Gas Substrate Effects on Hydrogenotrophic Biomethanation in Flocculent and Granular Sludge Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Inoculum
2.2. Reactor Operation
2.3. Calculations
2.4. Analytical Methods
2.5. Microbial Community Analysis
2.5.1. DNA Isolation
2.5.2. Amplification of the 16S rRNA V3-V4 Region
- 341F: CCTACGGGNGGCWGCAG
- 805R: GACTACHVGGGTATCTAATCC
- ARC787F: ATTAGATACCCSBGTAGTCC
- ARC1559R: GCCATGCACCWCCTCT
- 95 °C 10 min—initial denaturation (HS enzyme used)
- 35 cycles:
- —
- 95 °C for 30 s—denaturation
- —
- 53–48 °C for 30 s—annealing (touchdown PCR)
- —
- 72 °C for 15 s—extension
- The temperature was reduced to 4 °C and PCR was completed.
2.5.3. Library Preparation and Sequencing
2.5.4. Bioinformatics Analysis of Raw Data
3. Results and Discussion
3.1. Biomethane Production
3.2. Microbial Community
3.3. Sustainability of the System
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, C.; Zhou, L.; Yuan, Z.; Guo, J. Hydrogen-Driven Microbial Biogas Upgrading: Advances, Challenges and Solutions. Water Res. 2021, 197, 117120. [Google Scholar] [CrossRef]
- Rittmann, S.K.-M. A Critical Assessment of Microbiological Biogas to Biomethane Upgrading Systems. Biogas Sci. Technol. 2015, 151, 117–135. [Google Scholar]
- Burkhardt, M.; Busch, G. Methanation of Hydrogen and Carbon Dioxide. Appl. Energy 2013, 111, 74–79. [Google Scholar] [CrossRef]
- Kampmann, K.; Ratering, S.; Baumann, R.; Schmidt, M.; Zerr, W.; Schnell, S. Hydrogenotrophic Methanogens Dominate in Biogas Reactors Fed with Defined Substrates. Syst. Appl. Microbiol. 2012, 35, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Peng, Y.; Ni, B.; Han, X.; Fan, L.; Yuan, Z. Dissecting Microbial Community Structure and Methane-Producing Pathways of a Full-Scale Anaerobic Reactor Digesting Activated Sludge from Wastewater Treatment by Metagenomic Sequencing. Microb. Cell Fact. 2015, 14, 33. [Google Scholar] [CrossRef]
- Cai, X.; Pang, S.; Zhang, M.; Teng, J.; Lin, H.; Xia, S. Predicting Thermodynamic Adhesion Energies of Membrane Fouling in Planktonic Anammox MBR via Backpropagation Neural Network Model. Bioresour. Technol. 2024, 406, 131011. [Google Scholar] [CrossRef]
- Demirel, B.; Scherer, P. The Roles of Acetotrophic and Hydrogenotrophic Methanogens during Anaerobic Conversion of Biomass to Methane: A Review. Rev. Environ. Sci. Biotechnol. 2008, 7, 173–190. [Google Scholar] [CrossRef]
- Logroño, W.; Kluge, P.; Kleinsteuber, S.; Harms, H.; Nikolausz, M. Effect of Inoculum Microbial Diversity in ex situ Biomethanation of Hydrogen. Bioengineering 2022, 9, 678. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Wang, L.; Lv, N.; Ning, J.; Zhou, M.; Wang, T.; Zhu, G. Impact of Physical Structure of Granular Sludge on Methanogenesis and Methanogenic Community Structure. RSC Adv. 2019, 9, 29570–29578. [Google Scholar] [CrossRef]
- de Bok, F.A.M.; Plugge, C.M.; Stams, A.J.M. Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res. 2004, 38, 1368–1375. [Google Scholar] [CrossRef]
- Liu, Y.; Tay, J.H. State of the art of biogranulation technology for wastewater treatment. Biotechnol. Adv. 2004, 22, 533–563. [Google Scholar] [CrossRef]
- Vu, C.T. Comparison Between Granular and Conventional Activated Sludge for Trace Metal Elements Sorption/Desorption: Case of Copper for Landspreading Application in France and Vietnam. Ph.D. Thesis, Université de Limoges, Limoges, France, 2017. [Google Scholar]
- Tay, J.H.; Liu, Q.S.; Liu, Y. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors. Environ. Technol. 2002, 23, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, Y.; Li, X.; Zhang, Z.; Wang, H.; Li, Y.; Wu, L.; Li, J. Comparing the nitrogen removal performance and microbial communities of flocs–granules hybrid and granule-based CANON systems. Sci. Total Environ. 2020, 743, 134949. [Google Scholar] [CrossRef] [PubMed]
- Baltyn, K.; Cavalida, B.; Thwaites, B.; Reeve, P.; Scales, P. Comparison of physical characteristics and dewatering behaviour between granular and floccular sludges generated from the same sewage source. J. Water Process Eng. 2019, 29, 100785. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, L.; Tang, K.; Chen, G.; Khanal, S.; Lu, H. Removal of sulfamethoxazole (SMX) in sulfate-reducing flocculent and granular sludge systems. Bioresour. Technol. 2019, 288, 121592. [Google Scholar] [CrossRef]
- Angelis-Dimakis, A.; Biberacher, M.; Dominguez, J.; Fiorese, G.; Gadocha, S.; Gnansounou, E.; Guariso, G.; Kartalidis, A.; Panichelli, L.; Pinedo, I.; et al. Biogas upgrading to biomethane: A review of recent advances and opportunities. Renew. Sustain. Energy Rev. 2020, 129, 109923. [Google Scholar] [CrossRef]
- Zakoura, M.; Kopsahelis, A.; Tsigkou, K.; Ntougias, S.; Ali, S.S.; Kornaros, M. Performance Evaluation of Three Mesophilic Upflow Anaerobic Sludge Blanket Bioreactors Treating Olive Mill Wastewater: Flocculent and Granular Inocula Tests, Organic Loading Rate Effect and Anaerobic Consortia Structure. Fuel 2022, 313, 122951. [Google Scholar] [CrossRef]
- Mills, S.; Grimalt-Alemany, A.; Sudmalis, D.; Weissbrodt, D.G. A Distinct Flocculent Acidogenic Microbial Community Accompanies Methanogenic Granules in Anaerobic Bioreactors. Microorganisms 2022, 10, 49. [Google Scholar] [CrossRef]
- Cruz Viggi, C.; Franzetti, A.; Fumagalli, M.; Villa, M.; Joussein, E.; Addorisio, V.; Lorenzi, S.; Aulenta, F. Enhancing Long Chain Fatty Acids (LCFA) Degradation in Granular and Flocculent Sludge by Microbial Community Stimulation with Oleate. Appl. Microbiol. Biotechnol. 2014, 98, 7015–7026. [Google Scholar] [CrossRef]
- Zabranska, J.; Pokorna, D. Bioconversion of carbon dioxide to methane using microbial systems. World J. Microbiol. Biotechnol. 2018, 36, 707–720. [Google Scholar] [CrossRef]
- Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; Kougias, P.G. Biogas upgrading and utilization: Current status and perspectives. Biotechnol. Adv. 2018, 36, 452–466. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Afridi, R.; Cao, Z.; Zhang, Z.; Poncin, S.; Li, H.; Zuo, J.; Wang, K. Size effect of anaerobic granular sludge on biogas production: A micro scale study. Bioresour. Technol. 2016, 202, 165–171. [Google Scholar] [CrossRef]
- Daglioglu, S.T.; Karabey, B.; Ozdemir, G.; Azbar, N. CO2 utilization via a novel anaerobic bioprocess configuration with simulated gas mixture and real stack gas samples. Environ. Technol. 2019, 40, 742–748. [Google Scholar] [CrossRef]
- Götz, M.; Lefebvre, J.; Mörs, F.; Koch, A.M.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable power-to-gas: A technological and economic review. Renew. Energy 2016, 85, 1371–1390. [Google Scholar] [CrossRef]
- Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014, 15, R46. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Dong, R. Recent progress towards in-situ biogas upgrading technologies. Sci. Total Environ. 2021, 800, 149667. [Google Scholar] [CrossRef]
- Luo, G.; Angelidaki, I. Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: Process performance and microbial insights. Appl. Microbiol. Biotechnol. 2013, 97, 1373–1381. [Google Scholar] [CrossRef]
- Wahid, R.; Horn, S.J. The effect of mixing rate and gas recirculation on biological CO2 methanation in two-stage CSTR systems. Biomass Bioenergy 2021, 144, 105918. [Google Scholar] [CrossRef]
- Ju, D.H.; Jeong-Hoon, S.; Hong-Kyun, L.; Sung-Ho, K.; Jong-Il, K.; Byoung-In, S. Effects of pH conditions on the biological conversion of carbon dioxide to methane in a hollow-fiber membrane biofilm reactor (Hf-MBfR). Desalination 2008, 234, 409–415. [Google Scholar] [CrossRef]
- Ullrich, T.; Lindner, J.; Bär, K.; Mörs, F.; Graf, F. Influence of operating pressure on the biological hydrogen methanation in trickle-bed reactors. Bioresour. Technol. 2018, 247, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Vechi, N.T.; Agneessens, L.M.; Feilberg, A.; Ottosen, L.D.M.; Kofoed, M.V.W. In situ biomethanation: Inoculum origin influences acetate consumption rate during hydrogen addition. Bioresour. Technol. Rep. 2021, 14, 100656. [Google Scholar] [CrossRef]
- Szuhaj, M.; Ács, N.; Tengölics, R.; Bodor, A.; Rákhely, G.; Kovács, K.L.; Bagi, Z. Conversion of H2 and CO2 to CH4 and acetate in fed-batch biogas reactors by mixed biogas community: A novel route for the power-to-gas concept. Biotechnol. Biofuels 2016, 9, 102. [Google Scholar] [CrossRef]
- Savvas, S.; Donnelly, J.; Patterson, T.; Chong, Z.S.; Esteves, S.R. Methanogenic capacity and robustness of hydrogenotrophic cultures based on closed nutrient recycling via microbial catabolism: Impact of temperature and microbial attachment. Bioresour. Technol. 2018, 263, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Gong, S.; Sun, Y.; Ma, H.; Zheng, M.; Wang, K. High-rate hydrogenotrophic methanogenesis for biogas upgrading: The role of anaerobic granules. Environ. Technol. 2015, 36, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Rauchbaer, L.; Beyer, R.; Bochmann, G.; Fuchs, W. Characteristics of adapted hydrogenotrophic community during biomethanation. Sci. Total Environ. 2017, 595, 912–919. [Google Scholar] [CrossRef]
- Leahy, S.C.; Kelly, W.J.; Li, D.; Li, Y.; Altermann, E.; Lambie, S.C.; Cox, F.; Attwood, G.T. The complete genome sequence of Methanobrevibacter sp. AbM4. Stand. Genom. Sci. 2013, 8, 215–227. [Google Scholar] [CrossRef]
- Kougias, P.G.; Treu, L.; Campanaro, S.; Zhu, X.; Angelidaki, I. Draft genome sequence of Methanothrix soehngenii GP6, a hydrogenotrophic methanogen adapted to syntrophic acetate oxidation. Genome Announc. 2016, 4, e01274-16. [Google Scholar] [CrossRef]
- Kita, A.; Suehira, K.; Miura, T.; Okamura, Y.; Aki, T.; Matsumura, Y.; Tajima, T.; Nishio, N.; Nakashimada, Y. Characterization of a halotolerant acetoclastic methanogen highly enriched from marine sediment and its application in removal of acetate. J. Biosci. Bioeng. 2016, 121, 196–202. [Google Scholar] [CrossRef]
- Doloman, A.; Boeren, S.; Miller, C.D.; Sousa, D.Z. Stimulating effect of Trichococcus flocculiformis on a coculture of Syntrophomonas wolfei and Methanospirillum hungatei. Appl. Environ. Microbiol. 2022, 88, e00391-22. [Google Scholar] [CrossRef]
- Ziganshin, A.M.; Ziganshina, E.E.; Kleinsteuber, S.; Nikolausz, M. Comparative analysis of methanogenic communities in different laboratory-scale anaerobic digesters. Archaea 2016, 2016, 3401272. [Google Scholar] [CrossRef] [PubMed]
- Ahring, B.K.; Westermann, P.; Mah, R.A. Hydrogen inhibition of acetate metabolism and kinetics of hydrogen consumption by Methanosarcina thermophila TM-1. Arch. Microbiol. 1991, 157, 38–42. [Google Scholar] [CrossRef]
- Kirby, M.E.; Mirza, M.W.; Leigh, T.; Oldershaw, M.; Reilly, M.; Jeffery, S. Destruction of Staphylococcus aureus and the impact of chlortetracycline on biomethane production during anaerobic digestion of chicken manure. Heliyon 2019, 5, e02749. [Google Scholar] [CrossRef] [PubMed]
- Horan, N.J.; Fletcher, L.; Betmal, S.M.; Wilks, S.A.; Keevil, C.W. Die-off of enteric bacterial pathogens during mesophilic anaerobic digestion. Water Res. 2004, 38, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.R.; Lang, N.L.; Cheung, K.H.M.; Spanoudaki, K. Factors controlling pathogen destruction during anaerobic digestion of biowastes. Waste Manag. 2005, 25, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Massé, D.; Gilbert, Y.; Topp, E. Pathogen Removal in Farm-Scale Psychrophilic Anaerobic Digesters Processing Swine Manure. Bioresour. Technol. 2011, 102, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Chatzis, A.; Gkotsis, P.; Zouboulis, A. Biological methanation (BM): A state-of-the-art review on recent research advancements and practical implementation in full-scale BM units. Energy Convers. Manag. 2024, 314, 118733. [Google Scholar] [CrossRef]
- Zavarkó, M.; Imre, A.R.; Pörzse, G.; Csedő, Z. Past, Present and Near Future: An Overview of Closed, Running and Planned Biomethanation Facilities in Europe. Energies 2021, 14, 5591. [Google Scholar] [CrossRef]
- Kapoor, R.; Ghosh, P.; Kumar, M.; Vijay, V.K. Evaluation of biogas upgrading technologies and future perspectives: A review. Environ. Sci. Pollut. Res. 2019, 26, 11631–11661. [Google Scholar] [CrossRef]
- Jønson, B.D.; Tsapekos, P.; Ashraf, M.T.; Jeppesen, M.; Schmidt, J.E.; Bastidas-Oyanedel, J.-R. Pilot-scale study of biomethanation in biological trickle bed reactors converting impure CO2 from a Full-scale biogas plant. Bioresour. Technol. 2022, 365, 128160. [Google Scholar] [CrossRef]
- Alfaro, N.; Fdz-Polanco, M.; Fdz-Polanco, F.; Díaz, I. Evaluation of process performance, energy consumption and microbiota characterization in a ceramic membrane bioreactor for ex-situ biomethanation of H2 and CO2. Bioresour. Technol. 2018, 258, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Ardolino, F.; Cardamone, G.F.; Parrillo, F.; Arena, U. Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective. Renew. Sustain. Energy Rev. 2021, 139, 110588. [Google Scholar] [CrossRef]
- Liu, R.; Hao, X.; Hu, Y. Comments on “Reduction in carbon dioxide and production of methane by biological reaction in the electronics industry” by Kim et al. Int. J. Hydrogen Energy 2013, 38, 13842–13844. [Google Scholar] [CrossRef]
- Elyasi, S.N.; He, L.; Tsapekos, P.; Rafiee, S.; Khoshnevisan, B.; Carbajales-Dale, M.; Mohtasebi, S.S.; Liu, H.; Angelidaki, I. Could biological biogas upgrading be a sustainable substitution for water scrubbing technology? A case study in Denmark. Energy Convers. Manag. 2021, 245, 114550. [Google Scholar] [CrossRef]
- Vo Truc, T.Q.; Rajendran, K.; Murphy, J.D. Can power to methane systems be sustainable and can they improve the carbon intensity of renewable methane when used to upgrade biogas produced from grass and slurry? Appl. Energy 2018, 228, 1046–1056. [Google Scholar] [CrossRef]
- Vo Truc, T.Q.; Wall, D.M.; Ring, D.; Rajendran, K.; Murphy, J.D. Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture and ex-situ methanation. Appl. Energy 2018, 212, 1191–1202. [Google Scholar] [CrossRef]
Start-Up of FIR | Finish of FlR | ||||
---|---|---|---|---|---|
Taxa | Count | % | Taxa | Count | % |
Planococcus sp. MB-3u-03 | 9189 | 30.53 | Planococcus sp. MB-3u-03 | 6137 | 22.86 |
Methanosaeta harundinacea | 5534 | 18.39 | Methanosaeta harundinacea | 5249 | 19.55 |
Methanobrevibacter sp. AbM4 | 3209 | 10.66 | Methanobrevibacter sp. AbM4 | 2352 | 8.76 |
Methanothrix soehngenii | 1922 | 6.39 | Methanothrix soehngenii | 1523 | 5.67 |
Neisseria gonorrhoeae | 1148 | 3.81 | Escherichia coli | 1395 | 5.2 |
Escherichia coli | 1056 | 3.51 | Staphylococcus aureus | 1271 | 4.73 |
Staphylococcus cohnii | 942 | 3.13 | Methanobrevibacter smithii | 1117 | 4.16 |
Staphylococcus aureus | 818 | 2.72 | Neisseria gonorrhoeae | 798 | 2.97 |
Methanocorpusculum labreanum | 715 | 2.38 | Staphylococcus cohnii | 773 | 2.88 |
Methanobrevibacter smithii | 639 | 2.12 | Methanosarcina barkeri | 488 | 1.82 |
Start-Up of GIR | Finish of GlR | ||||
---|---|---|---|---|---|
Taxa | Count | % | Taxa | Count | % |
Staphylococcus aureus | 33,605 | 62.98 | Methanothrix soehngenii | 6337 | 19.7 |
Methanothrix soehngenii | 4253 | 7.97 | Methanospirillum hungatei | 5596 | 17.4 |
Methanospirillum hungatei | 2146 | 4.02 | Planococcus sp. MB-3u-03 | 3706 | 11.52 |
Methanoculleus bourgensis | 2111 | 3.96 | Methanosaeta harundinacea | 2808 | 8.73 |
Methanosaeta harundinacea | 1864 | 3.49 | Staphylococcus aureus | 2337 | 7.27 |
Methanosarcina thermophila | 1285 | 2.41 | Staphylococcus cohnii | 1543 | 4.8 |
Methanofollis liminatans | 1025 | 1.92 | Methanosphaerula palustris | 1285 | 3.99 |
Methanosphaerula palustris | 894 | 1.68 | Methanobrevibacter smithii | 943 | 2.93 |
Methanobrevibacter smithii | 836 | 1.57 | Neisseria gonorrhoeae | 715 | 2.22 |
Methanolacinia petrolearia | 553 | 1.04 | Escherichia coli | 657 | 2.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalkan, S.T. Gas Substrate Effects on Hydrogenotrophic Biomethanation in Flocculent and Granular Sludge Systems. Sustainability 2025, 17, 7667. https://doi.org/10.3390/su17177667
Kalkan ST. Gas Substrate Effects on Hydrogenotrophic Biomethanation in Flocculent and Granular Sludge Systems. Sustainability. 2025; 17(17):7667. https://doi.org/10.3390/su17177667
Chicago/Turabian StyleKalkan, Sıdıka Tuğçe. 2025. "Gas Substrate Effects on Hydrogenotrophic Biomethanation in Flocculent and Granular Sludge Systems" Sustainability 17, no. 17: 7667. https://doi.org/10.3390/su17177667
APA StyleKalkan, S. T. (2025). Gas Substrate Effects on Hydrogenotrophic Biomethanation in Flocculent and Granular Sludge Systems. Sustainability, 17(17), 7667. https://doi.org/10.3390/su17177667