; Kairo, M.T.K.; Moore, D.; Pegram, R.; John, S.A.; Roach-Benn, C. Thermal characteristics of Metarhizium anisopliae isolates important for the development of biological pesticides for the control of cattle ticks. Vet. Parasitol. 2005, 134, 159–167. [Google Scholar] [CrossRef]
- Ibarra-Corteś, K.H.; Guzmán-Franco, A.W.; González-Fernández, H.; Suarez-Espinosa, J.; Baverstock, J. Selection of a fungal isolate for the control of the pink hibiscus mealybug Maconellicoccus hirsutus. Pest Manag. Sci. 2013, 69, 874–882. [Google Scholar] [CrossRef] [PubMed]
Genera of EPF | Site No. 1 | |||||||
---|---|---|---|---|---|---|---|---|
Autumn 2021 | Spring 2022 | Spring 2024 | Autumn 2024 | |||||
Flower Strip | Lawn | Flower Strip | Lawn | Flower Strip | Lawn | Flower Strip | Lawn | |
Beauveria spp. | 0.15 ± 0.11 ab | 1.13 ± 1.32 b | 0.0 ± 0.0 b | 0.06 ± 0.09 b | 1.86 ± 1.51 ab | 23.5 ± 33.1 a | 2.0 ± 1.68 ab | 0.06 ± 0.09 a |
Metarhizium spp. | 1.30 ± 1.20 a | 7.53 ± 5.75 a | 0.7 ± 0.24 a | 8.73 ± 7.52 a | 5.1 ± 2.92 a | 11.9 ± 12.4 b | 2.5 ± 0.82 a | 0.33 ± 0.34 a |
Cordyceps spp. | 0.0 ± 0.0 b | 0.13 ± 0.09 c | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 0.36 ± 0.51 c | 0.0 ± 0.0 c | 0.1 ± 0.14 a |
Akanthomyces spp. | 0.0 ± 0.0 b | 0.06 ± 0.09 c | 0.05 ± 0.04 b | 0.0 ± 0.0 b | 0.2 ± 0.16 b | 0.13 ± 0.09 c | 0.22 ± 0.13 bc | 0.16 ± 0.12 a |
F value | 5.7664 | 9.0053 | 34.486 | 5.4711 | 18.927 | 9.1159 | 25.086 | 10.970 |
p value | 0.0331 | 0.0112 | 0.0005 | 0.0374 | 0.0009 | 0.0049 | 0.0003 | 0.0621 |
Genera of EPF | Site No. 2 | |||
---|---|---|---|---|
Spring 2024 | Autumn 2024 | |||
Flower Strip | Lawn | Flower Strip | Lawn | |
Beauveria spp. | 0.03 ± 0.04 b | 0.26 ± 0.17 b | 0.33 ± 0.47 b | 0.0 ± 0.0 b |
Metarhizium spp. | 0.83 ± 0.89 a | 7.40 ± 3.34 a | 3.36 ± 2.88 a | 0.02 ± 0.03 b |
Cordyceps spp. | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 0.0 ± 0.0 c | 0.0 ± 0.0 b |
Akanthomyces ssp. | 0.93 ± 0.20 a | 0.33 ± 0.26 b | 0.66 ± 0.09 b | 0.3 ± 0.14 a |
F value | 15.264 | 11.280 | 15.906 | 19.692 |
p value | 0.0020 | 0.0442 | 0.0017 | 0.0008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tkaczuk, C.; Majchrowska-Safaryan, A.; Dadak, M. Comparative Analysis of the Occurrence of Entomopathogenic Fungi in Soils from Flower Strips and Lawns in Urban Space. Sustainability 2025, 17, 7819. https://doi.org/10.3390/su17177819
Tkaczuk C, Majchrowska-Safaryan A, Dadak M. Comparative Analysis of the Occurrence of Entomopathogenic Fungi in Soils from Flower Strips and Lawns in Urban Space. Sustainability. 2025; 17(17):7819. https://doi.org/10.3390/su17177819
Chicago/Turabian StyleTkaczuk, Cezary, Anna Majchrowska-Safaryan, and Maciej Dadak. 2025. "Comparative Analysis of the Occurrence of Entomopathogenic Fungi in Soils from Flower Strips and Lawns in Urban Space" Sustainability 17, no. 17: 7819. https://doi.org/10.3390/su17177819
APA StyleTkaczuk, C., Majchrowska-Safaryan, A., & Dadak, M. (2025). Comparative Analysis of the Occurrence of Entomopathogenic Fungi in Soils from Flower Strips and Lawns in Urban Space. Sustainability, 17(17), 7819. https://doi.org/10.3390/su17177819