Precipitation as the Key Regulator of Acid Rain Inhibition on Forest Soil Organic Carbon Decomposition: A Global Meta-Analysis for Sustainable Ecosystem Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection and Selection
2.2. Data Grouping and Analysis Methods
2.2.1. Meta-Analysis Using Fixed and Random Effects Models
2.2.2. Assessing the Impact of Environmental Factors (Explanatory Variables)
2.2.3. Evaluating Publication Bias
3. Results
3.1. Data Description
3.2. Fixed and Random Effects Models
3.3. Impact of Individual Environmental Factors on Effect Sizes
3.3.1. Forest Type
3.3.2. Rainfall
3.4. Impact of Multiple Environmental Factors on Organic Carbon Decomposition
3.5. Piecewise Structural Equation Model (piecewiseSEM)
3.6. Assessing Publication Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J. Researching progress on acid deposition and its environmental effects. J. Cap. Norm. Univ. 1999, 20, 79–85. [Google Scholar] [CrossRef]
- Prakash, J.; Agrawal, S.B.; Agrawal, M. Global trends of acidity in rainfall and its impact on plants and soil. J. Soil Sci. Plant Nutr. 2023, 23, 398–419. [Google Scholar] [CrossRef]
- Smith, W.H. Air Pollution and Forests: Interactions Between Air Contaminants and Forest Ecosystems; Springer: New York, NY, USA, 1981; pp. 178–191. [Google Scholar]
- Luo, Y.Q.; Hui, D.F.; Zhang, D.Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology 2006, 87, 53–63. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Hou, Q. An analysis on spatial/temporal evolution of acid rain in China (1993–2006) and its causes. Acta Meteorol. Sin. 2008, 66, 1032–1042. [Google Scholar] [CrossRef]
- Wan, Y.S.; Wang, W.M. Analysis on current situation, formation causes and control countermeasures of acid rain pollution in China. Meteorol. Environ. Res. 2010, 1, 92–95. [Google Scholar] [CrossRef]
- Itahashi, S.; Ge, B.; Sato, K.; Fu, J.S.; Wang, X.; Yamaji, K.; Nagashima, T.; Li, J.; Kajino, M.; Liao, H.; et al. MICS-Asia III: Overview of model intercomparison and evaluation of acid deposition over Asia. Atmos. Chem. Phys. 2020, 20, 2667–2693. [Google Scholar] [CrossRef]
- Luo, X.; Zhu, L.; Xu, G.; Zhang, J.; Xu, J.; Yu, S.; Chen, X. Effects of acid deposition on the avoidance behavior of Folsomia candida (Collembola, Isotomidae). Soil Ecol. Lett. 2022, 4, 164–170. [Google Scholar] [CrossRef]
- Gao, T.Z.; Qi, P.; Zhang, Y.; Li, J.Y. Effects of simulating acid rain on the migration and transformation of nutrient elements in soil. Environ. Sci. Ecotechnol. 2004, 13, 23–26. [Google Scholar] [CrossRef]
- Hua, R.M.; Li, X.Q. Overview of acid rain research progress in our country. J. Anhui Agric. Univ. 1998, 25, 206–210. [Google Scholar] [CrossRef]
- Fan, H.B. On worldwide acid rain research. J. Fujian Coll. For. 2002, 22, 371–375. [Google Scholar] [CrossRef]
- NBSC (National Bureau of Statistics of China). 2014. Available online: http://www.tradingeconomics.com/china/gdp-growth-annual (accessed on 1 January 2024).
- Ministry of Environment Protection of the People’s Republic of China. Report on the State of the Environment in China 2013; Ministry of Environment Protection of the People’s Republic of China: Beijing, China, 2014; pp. 1–48. (In Chinese) [Google Scholar]
- Li, B.; Wang, Z.; Zhang, X. Assessment of the maximum allowed acid deposition load at current stage in China. J. Environ. Sci. 2017, 56, 140–144. [Google Scholar] [CrossRef]
- Yu, H.; He, N.; Wang, Q.; Zhu, J.; Gao, Y.; Zhang, Y.; Jia, Y.; Yu, G. Development of atmospheric acid deposition in China from the 1990s to the 2010s. Environ. Pollut. 2017, 231, 182–190. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA) of United States. Acid Rain Program Results. 2025. Available online: https://www.epa.gov/acidrain/acid-rain-program-results (accessed on 1 January 2024).
- Saura-Mas, S.; Estiarte, M.; Peñuelas, J.; Lloret, F. Effects of climate change on leaf litter decomposition across post-fire plant regenerative groups. Environ. Exp. Bot. 2012, 77, 274–282. [Google Scholar] [CrossRef]
- Ling, D.J.; Zhang, J.E.; Ouyang, Y. Advancements in research on impact of acid rain on soil ecosystem: A review. Soils 2007, 39, 514–521. Available online: https://qikan.cqvip.com/Qikan/Article/Detail?id=1000104320 (accessed on 23 August 2025).
- Song, Y.; Zhao, X.Z.; Mao, Z.J.; Sun, T.; Hou, L.L. SOC decomposition of four typical broad-leaved Korean pine communities in Xiaoxing’an Mountain. Acta Ecol. Sin. 2013, 33, 443–453. [Google Scholar] [CrossRef]
- Shaun, A.W.; Thomas, C.H.; Eric, P.S. The impact of simulated acid rain on soil leachate and xylem chemistry in a jack pine (Pinus banksiana Lamb.) stand in northern Ontario, Canada. Water Air Soil Pollut. 1999, 111, 89–108. [Google Scholar] [CrossRef]
- Bengtsson, J.; Janion, C.; Chown, S.L.; Leinaas, H.P. Litter decomposition in fynbos vegetation, South Africa. Soil Biol. Biochem. 2012, 47, 100–105. [Google Scholar] [CrossRef]
- Frouz, J.; Paldonova, A.; Lhotakova, Z.; Cajthaml, T. Major mechanisms contributing to the macrofauna-mediated slow down of litter decomposition. Soil Biol. Biochem. 2015, 91, 23–31. [Google Scholar] [CrossRef]
- Aas, E.R.; Althuizen, I.; Tang, H.; Geange, S.; Lieungh, E.; Vandvik, V.; Berntsen, T.K. Implications of climate and litter quality for simulations of litterbag decomposition at high latitudes. Biogeosciences 2024, 21, 3789–3817. [Google Scholar] [CrossRef]
- He, W.; Zhang, M.; Jin, G.; Sui, X.; Song, F. Effects of nitrogen deposition on nitrogen-mineralizing enzyme activity and soil microbial community structure in a Korean pine plantation. Microb. Ecol. 2021, 81, 410–424. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.F.; Cai, Z.C. Organic carbon decomposition rate in different soil types. Chin. J. Appl. Ecol. 2007, 18, 2251–2255. [Google Scholar]
- Huang, Y.; Liu, S.L.; Shen, Q.R.; Zong, L.G. Influence of environmental factors on the decomposition of organic carbon in agricultural soils. Chin. J. Appl. Ecol. 2002, 13, 709–714. [Google Scholar] [CrossRef]
- Röder, J.; Appelhans, T.; Peters, M.K.; Nauss, T.; Brandl, R. Disturbance can slow down litter decomposition, depending on severity of disturbance and season: An example from Mount Kilimanjaro. Web Ecol. 2024, 21, 11–33. [Google Scholar] [CrossRef]
- De Bortolli, M.A.; Assmann, T.S.; de Bortolli, B.B.; Macari, M.; Bernardon, A.; Jamhour, J.; Franzluebbers, A.J.; Soares, A.B.; Severo, I.K. Nutrient dynamics in integrated crop-livestock systems: Effects of stocking rates and nitrogen system fertilization on litter decomposition and release. Agronomy 2024, 14, 2009. [Google Scholar] [CrossRef]
- Zhu, X.Z.; Huang, Y.; Yang, X.Z. Effects of simulated acid rain on decomposition of soil organic carbon and crop straw. Chin. J. Appl. Ecol. 2009, 20, 480–484. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Shi, P.L.; Zhang, X.Z. Some advance in the main factors controlling soil respiration. Adv. Sci. Earth Sci. 2005, 20, 778–785. Available online: http://www.adearth.ac.cn/EN/abstract/abstract521.shtml (accessed on 23 August 2025).
- Zhou, X.Y.; Zhang, C.Y.; Guo, G.F. Research progress on the impact of climate change on forest soil organic carbon storage. Chin. J. Appl. Ecol. 2010, 21, 1867–1874. [Google Scholar] [CrossRef]
- Magel, E.; Höll, W.; Ziegler, H. Alteration of physiological parameters in needles of cloned spruce trees (Picea abies (L.) Karst.) by ozone and acid mist. Environ. Pollut. 1990, 64, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Dangles, O.; Gessner, M.O. Impacts of stream acidification on litter breakdown: Implications for assessing ecosystem functioning. J. Appl. Ecol. 2004, 41, 365–378. [Google Scholar] [CrossRef]
- Wang, H.; Wang, G.; Huang, Y.Y.; Chen, J.; Chen, M.M. The effects of pH change on the activities of enzymes in an acid soil. Ecol. Environ. 2008, 17, 2401–2406. [Google Scholar] [CrossRef]
- Zhang, Q.; Lu, L.M.; Dai, Q.X.; Zhu, L.X.; Zou, J.M.; Zhu, Y.; Bian, A.N.; He, D.B. Microbial and enzyme activities of soil of Citrus grandis (L.) Osbeck. cv. Guanximiyou with simulated acid rain. J. Quanzhou Norm. Univ. 2018, 36, 6–12. [Google Scholar] [CrossRef]
- Liu, Z.; Wei, H.; Zhang, J.; Saleem, M.; He, Y.; Zhong, J.; Ma, R. Seasonality regulates the effects of acid rain on microbial community in a subtropical agricultural soil of Southern China. Ecotox. Environ. Saf. 2021, 224, 112681. [Google Scholar] [CrossRef]
- Bouray, M.; Moir, J.L.; Lehto, N.J.; Condron, L.M.; Touhami, D.; Hummel, C. Soil pH effects on phosphorus mobilization in the rhizosphere of Lupinus angustifolius. Plant Soil 2021, 469, 387–407. [Google Scholar] [CrossRef]
- Zhang, J.E.; Ouyang, Y.; Ling, D.J. Impacts of simulated acid rain on cation leaching from the latosol in south China. Chemosphere 2007, 67, 2131–2137. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.P.; Chen, X.M.; Chu, G.W.; Xiong, X.; Zhou, G.Y.; Zhang, D.Q. Effects of simulated acid rain on soil organic carbon fractions in southern subtropical forests. Guihaia 2015, 35, 61–68. Available online: http://gxzw.ijournals.cn/gxzwen/ch/reader/view_abstract.aspx?file_no=20150109&flag=1 (accessed on 23 August 2025).
- Shen, J.; Luo, Y.; Tao, Q.; White, P.J.; Sun, G.; Li, M.; Luo, J.; He, Y.; Li, B.; Li, Q.; et al. The exacerbation of soil acidification correlates with structural and functional succession of the soil microbiome upon agricultural intensification. Sci. Total Environ. 2022, 828, 154524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.H.; Shen, X.Y.; Xu, X.L.; Min, H.; Ying, J.H. Influence of simulated acid rain on the biomass of soil microbes in Chinese Medicine Base. J. Agric. Environ. Sci. 2004, 23, 281–283. [Google Scholar]
- Wang, N.; Pan, X.C.; Bai, S.B. Effects of simulated acid rain on soil respiration and microbial diversity in Moso bamboo forest in subtropical China. Acta Ecol. Sin. 2020, 40, 3420–3430. [Google Scholar] [CrossRef]
- Zhang, H.H.; Xue, Y.T.; Lin, Y.H.; He, X.B. Short-term effect of acidolysis on decomposition of Cinnamomum camphora litter. J. Jishou Univ. 2016, 37, 69–72. Available online: https://zkxb.jsu.edu.cn/EN/10.3969/j.cnki.jdxb.2016.06.014 (accessed on 23 August 2025).
- Tibbett, M.; Gil-Martínez, M.; Fraser, T.; Green, I.D.; Duddigan, S.; De Oliveira, V.H.; Raulund-Rasmussen, K.; Sizmur, T.; Diaz, A. Long-term acidification of pH neutral grasslands affects soil biodiversity, fertility and function in a heathland restoration. Catena 2019, 180, 401–415. [Google Scholar] [CrossRef]
- Bernd, A.; Heike, F.; Henning, M. The influence of tree species on the recovery of forest soils from acidification in Lower Saxony, Germany. Soil Syst. 2022, 6, 40. [Google Scholar] [CrossRef]
- Burns, A.D. Acid rain and its environmental effects: Recent scientific advances. Atmos. Environ. 2016, 146, 1461–1464. [Google Scholar] [CrossRef]
- Lawrence, G.B.; Hazlett, P.W.; Fernandez, I.J.; Ouimet, R.; Bailey, S.W.; Shortle, W.C.; Smith, K.T.; Antidormi, M.R. Declining acidic deposition begins reversal of forest-soil acidification in the Northeastern U.S. and Eastern Canada. Environ. Sci. Technol. 2015, 49, 13103–13111. [Google Scholar] [CrossRef]
- Yu, Q.; Ge, X.; Zheng, H.; Xing, J.; Duan, L.; Lv, D.; Ding, D.; Dong, Z.; Sun, Y.; Maximilian, P.; et al. A probe into the acid deposition mitigation path in China over the last four decades and beyond. Natl. Sci. Rev. 2024, 11, 84–92. [Google Scholar] [CrossRef]
- Liu, M.; Huang, X.; Song, Y.; Tang, J.; Cao, J.; Zhang, X.; Zhang, Q.; Wang, S.; Xu, T.; Kang, L.; et al. Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proc. Natl. Acad. Sci. USA 2019, 116, 7760–7765. [Google Scholar] [CrossRef]
- Chen, X.; Shan, X.; Shi, Z.; Zhang, J.; Qin, Z.; Xiang, H.; Wei, H. Analysis of the spatio-temporal changes in acid rain and their causes in China (1998–2018). J. Resour. Ecol. 2021, 12, 593–599. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, J.; Zhang, H.; Wei, H.; Lu, T.; Chen, X.; Li, H.; Yang, J.; Liu, Z. Response and driving factors of soil enzyme activity related to acid rain: A meta-analysis. Environ. Sci. Pollut. Res. 2023, 30, 105072–105083. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef]
- Zhang, X.; Xing, Y.J.; Yan, G.Y.; Wang, Q.G. Response of fine roots to precipitation change: A meta-analysis. Chin. J. Plant Ecol. 2018, 42, 164–172. [Google Scholar] [CrossRef][Green Version]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Benítez-López, A.; Alkemade, R.; Schipper, A.M.; Ingram, D.J.; Verweij, P.A.; Eikelboom, J.A.J.; Huijbregts, M.A.J. The impact of hunting on tropical mammal and bird populations. Science 2017, 356, 180–183. [Google Scholar] [CrossRef]
- Hu, Z.; Delgado-Baquerizo, M.; Fanin, N.; Chen, X.; Zhou, Y.; Du, G.; Hu, F.; Jiang, L.; Hu, S.; Liu, M. Nutrient-induced acidification modulates soil biodiversity-function relationships. Nat. Commun. 2024, 15, 2858. [Google Scholar] [CrossRef]
- Sue, D.; Richard, T. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef]
- Xie, X.Z.; Jiang, H.; Yu, S.Q.; Liu, Y.Y.; Yuan, H.Y.; Li, Y.H. Effect of simulated acid rain on soil respiration of Pinus massoniana and Cunninghamia lanceolata. Acta Ecol. Sin. 2009, 29, 5713–5720. [Google Scholar]
- Liu, Y.Y.; Jiang, H.; Li, Y.H.; Yuan, H.Y. A short-term effect of simulated acid rain on the soil respiration of the compound system of Chinese fir seedling-soil. Acta Ecol. Sin. 2010, 30, 2010–2017. [Google Scholar] [CrossRef]
- Feng, J.G.; Song, Y.J. A review of the effects of simulated acid rain on soil respiration. Guihaia 2017, 37, 533–540. [Google Scholar] [CrossRef]
- Porre, R.J.; Werf, W.; Deyn, G.B.; Stomph, T.J.; Hoffland, E. Is litter decomposition enhanced in species mixtures? A meta-analysis. Soil Biol. Biochem. 2020, 145, 107791–107806. [Google Scholar] [CrossRef]
- Joly, F.X.; Scherer-Lorenzen, M.; Hättenschwiler, S. Resolving the intricate role of climate in litter decomposition. Nat. Ecol. Evol. 2023, 7, 214–223. [Google Scholar] [CrossRef]
- Schwieger, S.; Dorrepaal, E.; Bon, M.P.; Vandvik, V.; le Roux, E.; Strack, M.; Yang, Y.; Venn, S.; Hoogen, J.v.D.; Valiño, F.; et al. Environmental conditions modulate warming effects on plant litter decomposition globally. Ecol. Lett. 2025, 28, e70026. [Google Scholar] [CrossRef]
- Wu, J.P.; Liang, G.H.; Hui, D.F.; Deng, Q.; Xiong, X.; Qiu, Q.Y.; Liu, J.X.; Chu, G.W.; Zhou, G.Y.; Zhang, D.Q. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China. Sci. Total Environ. 2016, 544, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, B.; Zhao, W.R.; Wang, L.; Xie, D.J.; Hou, W.T.; Wu, Y.W.; Zhang, J.C. Comparative effects of sulfuric and nitric acid rain on litter decomposition and soil microbial community in subtropical plantation of Yangtze River Delta region. Sci. Total Environ. 2017, 601–602, 669–678. [Google Scholar] [CrossRef]
- Waldrop, M.P.; Zak, D.R.; Sinsabaugh, R.L. Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biol. Biochem. 2004, 36, 1443–1451. [Google Scholar] [CrossRef]
- Liu, G.S.; Xu, D.M.; Li, K.B.; Liu, W.P. Effect of acid rain, copper, and atrazine on soil hydrolase activity. Chin. J. Appl. Ecol. 2004, 15, 127–130. [Google Scholar] [CrossRef]
- Wang, C.Y.; Guo, P.; Han, G.M.; Feng, X.G.; Zhang, P.; Tian, X.J. Effect of simulated acid rain on the litter decomposition of Quercus acutissima and Pinus massoniana in forest soil microcosms and the relationship with soil enzyme activities. Sci. Total Environ. 2010, 408, 2706–2713. [Google Scholar] [CrossRef]
- Chen, D.; Li, J.; Lan, Z.; Hu, S.; Bai, Y.; Niu, S. Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Funct. Ecol. 2016, 30, 658–669. [Google Scholar] [CrossRef]
- Misebo, A.M.; Pietrzykowski, M.; Woś, B. Soil carbon sequestration in novel ecosystems at post-mine sites—A new insight into the determination of key factors in the restoration of terrestrial ecosystems. Forests 2022, 13, 63. [Google Scholar] [CrossRef]
- Fu, C.; Klein, S.G.; Breavington, J.; Lim, K.K.; Steckbauer, A.; Duarte, C.M. Nonuniform organic carbon stock loss in soils across disturbed blue carbon ecosystems. Nat. Commun. 2025, 16, 4370. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.-F.; Ding, H.-M.; Feng, L.-L.; Chen, J.-J.; Yang, S.-Y.; Wang, X.-H. Photosynthetic and growth responses of Schima superba seedlings to sulfuric and nitric acid depositions. Environ. Sci. Pollut. Res. Int. 2016, 23, 8644–8658. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Mai, B.R.; Liang, J.; Li, L.; Wu, R.J. Effects of different types of simulated acid rain on the nutritional quality of rapeseed. Acta Sci. Circumstantiae 2008, 10, 2133–2140. [Google Scholar] [CrossRef]
- Qi, Z.M.; Wang, X.D.; Song, G.Y. Research progress on the effects of acid rain on plants. World Sci. Technol. Res. Dev. 2004, 02, 36–41. [Google Scholar] [CrossRef]
- Shang, Q.; Zuo, J.; Liu, Y. Frass deposition from pest outbreaks affects soil organic carbon and its relationship with environmental factors in a deciduous broad-leaved forest. Sci. Total Environ. 2024, 949, 175103. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Świątek, B.; Woś, B.; Klamerus-Iwan, A.; Mąsior, P.; Pająk, M.; Gruba, P.; Likus-Cieślik, J.; Tabor, J.; Ksepko, M.; et al. The effect of forest disturbances and regeneration scenario on soil organic carbon pools and fluxes: A review. J. For. Res. 2025, 36, 12. [Google Scholar] [CrossRef]
- Nunes, L.J.R. The rising threat of atmospheric CO2: A review on the causes, impacts, and mitigation strategies. Environments 2023, 10, 66. [Google Scholar] [CrossRef]
- Martínez-Sancho, E.; Treydte, K.; Lehmann, M.M.; Rigling, A.; Fonti, P. Drought impacts on tree carbon sequestration and water use—Evidence from intra-annual tree-ring characteristics. New Phytol. 2022, 236, 58–70. [Google Scholar] [CrossRef]
- Li, D.; Li, X.; Li, Z.; Fu, Y.; Zhang, J.; Zhao, Y.; Wang, Y.; Liang, E.; Rossi, S. Drought limits vegetation carbon sequestration by affecting photosynthetic capacity of semi-arid ecosystems on the Loess Plateau. Sci. Total Environ. 2024, 912, 168778. [Google Scholar] [CrossRef]
- Cardinael, R.; Chevallier, T.; Guenet, B.; Girardin, C.; Cozzi, T.; Pouteau, V.; Chenu, C. Organic carbon decomposition rates with depth and contribution of inorganic carbon to CO2 emissions under a Mediterranean agroforestry system. Eur. J. Soil Sci. 2020, 71, 909–923. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, M.M.; Song, W.F.; Chen, R.F.; Zhao, X.Q.; Wen, S.L.; Zheng, Z.S.; Shen, R.F. Biogeographic patterns and co-occurrence networks of diazotrophic and arbuscular mycorrhizal fungal communities in the acidic soil ecosystem of southern China. Appl. Soil Ecol. 2021, 158, 103798. [Google Scholar] [CrossRef]
- Du, B.; Kiese, R.; Butterbach-Bahl, K.; Dirnböck, T.; Bennnenberg, H. Consequences of nitrogen deposition and soil acidification in European forest ecosystems and mitigation approaches. For. Ecol. Manag. 2025, 580, 122523. [Google Scholar] [CrossRef]
- Li, S.; Jiang, L.; Yang, G.; Han, X.; Jie, D.; Chen, N.; Zhang, H. Phytolith formation and its contribution to soil organic carbon sequestration in an Inner Mongolia grassland under long-term nitrogen deposition. J. Environ. Manag. 2025, 384, 125596. [Google Scholar] [CrossRef]
- Wei, H.; Ma, R.; Zhang, J.; Zhou, L.; Liu, Z.; Fan, Z.; Yang, J.; Shan, X.; Xiang, H. Quality dependence of litter decomposition and its carbon, nitrogen and phosphorus release under simulated acid rain treatments. Environ. Sci. Pollut. Res. 2020, 27, 19858–19868. [Google Scholar] [CrossRef]
- Alicja, K.; Radosław, P.; Miguel, I. Changes in soil pH and mobility of heavy metals in contaminated soils. Eur. J. Soil Sci. 2021, 73, 1–12. [Google Scholar] [CrossRef]
- Li, Y.; Wang, K.; Dötterl, S.; Xu, J.; Garland, G.; Liu, X. The critical role of organic matter for cadmium-lead interactions in soil: Mechanisms and risks. J. Hazard. Mater. 2024, 476, 135123. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Bright, T.L.; Wen, H.; Lei, L.; Zeng, L.; Xiao, W.; Maltz, M.R. The impacts of forest conversion, soil horizons and seasons on soil fungal communities in subtropical China. Appl. Soil Ecol. 2025, 213, 106274. [Google Scholar] [CrossRef]
- Liang, G.H.; Hui, D.F.; Wu, X.Y.; Wu, J.P.; Liu, J.X.; Zhou, G.Y.; Zhang, D.Q. Effects of simulated acid rain on soil respiration and its components in a subtropical mixed conifer and broadleaf forest in southern China. Environ. Sci. Process. Impacts 2016, 18, 246–255. [Google Scholar] [CrossRef]
- Tang, L.; Lin, Y.H.; He, X.B. The patterns of responses of litter decomposition of Cunninghamia needles and Cinnamomum leaves to substrate acidolysis. Acta Ecol. Sin. 2017, 37, 6038–6052. [Google Scholar] [CrossRef]
- Tang, L.; Lin, Y.H.; He, X.B.; Han, G.M. Acid rain decelerates the decomposition of Cunninghamia lanceolata needle and Cinnamomum camphora leaf litters in a karst region in China. Ecol. Res. 2019, 34, 193–200. [Google Scholar] [CrossRef]
- Li, S.S.; Wang, Z.W.; Yang, J.J. Changes in soil microbial communities during litter decomposition. Biodivers. Sci. 2016, 24, 195–204. [Google Scholar] [CrossRef]
- Wei, H.; Liu, Y.; Xiang, H.; Zhang, J.; Li, S.; Yang, J. Soil pH responses to simulated acid rain leaching in three agricultural soils. Sustainability 2020, 12, 280. [Google Scholar] [CrossRef]
- Chen, M.; Li, Q.; Liu, C.; Meng, E.; Zhang, B. Microbial degradation of lignocellulose for sustainable biomass utilization and future research perspectives. Sustainability 2025, 17, 4223. [Google Scholar] [CrossRef]
- Li, C.; Ding, Y.; Zhang, S.; Chen, M.; Wang, Y.; Jia, Z.; Ma, S.; Zhang, J.; Liu, X. The short-term effect of simulated acid rain and nitrogen deposition on the soil microbial functional profile targeting C, N, and P cycling. Appl. Soil Ecol. 2024, 197, 105327. [Google Scholar] [CrossRef]
- Wei, H.; Ma, R.; Zhang, J.; Saleem, M.; Liu, Z.; Shan, X.; Yang, J.; Xiang, H. Crop-litter type determines the structure and function of litter-decomposing microbial communities under acid rain conditions. Sci. Total Environ. 2020, 713, 136600. [Google Scholar] [CrossRef]
- Wu, T.; Ullah, S.; Zhong, L.; Xu, Y.; Wei, G.; Yang, M. Impact of simulated acid rain on soil base cations dissolution between Eucalyptus pure plantations and Eucalyptus–Castanopsis fissa mixed plantations. Forests 2023, 14, 2159. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.; Chen, H. Global trajectories of forest soil acidification: A scientometric synthesis of drivers, impacts and sustainable solutions. Forests 2025, 16, 733. [Google Scholar] [CrossRef]
- Liang, G.H.; Wu, J.P.; Xiong, X.; Wu, X.Y.; Chu, G.W.; Zhou, G.Y.; Zeng, R.S.; Zhang, D.Q. Responses of soil pH value and soil microbial biomass carbon and nitrogen to simulated acid rain in three successional subtropical forests at Dinghushan Nature Reserve. Ecol. Environ. Sci. 2015, 24, 911–918. [Google Scholar] [CrossRef][Green Version]
- Liang, G.H.; Wu, J.P.; Xiong, X.; Wu, X.Y.; Chu, G.W.; Zhou, G.Y.; Zeng, R.S.; Zhang, D.Q. Response of soil respiration to simulated acid rain in three successional subtropical forest in southern China. J. Ecol. 2016, 35, 125–134. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Wei, H.; Zhang, J. Nitric acid rain decreases soil bacterial diversity and alters bacterial community structure in farmland soils. Agronomy 2024, 14, 971. [Google Scholar] [CrossRef]
- Li, F.; Zi, H.; Sonne, C.; Li, X. Microbiome sustains forest ecosystem functions across hierarchial scales. Eco-Environ. Health 2023, 2, 24–31. [Google Scholar] [CrossRef]
- Willing, C.E.; Pellitier, P.T.; Van Nuland, M.E.; Alvarez-Manjarrez, J.; Berrios, L.; Chin, K.N.; Villa, L.M.; Yeam, J.J.; Bourque, S.D.; Tripp, W.; et al. A risk assessment framework for the future of forest microbiomes in a changing climate. Nat. Clim. Chang. 2024, 14, 448–461. [Google Scholar] [CrossRef]
- Zhao, J.J.; Du, Q.L.; Guo, R.C.; Liu, Z.Q.; Chen, Y.Q.; Wang, Y.Q.; Du, H.; Zhang, C.F. Effect of simulated acid rain on decomposition rate and dissolved organic carbon of leaf litter of three tree species in Genhe. J. Zhejiang For. Sci. Technol. 2017, 37, 10–15. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Kasim, S.; Ahmed, O.H.; Rakib, M.R.M.; Hasbullah, N.A.; Shajib, T.I. Impact of simulated acid rain on chemical properties of Nyalau series soil and its leachate. Sci. Rep. 2024, 14, 3534. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, Z.U.R.; Qadir, A.A.; Riaz, S.; Chaudhary, Z.M.; Mohy-Ud-Din, W.; Ilić, P.; Pržulj, N. Soil acidification: Processes, effects on soil and plants, and remediation strategies. In Environmental Protection and Remediation; Ilić, P., Pržulj, N., Eds.; Academy of Sciences and Arts of the Republic of Srpska: Banja Luka, Republic of Srpska, 2025; pp. 175–210. [Google Scholar]
- Cha, S.; Kim, Y.S.; Lee, A.L.; Lee, D.-H.; Koo, N. Liming alters the soil microbial community and extracellular enzymatic activities in Temperate Coniferous Forests. Forests 2021, 12, 190. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, Z.; Wei, H.; Zhang, J. Acid rain reduces soil CO2 emission and promotes soil organic carbon accumulation in association with decreasing the biomass and biological activity of ecosystems: A meta-analysis. Catena 2022, 208, 105714. [Google Scholar] [CrossRef]
- Chen, J.; Hu, Y.; Hall, S.J.; Hui, D.; Li, J.; Chen, G.; Sun, L.; Zhang, D.; Deng, Q. Increased interactions between iron oxides and organic carbon under acid deposition drive large increases in soil organic carbon in a tropical forest in Southern China. Biogeochemistry 2022, 158, 109–122. [Google Scholar] [CrossRef]
- FAO. Forest Ecosystem Monitoring-A Contribution to Environmental Policy and Science; FAO Technical Report; FAO: Rome, Italy, 1995. Available online: https://www.fao.org/3/XII/0450-B3.htm (accessed on 1 January 2024).
- Wu, J.; Deng, Q.; Hui, D.; Xiong, X.; Zhang, H.; Zhao, M.; Wang, X.; Hu, M.; Su, Y.; Zhang, H.; et al. Reduced lignin decomposition and enhanced soil organic carbon stability by acid rain: Evidence from 13C Isotope and 13C NMR Analyses. Forests 2020, 11, 1191. [Google Scholar] [CrossRef]
- Zhou, M.; Hu, H.; Wang, J.; Wang, X.; Tian, Z.; Deng, W.; Wu, C.; Zhu, L.; Lu, Q.; Feng, Y. Effects of nitric acid rain stress on soil nitrogen fractions and fungal communities in a northern subtropical forest, China. Sci. Total Environ. 2023, 856, 158904. [Google Scholar] [CrossRef]
- Ding, Y.; Sun, L.; Li, C.; Chen, M.; Zhou, Y.; Meng, M.; Li, Z.; Zhang, J.; Liu, X. Effects of short-term simulated acid rain and nitrogen deposition on soil nutrients and enzyme activities in Cunninghamia lanceolata plantation. Front. Ecol. Evol. 2024, 12, 1365954. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Zou, J.; Liu, Z.; Wei, H.; Zhang, J. Effect of acid rain on soil microbial networks complexity, community assembly and ecosystem multifunctionality. Chin. Sci. Bull. 2025. [Google Scholar] [CrossRef]
- Bao, H.L. Response of Litter Decomposition in Young Cunninghamia lanceolata and Eucalyptus dunnii Plantations to Simulated Nitrogen and Sulfur Deposition. Master Dissertation, Fujian Agriculture and Forestry University, Fuzhou, China, 2020. (In Chinese). [Google Scholar]
- Bewley, R.J.F.; Parkinson, D. Simulated acid rain (H2SO4) and microbial activity in soil. Soil Biol. Biochem. 1983, 15, 425–428. [Google Scholar] [CrossRef]
- Burton, A.J.; Pregitzer, K.S.; Crawford, J.N.; Zogg, G.P.; Zak, D.R. Simulated chronic NO3− deposition reduces soil respiration in northern hardwood forests. Glob. Change Biol. 2004, 10, 1080–1091. [Google Scholar] [CrossRef]
- Blagodatskaya, E.V.; Anderson, T.H. Adaptive responses of soil microbial communities under experimental acid stress in controlled laboratory studies. Appl. Soil Ecol. 1999, 11, 207–216. [Google Scholar] [CrossRef]
- Chen, X.Y.; Mulder, J.; Wang, Z.Y.; Duan, L. Effects of simulated acid rain on soil CO2; emission in a secondary forest in subtropical China. Geoderma 2012, 189–190, 65–71. [Google Scholar] [CrossRef]
- Cheng, X.M.; Chen, F.S.; Zeng, D.H.; Fang, X.M.; Yu, S.Q. Effects of simulated acid rain and precipitation amount on leaf litter decomposition of Schima superba and Pinus massoniana. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 2009, 38, 371–375. Available online: https://www.cnki.com.cn/Article/CJFDTotal-FJND200906007.htm (accessed on 23 August 2025).
- Cronan, C.S.; Reiners, W.A. Comparative effects of precipitation acidity on three forest soils: Carbon cycling responses. Plant Soil 1985, 88, 101–112. [Google Scholar] [CrossRef]
- Fan, H.B.; Huang, Y.Z.; Li, Y.Y.; Lin, D.X. Effects of simulated acid rain on seed germination and seedling growth of Cunninghamia lanceolata. Acta Agric. Univ. Jiangxiensis 2005, 27, 875–879. Available online: https://d.wanfangdata.com.cn/periodical/jxnydxxb200506018 (accessed on 23 August 2025).
- Francis, A.J. Effects of acidic precipitation and acidity on soil microbial processes. Water Air Soil Pollut. 1982, 18, 375–387. [Google Scholar] [CrossRef]
- Garden, A.; Grieve, I. Decomposition of leaf litter exposed to simulated acid rain in a buffered lotic system. Freshwater Biol. 1989, 22, 41–52. [Google Scholar] [CrossRef]
- Guo, P.P. Study of Foliar Litter Decomposition in Different Climate Zones and Acid Rain Stress. Master Dissertation, Zhejiang A&F University, Hangzhou, China, 2013. (In Chinese). [Google Scholar]
- Heneghan, L.; Bolger, T. Effect of components of ‘acid rain’ on the contribution of soil microarthropods to ecosystem function. J. Appl. Ecol. 1996, 33, 1329–1344. [Google Scholar] [CrossRef]
- Hong, J.H.; Jiang, H.; Ma, Y.D.; Yu, S.Q.; Li, W.; Dou, R.P.; Guo, P.P.; Zeng, B. The influence of acid rain on the leaf litter decomposition of three dominant trees in the subtropical forests. Acta Ecol. Sin. 2009, 29, 5775–5784. (in Chinese). [Google Scholar]
- Hong, J.H. Effects of Simulated Acid Rain and Nitrogen Deposition on Leaf Litter Decomposition of Typical Subtropical Tree Species. Master Dissertation, Southwest University, Chongqing, China, 2011. (In Chinese). [Google Scholar]
- Ivarson, K.C.; Sowden, F.J. Changes in decomposition rate, microbial population and carbohydrate content of an acid peat bog after liming and reclamation. Can. J. Soil Sci. 1977, 57, 129–137. [Google Scholar] [CrossRef]
- Ji, X.Y.; Jiang, H.; Hong, J.H.; Ma, Y.D.; Yu, S.Q.; Li, W.; Dou, R.P. The influence of acid rain on leaf litter decomposition and enzyme activity of three trees in the subtropical forests. Acta Sci. Circumstantiae 2013, 33, 2027–2035. (In Chinese) [Google Scholar]
- Killham, K.; Firestone, M.K.; McColl, J.G. Acid rain and soil microbial activity: Effects and their mechanisms. J. Environ. Qual. 1983, 12, 133–137. [Google Scholar] [CrossRef]
- Schack-Kirchner, H.; Hildebrand, E.E. Changes in soil structure and aeration due to liming and acid irrigation. Plant Soil 1998, 199, 167–176. [Google Scholar] [CrossRef]
- Liang, G.H.; Li, R.H.; Qiu, Q.Y.; Chen, X.M.; Zhou, G.Y.; Chu, G.W.; Zhang, D.Q. Response of leaf litter decomposition of two dominant trees to simulated acid rain in southern China. Acta Ecol. Sin. 2014, 34, 5728–5735. [Google Scholar] [CrossRef][Green Version]
- Lv, Y. Effects of Nitrogen and Acid Deposition on Litter Decomposition in a Subtropical Forest Ecosystem. Ph.D. Dissertation, Nanjing University, Nanjing, China, 2013. (In Chinese). [Google Scholar]
- Lv, Y.N.; Wang, C.Y.; Jia, Y.Y.; Wang, W.J.; Ma, X.H.; Du, J.J.; Wang, H.M. Effects of sulfuric, nitric, and mixed acid rain on litter decomposition, soil microbial biomass, and enzyme activities in subtropical forests of China. Appl. Soil Ecol. 2014, 79, 1–9. [Google Scholar] [CrossRef]
- Ma, Y.D.; Jiang, H.; Yu, S.; Zhou, G.; Dou, R.; Gou, P.; Wang, B.; Song, X. Effect of simulated acid rain on the decomposition of Phyllostachys pubescens. Acta Sci. Nat. Univ. Sunyatseni 2010, 49, 95–99. (In Chinese) [Google Scholar]
- Momen, B.; Helms, J.A. Effects of simulated acid rain and ozone on foliar chemistry of field-grown Pinus ponderosa seedlings and mature trees. Environ. Pollut. 1995, 90, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Neuvonen, S.; Suomela, J. The effect of simulated acid rain on pine needle and birch leaf litter decomposition. J. Appl. Ecol. 1990, 27, 857–872. [Google Scholar] [CrossRef]
- Oulehle, F.; Jones, T.G.; Burden, A.; Cooper, M.D.A.; Lebron, I.; Zieliński, P.; Evans, C.D. Soil–solution partitioning of DOC in acid organic soils: Results from a UK field acidification and alkalization experiment. Eur. J. Soil Sci. 2013, 64, 787–798. [Google Scholar] [CrossRef]
- Oulehle, F.; Hruška, J.; Krám, P.; McDowell, W.H. Comparison of the impacts of acid and nitrogen additions on carbon fluxes in European conifer and broadleaf forests. Environ. Pollut. 2018, 238, 884–893. [Google Scholar] [CrossRef]
- Ouyang, X.J.; Zhou, G.Y.; Huang, Z.L.; Liu, J.X.; Zhang, D.Q.; Li, J. Effect of simulated acid rain on potential carbon and nitrogen mineralization in forest soils. Pedosphere 2008, 18, 503–514. [Google Scholar] [CrossRef]
- Peng, C.X.; Peng, C.L.; Lin, G.Z.; Wen, D.Z. Effects of simulated acid rain on seed germination and seedling growth of crops. J. Trop. Subtrop. Bot. 2003, 11, 400–404. Available online: https://d.wanfangdata.com.cn/periodical/rdyrdzwxb200304014 (accessed on 23 August 2025).
- Persson, T.; Lundkvist, H.; Wirén, A.; Hyvönen, R.; Wessén, B. Effects of acidification and liming on carbon and nitrogen mineralization and soil organisms in mor humus. Water Air Soil Pollut. 1989, 45, 77–96. [Google Scholar] [CrossRef]
- Prescott, C.E.; Parkinson, D. Effects of sulphur pollution on rates of litter decomposition in a pine forest. Can. J. Bot. 1985, 63, 1436–1443. [Google Scholar] [CrossRef]
- DeHayes, D.H.; Schaberg, P.G.; Hawley, G.J.; Strimbeck, G.R. Acid rain impacts on calcium nutrition and forest health: Alteration of membrane-associated calcium leads to membrane destabilization and foliar injury in red spruce. BioScience 1999, 49, 789–800. [Google Scholar] [CrossRef]
- Scheu, S.; Wolters, V. Buffering of the effect of acid rain on decomposition of 14C-labeled beech leaf litter by saprophagous invertebrates. Biol. Fertil. Soils 1991, 11, 285–289. [Google Scholar] [CrossRef]
- Sitaula, B.K.; Bakken, L.R.; Abrahamsen, G. Fertilization and soil acidification effects on N2O and CO2 emission from temperate pine forest soil. Soil Biol. Biochem. 1995, 27, 1401–1408. [Google Scholar] [CrossRef]
- Thirukkumaran, C.M.; Parkinson, D. Impact of simulated acid rain on microbial respiration, biomass, and metabolic quotient in a mature sugar maple (Acer saccharum) forest floor. Can. J. For. Res. 1996, 26, 1446–1453. [Google Scholar] [CrossRef]
- Wang, X.J. Responses of Litter Decomposition and Soil Organic Carbon to Simulated Nitrogen and Sulphur Combined Deposition in Necsinocalamus affinis Plantation. Master Dissertation, Sichuan Agricultural University, Chengdu, China, 2012. (In Chinese). [Google Scholar]
- Wang, J.L.; Wang, D.; Yu, F.; Shen, W.; Zou, C.; Zhang, R.; Hou, P. Effects of simulated acid rain and litter on rhizosphere soil enzyme activities of Cryptomeria fortunei seedlings. J. Zhejiang A&F Univ. 2014, 31, 373–379. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Z.; Shang, H.; Wang, J.; Zhang, P.Y. Impact of simulated acid rain on soil microbial community function in Masson pine seedlings. Electron. J. Biotechnol. 2014, 17, 199–203. [Google Scholar] [CrossRef]
- Wang, F.L.; Su, J.W.; Yang, Z.J.; Hong, W.; Wu, C.Z. Enzyme activity of litter and soil and its effect on litter decomposition under different combinations of Cunninghamia lanceolata and Michelia macclurei. J. Fujian Agric. For. Univ. 2017, 46, 562–568. [Google Scholar] [CrossRef]
- Wolters, V.; Joosse, E.N.G. Biological processes in two beech forest soils treated with simulated acid rain: A laboratory experiment with Isotoma tigrina (Insecta, Collembola). Soil Biol. Biochem. 1991, 23, 381–390. [Google Scholar] [CrossRef]
- Xu, H.Q.; Zhang, J.E.; Ouyang, Y.; Lin, L.; Quan, G.M.; Zhao, B.L.; Yu, J.Y. Effects of simulated acid rain on microbial characteristics in a lateritic red soil. Environ. Sci. Pollut. Res. 2015, 22, 18260–18266. [Google Scholar] [CrossRef]
- Yao, F.F.; Feng, L.L.; Yang, S.Y.; Wang, X. Physiological responses of subtropical common tree seedlings to acid rain and comprehensive sensitivity evaluation. Resour. Environ. Yangtze Basin 2013, 22, 232–238. (In Chinese) [Google Scholar]
- Yang, S.Y. Effects of Simulated Acid Rain and the Addition of Nitrogen and Phosphorus on Soil Properties and the Interactions Between Soil and Litter in Tiantong, Zhejiang Province. Master Dissertation, East China Normal University, Shanghai, China, 2014. (In Chinese). [Google Scholar]
- Zak, D.R.; Holmes, W.E.; Burton, A.J.; Pregitzer, K.S.; Talhelm, A.F. Microbial cycling of C and N in northern hardwood forests receiving chronic atmospheric NO3− deposition. Ecosystems 2006, 9, 242–253. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.X.; Chen, S.T.; Hu, Z. Effects of simulated acid rain on soil respiration in a northern subtropical secondary forest. China Environ. Sci. 2011, 31, 1541–1547. (In Chinese) [Google Scholar]
- Wang, N.; Qian, S.; Pan, X. Chen, Y.; Bai, S.; Xu, F. Effects of simulated acid rain and nitrogen deposition on soil bacterial community structure and diversity in the masson pine forest. Environ. Sci. 2023, 44, 2315–2324. [Google Scholar] [CrossRef]
- Li, Y.L.; Zhang, J.J.; Chang, S.X.; Jiang, P.K.; Zhou, G.M.; Shen, Z.M.; Wu, J.S.; Lin, L.; Bai, S.H. Effects of simulated acid rain on soil respiration and its component in a mixed coniferous-broadleaved forest of the three gorges reservoir area in Southwest China. For. Ecosyst. 2019, 6, 33. [Google Scholar] [CrossRef]
- Zheng, X.X.; Li, Y.Q.; Wang, J.; Liu, S.R.; Zhang, Q.; Chen, F.S. Effects of simulated acid rain on soil enzyme activity and related chemical indexes in woodlands. Forests 2022, 13, 860. [Google Scholar] [CrossRef]
- Růžek, L.; Oulehle, F.; Chuman, T.; Hůnová, I.; Hédl, R.; Mazín, V.; Hojdová, M. Litter decomposition in European coniferous and broadleaf forests under experimentally elevated acidity and nitrogen addition. Plant Soil 2021, 465, 403–420. [Google Scholar] [CrossRef]
- Hu, Z.H.; Li, Y.; Li, J.; Mo, J.M.; Wang, F.M. Long-term effects of simulated acid deposition on soil microbial community structure in a monsoon evergreen broadleaf forest in southern subtropical China. Chin. J. Plant Ecol. 2021, 45, 418–429. [Google Scholar] [CrossRef]
- Long, Y. Response of decomposition and nutrient release of fresh and dead foliar litter of Cunninghamia lanceolata to simulated acid rain. J. Fujian Norm. Univ. 2024, 40, 112–120. [Google Scholar] [CrossRef]
Organic Carbon Type | Forest Type | Number of Cases | Percentage (%) |
---|---|---|---|
Litter | L | 132 | 50.19 |
M | 20 | 7.60 | |
N | 111 | 42.21 | |
Soil | L | 43 | 44.33 |
M | 23 | 23.71 | |
N | 31 | 31.96 |
Factors | Test of Moderators | |
---|---|---|
Qm | p-Val | |
Forest type | 3.3911 | 0.1835 |
Precipitation | 25.9919 | <0.0001 *** |
Interaction between forest type and precipitation | 4.8513 | 0.0884 |
Factors | Test of Moderators | |
---|---|---|
Qm | p-Val | |
Forest type | 1.1698 | 0.5572 |
Precipitation | 1.3049 | 0.3090 |
Interaction between forest type and precipitation | 8.0101 | <0.05 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Li, F.; He, Z.; Lin, Y.; He, X.; Kong, X. Precipitation as the Key Regulator of Acid Rain Inhibition on Forest Soil Organic Carbon Decomposition: A Global Meta-Analysis for Sustainable Ecosystem Management. Sustainability 2025, 17, 7714. https://doi.org/10.3390/su17177714
Yang X, Li F, He Z, Lin Y, He X, Kong X. Precipitation as the Key Regulator of Acid Rain Inhibition on Forest Soil Organic Carbon Decomposition: A Global Meta-Analysis for Sustainable Ecosystem Management. Sustainability. 2025; 17(17):7714. https://doi.org/10.3390/su17177714
Chicago/Turabian StyleYang, Xing, Fen Li, Zaihua He, Yonghui Lin, Xingbing He, and Xiangshi Kong. 2025. "Precipitation as the Key Regulator of Acid Rain Inhibition on Forest Soil Organic Carbon Decomposition: A Global Meta-Analysis for Sustainable Ecosystem Management" Sustainability 17, no. 17: 7714. https://doi.org/10.3390/su17177714
APA StyleYang, X., Li, F., He, Z., Lin, Y., He, X., & Kong, X. (2025). Precipitation as the Key Regulator of Acid Rain Inhibition on Forest Soil Organic Carbon Decomposition: A Global Meta-Analysis for Sustainable Ecosystem Management. Sustainability, 17(17), 7714. https://doi.org/10.3390/su17177714