Habitat Quality Assessment Based on Ecological Network Construction: A Case Study of Eremias multiocellata in Xinjiang, China
Abstract
1. Introduction
2. Study Area and Data Sources
2.1. Overview of the Study Area
2.2. Data Source
3. Research Methodology
3.1. Construction of Core Ecological Source Areas
3.1.1. Habitat Quality Assessment Based on the InVEST Model
3.1.2. Suitable Habitat Prediction Based on MaxEnt Model
3.1.3. Overlay Analysis
3.2. Construction of Ecological Resistance Surface Based on Analytic Hierarchy Process
3.3. Construction of Ecological Corridors Based on Minimum Cumulative Resistance Model
3.4. Identification of Strategic Points in the Ecological Network
3.4.1. Identification of Ecological Pinch Points
3.4.2. Identification of Barriers
3.4.3. Identification of Stepping Stones
4. Results
4.1. Results of Habitat Quality Analysis
4.2. Habitat Prediction Results
4.3. Construction of Core Ecological Source Area
4.4. Construction of Ecological Resistance Surface
4.5. Ecological Corridor Construction
4.6. Identification of Strategic Points for Ecological Corridor Optimization
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MaxEnt | Maximum Entropy |
InVEST | Integrated Valuation of Ecosystem Services and Trade-offs |
MCR | Minimum Cumulative Resistance |
AHP | Analytic Hierarchy Process |
GIBF | Global Invasive Species Database and Information System |
ROC | Receiver Operating Characteristic |
Appendix A
Code | Variable Name | Unit |
---|---|---|
Bio1 | Annual mean temperature | °C |
Bio2 | Mean diurnal range | °C |
Bio3 | Isothermality | % |
Bio4 | Temperature seasonality | °C |
Bio5 | Max temperature of warmest month | °C |
Bio6 | Min temperature of coldest month | °C |
Bio7 | Temperature annual range | °C |
Bio8 | Mean temperature of wettest quarter | ℃ |
Bio9 | Mean temperature of driest quarter | °C |
Bio10 | Mean temperature of warmest quarter | ℃ |
Bio11 | Mean temperature of coldest quarter | ℃ |
Bio12 | Annual precipitation | Mm |
Bio13 | Precipitation of wettest month | Mm |
Bio14 | Precipitation of driest month | Mm |
Bio15 | Precipitation seasonality | — |
Bio16 | Precipitation of wettest quarter | Mm |
Bio17 | Precipitation of driest quarter | Mm |
Bio18 | Precipitation of warmest quarter | Mm |
Bio19 | Precipitation of coldest quarter | Mm |
Veg | Vegetation type | — |
Dem | Digital elevation model | m |
Aspect | Aspect | ° |
Slope | Slope | ° |
Land | Land use | — |
Resistance Values | Land | Slope/(°) | Dem/(m) | Aspect/(°) | Veg |
---|---|---|---|---|---|
10 | Desert | ≤20 | ≤1500 | ≤45 | Grass land |
60 | Forest land | >20~30 | >1500~3500 | >45~135 | Desert |
100 | Dryland | >30~45 | >3500~4000 | >135~225 | Shrub |
150 | Other construction land | >45 | >4000 | >225 | Coniferous broad leaved forest |
Weight | 0.04 | 0.20 | 0.13 | 0.15 | 0.48 |
References
- Meyer, C.; Kreft, H.; Guralnick, R.; Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 2015, 6, 8221. [Google Scholar] [CrossRef]
- Gao, J.; Gong, J.; Li, Y.; Yang, J.X.; Liang, X. Ecological network assessment in dynamic landscapes: Multi-scenario simulation and conservation priority analysis. Land Use Policy 2024, 139, 107059. [Google Scholar] [CrossRef]
- Butchart, S.H.; Walpole, M.; Collen, B.; Van Strien, A.; Scharlemann, J.P.; Almond, R.E.; Baillie, J.E.; Bomhard, B.; Brown, C.; Bruno, J. Global biodiversity: Indicators of recent declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Lande, R. Anthropogenic, ecological and genetic factors in extinction and conservation. Res. Popul. Ecol. 1998, 40, 259–269. [Google Scholar] [CrossRef]
- Harlio, A.; Kuussaari, M.; Heikkinen, R.K.; Arponen, A. Incorporating landscape heterogeneity into multi-objective spatial planning improves biodiversity conservation of semi-natural grasslands. J. Nat. Conserv. 2019, 49, 37–44. [Google Scholar] [CrossRef]
- Wang, T.; Huang, Y.; Cheng, J.; Xiong, H.; Ying, Y.; Feng, Y.; Wang, J. Construction and optimization of watershed-scale ecological network based on complex network method: A case study of Erhai Lake Basin in China. Ecol. Indic. 2024, 160, 111794. [Google Scholar] [CrossRef]
- Mu, H.; Li, X.; Ma, H.; Du, X.; Huang, J.; Su, W.; Yu, Z.; Xu, C.; Liu, H.; Yin, D.; et al. Evaluation of the policy-driven ecological network in the Three-North Shelterbelt region of China. Landsc. Urban Plann. 2022, 218, 104305. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Nakagoshi, N.; Zong, Y. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landsc. Urban Plann. 2010, 95, 16–27. [Google Scholar] [CrossRef]
- Fortin, M.-J.; Dale, M.R.T.; Brimacombe, C. Network ecology in dynamic landscapes. Proc. R. Soc. B-Biol. Sci. 2021, 288, 20201889. [Google Scholar] [CrossRef]
- Saura, S. Node self-connections in network metrics. Ecol. Lett. 2018, 21, 319–320. [Google Scholar] [CrossRef]
- Manning, A.D.; Gibbons, P.; Lindenmayer, D.B. Scattered trees: A complementary strategy for facilitating adaptive responses to climate change in modified landscapes? J. Appl. Ecol. 2009, 46, 915–919. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, J.; Wang, X.; Peng, J. Using stepping-stone theory to evaluate the maintenance of landscape connectivity under China’s ecological control line policy. J. Clean. Prod. 2021, 296, 126356. [Google Scholar] [CrossRef]
- Behney, A.C. Rapid Assessment of Habitat Quality for Nonbreeding Ducks in Northeast Colorado. J. Fish Wildl. Manag. 2020, 11, 507–517. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.J.; Wu, D.F.; Wang, Z.L.; Yang, H. Optimization of ecological security patterns considering both natural and social disturbances in China’s largest urban agglomeration. Ecol. Eng. 2022, 180, 106647. [Google Scholar] [CrossRef]
- Fitzpatrick, M.C.; Gotelli, N.J.; Ellison, A.M. MaxEnt versus MaxLike: Empirical comparisons with ant species distributions. Ecosphere 2013, 4, 55. [Google Scholar] [CrossRef]
- Nematollahi, S.; Fakheran, S.; Kienast, F.; Jafari, A. Application of InVEST habitat quality module in spatially vulnerability assessment of natural habitats (case study: Chaharmahal and Bakhtiari province, Iran). Environ. Monit. Assess. 2020, 192, 487. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, E.; Dong, P. Identifying barriers and pinch-points of large mammal corridors in Iran. J. Environ. Stud. Sci. 2023, 13, 285–297. [Google Scholar] [CrossRef]
- Liu, H.; Niu, T.; Yu, Q.; Yang, L.; Ma, J.; Qiu, S.; Wang, R.; Liu, W.; Li, J. Spatial and temporal variations in the relationship between the topological structure of eco-spatial network and biodiversity maintenance function in China. Ecol. Indic. 2022, 139, 108919. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Hati, J.P.; Acharyya, R.; Pal, I.; Tuladhar, N.; Habel, M. Global trends in using the InVEST model suite and related research: A systematic review. Ecohydrol. Hydrobiol. 2024, 25, 389–405. [Google Scholar] [CrossRef]
- Zou, W.-t.; He, Y.-j.; Ye, B.; Zhao, X.-d.; Xu, D.-y.; Xiao, R.-q.; Duan, Y.-x. Research advances in forest ecosystem services evaluations based on the InVEST model. World For. Res. 2020, 33, 19–24. (In Chinese) [Google Scholar] [CrossRef]
- Lissovsky, A.A.; Dudov, S.V. Species-distribution modeling: Advantages and limitations of its application. 2. MaxEnt. Biol. Bull. Rev. 2021, 11, 265–275. [Google Scholar] [CrossRef]
- Rathore, M.K.; Sharma, L.K. Efficacy of species distribution models (SDMs) for ecological realms to ascertain biological conservation and practices. Biodivers. Conserv. 2023, 32, 3053–3087. [Google Scholar] [CrossRef]
- Mahmoodi, S.; Heydari, M.; Ahmadi, K.; Khwarahm, N.R.; Karami, O.; Almasieh, K.; Naderi, B.; Bernard, P.; Mosavi, A. The current and future potential geographical distribution of Nepeta crispa Willd., an endemic, rare and threatened aromatic plant of Iran: Implications for ecological conservation and restoration. Ecol. Indic. 2022, 137, 108752. [Google Scholar] [CrossRef]
- Cui, X.; Wang, Z.; Xu, N.; Wu, J.; Yao, Z. A secondary modal decomposition ensemble deep learning model for groundwater level prediction using multi-data. Environ. Model. Softw. 2024, 175, 105969. [Google Scholar] [CrossRef]
- Xu, C.; Yu, Q.; Wang, F.; Qiu, S.; Ai, M.; Zhao, J. Identifying and optimizing ecological spatial patterns based on the bird distribution in the Yellow River Basin, China. J. Environ. Manag. 2023, 348, 119293. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, X.; Tang, J.; Wang, Z.; Miao, C. Spatial pattern evolution and prediction scenario of habitat quality in typical fragile ecological region, China: A case study of the Yellow River floodplain area. Heliyon 2023, 9, e14430. [Google Scholar] [CrossRef]
- Lohmus, A.; Kont, R.; Runnel, K.; Vaikre, M.; Remm, L. Habitat Models of Focal Species Can Link Ecology and Decision-Making in Sustainable Forest Management. Forests 2020, 11, 721. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Y.Q.; Wu, B.; Wu, X.Q.; Qin, S.G.; Zhang, J.T. Estimation of the animal species diversity conservation value of desert ecosystem in China. Sci. Soil Water Conserv. 2015, 288, 92–98. (In Chinese) [Google Scholar] [CrossRef]
- Williams, J.B.; Shobrak, M.; Wilms, T.M.; Arif, I.A.; Khan, H.A. Climate change and animals in Saudi Arabia. Saudi J. Biol. Sci. 2012, 19, 121–130. [Google Scholar] [CrossRef]
- Mohammadpour, N.; Jahanishakib, F.; Asadolahi, Z. Systematic design of habitat services network (HSsN) for updating conservation areas in iran’s arid and Semi-Arid ecosystems. Ecol. Indic. 2024, 161, 111961. [Google Scholar] [CrossRef]
- Shenbrot, G.I.; Krasnov, B.R.; Rogovin, K.A.; Shenbrot, G.I.; Krasnov, B.R.; Rogovin, K.A. Species-Habitat Relationships in Desert Environments. In Spatial Ecology of Desert Rodent Communities; Springer: Berlin/Heidelberg, Germany, 1999; pp. 151–202. [Google Scholar]
- Wen, Z. Effects of Environmental Factors in the Tarim Basin on the Genetic Evolution of the Eremias multiocellata. Master’s Thesis, Northwest Minzu University, Lanzhou, China, 2022. [Google Scholar]
- Jiang, Z.-W.; Ma, L.; Mi, C.-R.; Tao, S.-A.; Guo, F.; Du, W.-G. Distinct responses and range shifts of lizard populations across an elevational gradient under climate change. Glob. Change Biol. 2023, 29, 2669–2680. [Google Scholar] [CrossRef] [PubMed]
- Biber, M.F.; Voskamp, A.; Hof, C. Potential effects of future climate change on global reptile distributions and diversity. Glob. Ecol. Biogeogr. 2023, 32, 519–534. [Google Scholar] [CrossRef]
- Trumbo, D.R.; Funk, W.C.; Pauly, G.B.; Robertson, J.M. Conservation genetics of an island-endemic lizard: Low Ne and the critical role of intermediate temperatures for genetic connectivity. Conserv. Genet. 2021, 22, 783–797. [Google Scholar] [CrossRef]
- Feizabadi, H.A.; Mohammadi, A.; Shahnaseri, G.; Wan, H.Y. Comparing drivers and protection of core habitat and connectivity for two sympatric desert carnivores. Glob. Ecol. Conserv. 2023, 48, e02696. [Google Scholar] [CrossRef]
- Cypher, B.L.; Kelly, E.C.; O’Leary, R.; Phillips, S.E.; Saslaw, L.R.; Tennant, E.N.; Westall, T.L. Conservation of threatened San Joaquin antelope squirrels: Distribution surveys, habitat suitability, and conservation recommendations. Calif. Fish Wildl. J. 2021, 345–366. [Google Scholar] [CrossRef]
- Krishna, Y.C.; Kumar, A.; Isvaran, K. Wild ungulate decision-making and the role of tiny refuges in human-dominated landscapes. PLoS ONE 2016, 11, e0151748. [Google Scholar] [CrossRef]
- Liu, S.L.; Dong, Y.H.; Cheng, F.Y.; Zhang, Y.Q.; Hou, X.Y.; Dong, S.K.; Coxixo, A. Effects of road network on Asian elephant habitat and connectivity between the nature reserves in Xishuangbanna, Southwest China. J. Nat. Conserv. 2017, 38, 11–20. [Google Scholar] [CrossRef]
- Habudechukeer, M.; Jicai, L.; Changliang, S.; Xiaoheng, J.; Xuewen, Z.; Xinkai, L.; Yerken, A.; Ayidaerhan, K.; Hongjun, C. Assessments of habitat qualities of desert ungulates in the Kalamari National Park based on MaxEnt-InVEST models. Nat. Prot. Areas 2024, 40, 1–16. (In Chinese) [Google Scholar] [CrossRef]
- Wan, Z.; Li, H. Dynamic Evolution and Trade-Off/Synergistic Effects of Ecosystem Services in the Northeast Tiger and Leopard National Park from 2000 to 2022. Sustainability 2024, 17, 108. [Google Scholar] [CrossRef]
- Verma, P.; Siddiqui, A.R.; Mourya, N.K.; Devi, A.R. Forest carbon sequestration mapping and economic quantification infusing MLPnn-Markov chain and InVEST carbon model in Askot Wildlife Sanctuary, Western Himalaya. Ecol. Inform. 2024, 79, 102428. [Google Scholar] [CrossRef]
- Park, H.; Jeong, A.; Koo, S.; Lee, S. Conservation Strategies for Endangered Species in the Forests Utilizing Landscape Connectivity Models. Sustainability 2024, 16, 10970. [Google Scholar] [CrossRef]
- Correa Ayram, C.A.; Mendoza, M.E.; Etter, A.; Salicrup, D.R.P. Habitat connectivity in biodiversity conservation: A review of recent studies and applications. Prog. Phys. Geogr. 2016, 40, 7–37. [Google Scholar] [CrossRef]
- Fischer, J.; Lindenmayer, D.B. Landscape modification and habitat fragmentation: A synthesis. Glob. Ecol. Biogeogr. 2007, 16, 265–280. [Google Scholar] [CrossRef]
- Zheng, H.; Wei, X.; Tada, R.; Clift, P.D.; Wang, B.; Jourdan, F.; Wang, P.; He, M. Late Oligocene-early Miocene birth of the Taklimakan Desert. Proc. Natl. Acad. Sci. USA 2015, 112, 7662–7667. [Google Scholar] [CrossRef] [PubMed]
- Orlova, V.F.; Poyarkov, N.; Chirikova, M.A.; Nazarov, R.A.; Munkhbaatar, M.; Munkhbayar, K.; Terbish, K. MtDNA differentiation and taxonomy of Central Asian racerunners of Eremias multiocellata-E. przewalskii species complex (Squamata, Lacertidae). Zootaxa 2017, 4282, 1–42. [Google Scholar] [CrossRef]
- Jiping, Z.; Qing, Q.; Chunlan, L.; Haihua, W.; Sha, P. Ecological land use planning for Beijing City based on the minimum cumulative resistance mode. ACTA Ecol. Sin. 2017, 37, 6313–6321. (In Chinese) [Google Scholar] [CrossRef]
- Cheng, F.-e.; Li, Z.; Bai, X.; Jing, Y.; Zhang, J.; Shi, X.; Li, T.; Li, W. Investigation on the mechanism of the combination of eremias multiocellata and cisplatin in reducing chemoresistance of gastric cancer based on in vitro and in vivo experiments. Aging 2024, 16, 3386. [Google Scholar] [CrossRef]
- Sharifian, S.; Mortazavi, M.S.; Mohebbi Nozar, S.L. Projected habitat preferences of commercial fish under different scenarios of climate change. Sci. Rep. 2024, 14, 10177. [Google Scholar] [CrossRef]
- Wang, M.-Y.; Ruckstuhl, K.E.; Xu, W.-X.; Blank, D.; Yang, W.-K. Human activity dampens the benefits of group size on vigilance in khulan (Equus hemionus) in Western China. PLoS ONE 2016, 11, e0146725. [Google Scholar] [CrossRef]
- Yimit, H.; Ayup, M.; Wang, G.Z.; Luo, H.; Ebeidulla, D.P. euphratica ecosystem fragility and protecting strategy on Tarim P. euphratica Nature Reserve in Xinjiang. In Remote Sensing and Modeling of Ecosystems for Sustainability III; SPIE: Bellingham, WA, USA, 2006; pp. 439–450. [Google Scholar]
- Riedler, B.; Lang, S. A spatially explicit patch model of habitat quality, integrating spatio-structural indicators. Ecol. Indic. 2018, 94, 128–141. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, J.; Qi, J.; Rong, T.; Wang, Z.; Yang, Z.; Han, F. Monitoring the Spatiotemporal Dynamics of Habitat Quality and Its Driving Factors Based on the Coupled NDVI-InVEST Model: A Case Study from the Tianshan Mountains in Xinjiang, China. Land 2022, 11, 1805. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, Y. The effects of landscape change on habitat quality in arid desert areas based on future scenarios: Tarim River Basin as a case study. Front. Plant Sci. 2022, 13, 1031859. [Google Scholar] [CrossRef]
- Moreira, M.; Fonseca, C.; Vergílio, M.; Calado, H.; Gil, A. Spatial assessment of habitat conservation status in a Macaronesian island based on the InVEST model: A case study of Pico Island (Azores, Portugal). Land Use Policy 2018, 78, 637–649. [Google Scholar] [CrossRef]
- You, G.X.; Chen, T.Y.; Shen, P.X.; Hu, Y.D. Designing an Ecological Network in Yichang Central City in China Based on Habitat Quality Assessment. Sustainability 2023, 15, 8313. [Google Scholar] [CrossRef]
- Li, Z.; Deng, X.; Jin, G.; Mohmmed, A.; Arowolo, A.O. Tradeoffs between agricultural production and ecosystem services: A case study in Zhangye, Northwest China. Sci. Total Environ. 2020, 707, 136032. [Google Scholar] [CrossRef] [PubMed]
- Yohannes, H.; Soromessa, T.; Argaw, M.; Dewan, A. Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile basin of Ethiopian highlands. J. Environ. Manag. 2021, 281, 111885. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.J.; Bao, X.K.; Ge, J.; Liang, T.G. Land cover pattern and habitat suitability on the global largest breeding sites for Black-necked Cranes. J. Clean. Prod. 2021, 322, 128968. [Google Scholar] [CrossRef]
- Li, H.; Qu, Y.-F.; Ding, G.-H.; Ji, X. Life-history variation with respect to experienced thermal environments in the lizard, Eremias multiocellata (Lacertidae). Zool. Sci. 2011, 28, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Wang, Y.; Li, S.; Zeng, Z. Is Habitat Preference Associated with Locomotor Performance in Multiocellated Racerunners (Eremias multiocellata) from a Desert Steppe? Asian Herpetol. Res. 2015, 6, 143–149. [Google Scholar] [CrossRef]
- Li, D.; Sun, W.; Xia, F.; Yang, Y.; Xie, Y. Can habitat quality index measured using the invest model explain variations in bird diversity in an urban area? Sustainability 2021, 13, 5747. [Google Scholar] [CrossRef]
- Kija, H.K.; Ogutu, J.O.; Mangewa, L.J.; Bukombe, J.; Verones, F.; Graae, B.J.; Kideghesho, J.R.; Said, M.Y.; Nzunda, E.F. Spatio-temporal changes in wildlife habitat quality in the greater Serengeti ecosystem. Sustainability 2020, 12, 2440. [Google Scholar] [CrossRef]
- He, B.; Chang, J.; Guo, A.; Wang, Y.; Wang, Y.; Li, Z. Assessment of river basin habitat quality and its relationship with disturbance factors: A case study of the Tarim River Basin in Northwest China. J. Arid Land 2022, 14, 167–185. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, X.; Jiang, X.; Fan, T.; Liang, X.; Yan, W. MaxEnt Modeling for Predicting Suitable Habitat for Endangered Tree Keteleeria davidiana (Pinaceae) in China. Forests 2023, 14, 394. [Google Scholar] [CrossRef]
- Wang, T.; Li, W.; Cui, H.; Song, Y.; Liu, C.; Yan, Q.; Wu, Y.; Jia, Y.; Fang, L.; Qi, L. Predicting the Potential Habitat Distribution of Relict Plant Davidia involucrata in China Based on the MaxEnt Model. Forests 2024, 15, 272. [Google Scholar] [CrossRef]
- Kroner, R.E.G.; Krithivasan, R.; Mascia, M.B. Effects of protected area downsizing on habitat fragmentation in Yosemite National Park (USA), 1864–2014. Ecol. Soc. 2016, 21, 22. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef]
- Cobben, M.M.P.; van Treuren, R.; Castaneda-Alvarez, N.P.; Khoury, C.K.; Kik, C.; van Hintum, T.J.L. Robustness and accuracy of Maxent niche modelling for Lactuca species distributions in light of collecting expeditions. Plant Genet. Resour.-Charact. Util. 2015, 13, 153–161. [Google Scholar] [CrossRef]
- Padalia, I.; Srivastava, V.; Kushwaha, S.P.S. Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Ecol. Inform. 2014, 22, 36–43. [Google Scholar] [CrossRef]
- Jeong, A.; Kim, M.; Lee, S. Analysis of Priority Conservation Areas Using Habitat Quality Models and MaxEnt Models. Animals 2024, 14, 1680. [Google Scholar] [CrossRef]
- Shi, F.; Liu, S.; Sun, Y.; An, Y.; Zhao, S.; Liu, Y.; Li, M. Ecological network construction of the heterogeneous agro-pastoral areas in the upper Yellow River basin. Agric. Ecosyst. Environ. 2020, 302, 107069. [Google Scholar] [CrossRef]
- Shen, Z.; Wu, W.; Chen, S.; Tian, S.; Wang, J.; Li, L. A static and dynamic coupling approach for maintaining ecological networks connectivity in rapid urbanization contexts. J. Clean. Prod. 2022, 369, 133375. [Google Scholar] [CrossRef]
- Luoxue, J.; Zhengyu, L.; Tianying, C.; Jiabao, D.; Wei2, Z.; Yue, Q.; Weiji, C.; You, L. Habitat Suitability Evaluation and Corridor Construction of Phrynocephalus axillaris in Xinjiang. Chin. J. Wildl. 2024, 45, 354–366. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Li, R.; Wang, X.; Cheng, J.; Yang, Q.; Kong, H. AHP-GIS and MaxEnt for delineation of potential distribution of Arabica coffee plantation under future climate in Yunnan, China. Ecol. Indic. 2021, 132, 108339. [Google Scholar] [CrossRef]
- Lin, L.; Wang, W.; Ran, M.; Geng, S.; Yang, Y. Discussion on Giant Panda Habitat Suitability and Potential Habitat in Wanglang Nature Reserve. J. North-East For. Univ. 2022, 50, 87–92. (In Chinese) [Google Scholar] [CrossRef]
- Rojas-Briceno, N.B.; Garcia, L.; Cotrina-Sanchez, A.; Gonas, M.; Salas Lopez, R.; Silva Lopez, J.O.; Oliva-Cruz, M. Land Suitability for Cocoa Cultivation in Peru: AHP and MaxEnt Modeling in a GIS Environment. Agronomy 2022, 12, 2930. [Google Scholar] [CrossRef]
- Orlova, V.F.; Solovyeva, E.N.; Dunayev, E.A.; Ananjeva, N.B. Integrative taxonomy within Eremias multiocellata complex (Sauria, Lacertidae) from the western part of range: Evidence from historical DNA. Genes 2022, 13, 941. [Google Scholar] [CrossRef]
- Zeng, Z.-G.; Bi, J.-H.; Li, S.-R.; Chen, S.-Y.; Pike, D.A.; Gao, Y.; Du, W.-G. Effects of habitat alteration on lizard community and food web structure in a desert steppe ecosystem. Biol. Conserv. 2014, 179, 86–92. [Google Scholar] [CrossRef]
- Buehler, M.D.; Zoljargal, P.; Purvee, E.; Munkhbayar, K.; Munkhbaatar, M.; Batsaikhan, N.; Ananjeva, N.B.; Orlov, N.L.; Papenfuss, T.J.; Roldán-Piña, D. The results of four recent joint expeditions to the Gobi Desert: Lacertids and Agamids. Russ. J. Herpetol. 2021, 28, 15–32. [Google Scholar] [CrossRef]
- Fonseca, E.D.S.; Guimarães, R.B.; Prestes-Carneiro, L.E.; Tolezano, J.E.; Rodgers, M.D.S.M.; Avery, R.H.; Malone, J.B. Predicted distribution of sand fly (Diptera: Psychodidae) species involved in the transmission of Leishmaniasis in São Paulo state, Brazil, utilizing maximum entropy ecological niche modeling. Pathog. Glob. Health 2021, 115, 108–120. [Google Scholar] [CrossRef]
- Li, Q.-W.; Li, S.; Cao, M.-C.; Xu, H.-G. Habitat Suitability Evaluation and Corridor Design of Muntiacus crinifrons in Qianjiangyuan National Park. J. Ecol. Rural Environ. 2021, 37, 778–785. (In Chinese) [Google Scholar] [CrossRef]
- Rafaai, N.H.; Husain, H.; Nor, S.M.; Nor, A.N.M.; Amir, A.; Abas, M.A.; Hassin, N.H.; Rosdi, A.; Jaafar, S.B.; Ahmad, F.N.; et al. Utilizing spatial modeling to evaluate habitat suitability and develop conservation corridors for effective conservation planning of Asian elephants (Elephas maximus) in Jeli, Kelantan, Malaysia. Ecol. Model. 2025, 502, 111043. [Google Scholar] [CrossRef]
- Qin, J.-z.; Dai, J.-p.; Li, S.-h.; Zhang, J.-z.; Peng, J.-s. Construction of ecological network in Qujing city based on MSPA and MCR models. Sci. Rep. 2024, 14, 9800. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Zeng, Z.; Zhang, X.; Shuai, L.; Teng, L.; Yan, W.; Liu, Z. Effects of habitat desertification on the community composition of lizards. Acta Ecol. Sin. 2019, 39, 1680–1687. [Google Scholar] [CrossRef]
- Yang, C.; Guo, H.; Huang, X.; Wang, Y.; Li, X.; Cui, X. Ecological Network Construction of a National Park Based on MSPA and MCR Models: An Example of the Proposed National Parks of “Ailaoshan-Wuliangshan” in China. Land 2022, 11, 1913. [Google Scholar] [CrossRef]
- Hu, J.Q.; Jiao, S.; Xia, H.W.; Qian, Q.Y. Construction of Rural Multifunctional Landscape Corridor Based on MSPA and MCR Model-Taking Liukeng Cultural and Ecological Tourism Area as an Example. Sustainability 2023, 15, 12262. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, R.; Chu, Z.; Wu, Y.; Wei, J. Construction of Ecological Security Pattern and Identification of Key Regions Based on Ecological Assessment and Circuit Theory—A Case Study in Anhui Province. Bull. Soil Water Conserv. 2023, 43, 209–216. (In Chinese) [Google Scholar] [CrossRef]
- Lv, L.; Zhang, S.; Zhu, J.; Wang, Z.; Wang, Z.; Li, G.; Yang, C. Ecological Restoration Strategies for Mountainous Cities Based on Ecological Security Patterns and Circuit Theory: A Case of Central Urban Areas in Chongqing, China. Int. J. Environ. Res. Public Health 2022, 19, 16505. [Google Scholar] [CrossRef]
- Fan, F.; Wen, X.; Feng, Z.; Gao, Y.; Li, W. Optimizing urban ecological space based on the scenario of ecological security patterns: The case of central Wuhan, China. Appl. Geogr. 2022, 138, 102619. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, J.; Wang, X.; Wang, Z.; Zhao, Y. Can policy maintain habitat connectivity under landscape fragmentation? A case study of Shenzhen, China. Sci. Total Environ. 2020, 715, 136829. [Google Scholar] [CrossRef]
- Hannah, L.; Flint, L.; Syphard, A.D.; Moritz, M.A.; Buckley, L.B.; McCullough, I.M. Fine-grain modeling of species’ response to climate change: Holdouts, stepping-stones, and microrefugia. Trends Ecol. Evol. 2014, 29, 390–397. [Google Scholar] [CrossRef]
- Feng, M.; Zhao, W.; Zhang, T. Construction and Optimization Strategy of County Ecological Infrastructure Network Based on MCR and Gravity Model-A Case Study of Langzhong County in Sichuan Province. Sustainability 2023, 15, 8478. [Google Scholar] [CrossRef]
- Qiu, S.; Fang, M.; Yu, Q.; Niu, T.; Liu, H.; Wang, F.; Xu, C.; Ai, M.; Zhang, J. Study of spatialtemporal changes in Chinese forest eco-space and optimization strategies for enhancing carbon sequestration capacity through ecological spatial network theory. Sci. Total Environ. 2023, 859, 160035. [Google Scholar] [CrossRef] [PubMed]
- Diaz, J.A.; Santos, T.; Llanos-Garrido, A. Lizard abundance in forest fragments: Effects of patch size, patch shape, thermoregulation, and habitat quality. Amphibia-Reptilia 2024, 45, 219–231. [Google Scholar] [CrossRef]
- Wouters, B.; Nijssen, M.; Geerling, G.; Van Kleef, H.; Remke, E.; Verberk, W. The effects of shifting vegetation mosaics on habitat suitability for coastal dune fauna-a case study on sand lizards (Lacerta agilis). J. Coast. Conserv. 2012, 16, 89–99. [Google Scholar] [CrossRef]
- Hoffmeister, T.S.; Vet, L.E.M.; Biere, A.; Holsinger, K.; Filser, J. Ecological and evolutionary consequences of biological invasion and habitat fragmentation. Ecosystems 2005, 8, 657–667. [Google Scholar] [CrossRef]
- Gong, J.; Xie, Y.; Cao, E.; Huang, Q.; Li, H. Integration of InVEST-habitat quality model with landscape pattern indexes to assess mountain plant biodiversity change: A case study of Bailongjiang watershed in Gansu Province. J. Geogr. Sci. 2019, 29, 1193–1210. [Google Scholar] [CrossRef]
- De, L.R.; Fa, L.N. The Influence of Environmental Temperatures on Body Temperatures of Phrynocephalus przewalskii and Eremias multiocellata and Their Selectionsof Environmental Temperatures. Zool. Res. 1992, 13, 47–52. (In Chinese) [Google Scholar]
- Han, Z.J.; Wu, S.; Liu, J. Land Use Change and Its Impact on the Quality of the Ecological Environment in Xinjiang. Sustainability 2024, 16, 10114. [Google Scholar] [CrossRef]
- Omar, K.; Elgamal, I. Can we save critically endangered relict endemic plant species? A case study of Primula boveana Decne ex Duby in Egypt. J. Nat. Conserv. 2021, 61, 126005. [Google Scholar] [CrossRef]
- Segal, R.; Massaro, M.; Carlile, N.; Whitsed, R. Small-scale species distribution model identifies restricted breeding habitat for an endemic island bird. Anim. Conserv. 2021, 24, 959–969. [Google Scholar] [CrossRef]
- Yackulic, C.B.; Chandler, R.; Zipkin, E.F.; Royle, J.A.; Nichols, J.D.; Grant, E.H.C.; Veran, S. Presence-only modelling using MAXENT: When can we trust the inferences? Methods Ecol. Evol. 2013, 4, 236–243. [Google Scholar] [CrossRef]
- Huang, Z.; Bai, Y.; Alatalo, J.M.; Yang, Z. Mapping biodiversity conservation priorities for protected areas: A case study in Xishuangbanna Tropical Area, China. Biol. Conserv. 2020, 249, 108741. [Google Scholar] [CrossRef]
- Alejandro Rangel-Patino, C.; Alberto Mastachi-Loza, C.; Eifler, D.; Garcia-Morales, C.; de Lourdes Ruiz-Gomez, M. When things get hot: Thermoregulation behavior in the lizard Sceloporus aeneus at different thermal conditions. J. Therm. Biol. 2020, 89, 102572. [Google Scholar] [CrossRef] [PubMed]
- Cooper, W.E., Jr.; Wilson, D.S. Thermal cost of refuge use affects refuge entry and hiding time by striped plateau lizards sceloporus virgatus. Herpetologica 2008, 64, 406–412. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, B.; Liu, Y.; Li, T. Ecological and risk networks: Modeling positive versus negative ecological linkages. Ecol. Indic. 2024, 166, 112362. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, Q.; Zheng, Y.; Wang, J. Oxidative stress and metabolic adaptations of liver to hibernating and non-hibernating states in Eremias multiocellata. Chin. J. Ecol. 2023, 42, 1417–1425. (In Chinese) [Google Scholar] [CrossRef]
- Wang, P.; Wang, Y. Characteristics of aeolian sediment under different underlying surfaces in oasis-desert transitional region of Minqin. Trans. Chin. Soc. Agric. Eng. 2012, 28, 138–145. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Pan, H.; Meng, C.; Zhang, Y.; Fan, S.; Li, Y.; Lv, H. Long-term enclosure restoration effects and their environmental dependencies in desert steppes of northern China. ACTA Ecol. Sin. 2025, 45, 1–15. (In Chinese) [Google Scholar] [CrossRef]
- An, R.; Ge, Y.; Zheng, Y.; Cheng, J.; Zeng, X.; Jin, M. Transverse intermittent straw-pressing mechanism of the paving machine for reed straw checkerboard. Trans. Chin. Soc. Agric. Eng. 2025, 41, 36–46. (In Chinese) [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, C.; Feng, Z. Species distribution models to estimate the deforested area of Picea crassifolia in arid region recently protected: Qilian Mts. National Natural Reserve (China). Pol. J. Ecol. 2012, 60, 515–524. [Google Scholar]
- Louis, V.; Page, S.E.; Tansey, K.J.; Jones, L.; Bika, K.; Balzter, H. Tiger Habitat Quality Modelling in Malaysia with Sentinel-2 and InVEST. Remote Sens. 2024, 16, 284. [Google Scholar] [CrossRef]
- Choudhary, A.; Deval, K.; Joshi, P.K. Study of habitat quality assessment using geospatial techniques in Keoladeo National Park, India. Environ. Sci. Pollut. Res. 2021, 28, 14105–14114. [Google Scholar] [CrossRef]
- Jo, Y.-S.; Won, C.-M.; Fritts, S.R.; Wallace, M.C.; Baccus, J.T. Distribution and habitat models of the Eurasian otter, Lutra lutra, in South Korea. J. Mammal 2017, 98, 1105–1117. [Google Scholar] [CrossRef]
Threatening Factor | Maximum Influence Distance (km) | Weight | Attenuation Type |
---|---|---|---|
Dryland | 7 | 0.6 | Linear |
Water field | 7 | 0.6 | Linear |
Other construction land | 9 | 0.9 | Exponential |
Rural residential land | 3 | 0.4 | Exponential |
Urban land | 10 | 0.8 | Exponential |
Land Use Type | Habitat Suitability | Dryland | Water Field | Other Construction Land | Rural Residential Land | Urban Land |
---|---|---|---|---|---|---|
Water field | 0.2 | 0.3 | 0.3 | 0.3 | 0.4 | 0.3 |
Dryland | 0.2 | 0.3 | 0.3 | 0.3 | 0.4 | 0.3 |
Forest land | 0.6 | 0.4 | 0.4 | 0.5 | 0.3 | 0.3 |
High-coverage grassland | 0.2 | 0.6 | 0.6 | 0.6 | 0.5 | 0.5 |
Moderate-coverage grasslands | 0.5 | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 |
Low-coverage grassland | 0.9 | 0.3 | 0.3 | 0.3 | 0.2 | 0.3 |
Waters | 0.2 | 0.6 | 0.6 | 0.6 | 0.5 | 0.7 |
Urban land | 0 | 0 | 0 | 0 | 0 | 0 |
Rural residential land | 0 | 0 | 0 | 0 | 0 | 0 |
Other construction land | 0 | 0 | 0 | 0 | 0 | 0 |
Sandy soil | 0.9 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 |
Gobi * | 1 | 0.2 | 0.2 | 0.2 | 0.3 | 0.1 |
Salinate field | 0.4 | 0.3 | 0.3 | 0.4 | 0.2 | 0.2 |
Marshland | 0.3 | 0.3 | 0.3 | 0.5 | 0.4 | 0.5 |
Bare land | 0.9 | 0.1 | 0.1 | 0.3 | 0.1 | 0.2 |
Bare rock texture | 1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhang, J.; Hai, J.; Chen, W.; Hai, C.; Pang, Z.; Yan, H.; Jiang, L.; Zhao, W.; Li, Y. Habitat Quality Assessment Based on Ecological Network Construction: A Case Study of Eremias multiocellata in Xinjiang, China. Sustainability 2025, 17, 7764. https://doi.org/10.3390/su17177764
Li Z, Zhang J, Hai J, Chen W, Hai C, Pang Z, Yan H, Jiang L, Zhao W, Li Y. Habitat Quality Assessment Based on Ecological Network Construction: A Case Study of Eremias multiocellata in Xinjiang, China. Sustainability. 2025; 17(17):7764. https://doi.org/10.3390/su17177764
Chicago/Turabian StyleLi, Zhengyu, Junzhe Zhang, Jinhu Hai, Wenhan Chen, Chunhua Hai, Zhenkun Pang, Haifan Yan, Luoxue Jiang, Wei Zhao, and You Li. 2025. "Habitat Quality Assessment Based on Ecological Network Construction: A Case Study of Eremias multiocellata in Xinjiang, China" Sustainability 17, no. 17: 7764. https://doi.org/10.3390/su17177764
APA StyleLi, Z., Zhang, J., Hai, J., Chen, W., Hai, C., Pang, Z., Yan, H., Jiang, L., Zhao, W., & Li, Y. (2025). Habitat Quality Assessment Based on Ecological Network Construction: A Case Study of Eremias multiocellata in Xinjiang, China. Sustainability, 17(17), 7764. https://doi.org/10.3390/su17177764