Neonatal Mortality Rate in the Context of Air Pollution: A Comparative Investigation
Abstract
1. Introduction
2. Literature Review
2.1. Air Pollution and Health
2.2. Air Pollution and Mortality Rates
2.3. Socioeconomic Factors and Mortality Rate
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, D.; Chen, Z.; Zhou, L.-F.; Huang, S.-X. Air pollutants and early origins of respiratory diseases. Chronic Dis. Transl. Med. 2018, 4, 75–94. [Google Scholar] [CrossRef]
- Simkovich, S.M.; Goodman, D.; Roa, C.; Crocker, M.E.; Gianella, G.E.; Kirenga, B.J.; Wise, R.A.; Checkley, W. The health and social implications of household air pollution and respiratory diseases. NPJ Prim. Care Respir. Med. 2019, 29, 12. [Google Scholar] [CrossRef]
- Alharthi, M.; Hanif, I. The role of energy types and environmental quality on human health in developing Asian countries. Energy Environ. 2021, 32, 1226–1242. [Google Scholar] [CrossRef]
- Sillmann, J.; Aunan, K.; Emberson, L.; Büker, P.; Van Oort, B.; O’Neill, C.; Otero, N.; Pandey, D.; Brisebois, A. Combined impacts of climate and air pollution on human health and agricultural productivity. Environ. Res. Lett. 2021, 16, 93004. [Google Scholar] [CrossRef]
- Zhang, Z.; Shao, C.; Guan, Y.; Xue, C. Socioeconomic factors and regional differences of PM2.5 health risks in China. J. Environ. Manag. 2019, 251, 109564. [Google Scholar] [CrossRef]
- Xie, J. Health risk-oriented source apportionment of PM2.5-associated trace metals. Environ. Pollut. 2020, 262, 114655. [Google Scholar] [CrossRef]
- Bowe, B.; Xie, Y.; Yan, Y.; Al-Aly, Z. Burden of cause-specific mortality associated with PM2.5 air pollution in the United States. JAMA Netw. Open 2019, 2, e1915834. [Google Scholar] [CrossRef]
- Andrade-Rivas, F.; Okpani, A.I.; Lucumí, D.I.; Castillo, M.D.; Karim, M.E. Epidemiological insights into neonatal deaths: The role of cooking fuel pollution in Colombia. Int. J. Hyg. Environ. Health 2024, 261, 114429. [Google Scholar] [CrossRef]
- Raaschou-Nielsen, O.; Antonsen, S.; Agerbo, E.; Hvidtfeldt, U.A.; Geels, C.; Frohn, L.M.; Christensen, J.H.; Sigsgaard, T.; Brandt, J.; Pedersen, C.B. PM2.5 air pollution components and mortality in Denmark. Environ. Int. 2023, 171, 107685. [Google Scholar] [CrossRef]
- Schwartz, J.; Wei, Y.; Yitshak-Sade, M.; Di, Q.; Dominici, F.; Zanobetti, A. A national difference in differences analysis of the effect of PM2.5 on annual death rates. Environ. Res. 2021, 194, 110649. [Google Scholar] [CrossRef]
- Anwar, A.; Ullah, I.; Younis, M.; Flahault, A. Impact of air pollution (PM2.5) on child mortality: Evidence from sixteen Asian countries. Int. J. Environ. Res. Public Health 2021, 18, 6375. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef]
- Conceição, G.M.; Miraglia, S.G.; Kishi, H.S.; Saldiva, P.H.; Singer, J.M. Air pollution and child mortality: A time-series study in São Paulo, Brazil. Environ. Health Perspect. 2001, 109 (Suppl. S3), 347–350. [Google Scholar]
- Jacobson, T.A.; Kler, J.S.; Hernke, M.T.; Braun, R.K.; Meyer, K.C.; Funk, W.E. Direct human health risks of increased atmospheric carbon dioxide. Nat. Sustain. 2019, 2, 691–701. [Google Scholar] [CrossRef]
- Filippini, M.; Masiero, G.; Steinbach, S. The impact of ambient air pollution on hospital admissions. Eur. J. Health Econ. 2019, 20, 919–931. [Google Scholar] [CrossRef]
- Benjamin, O.O.; Akinola, G.W.; Asaolu, A.A. Fossil Energy Consumption, Carbon Dioxide Emissions and Adult Mortality Rate in Nigeria. Manag. Glob. Transit. 2023, 21, 353–384. [Google Scholar]
- Dumre, S.P.; LaBeaud, A.D.; Ehrlich, H.; Guillamet, L.J.V.; Ondigo, B.N.; Sadarangani, S.P.; Wamae, C.N.; Whitfield, K. Why Climate Action Is Global Health Action. Am. J. Trop. Med. Hyg. 2022, 107, 500–503. [Google Scholar] [CrossRef]
- Holm, S. Health Effects of Ambient Air Pollution in Children. Ph.D. Thesis, UC Berkeley, Berkeley, CA, USA, 2021. [Google Scholar]
- Parenteau, A.M.; Hang, S.; Swartz, J.R.; Wexler, A.S.; Hostinar, C.E. Clearing the air: A systematic review of studies on air pollution and childhood brain outcomes to mobilize policy change. Dev. Cogn. Neurosci. 2024, 69, 101436. [Google Scholar] [CrossRef]
- Rani, P.; Dhok, A. Effects of pollution on pregnancy and infants. Cureus 2023, 15, e33906. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs. The Sustainable Development Goals Report 2016; United Nations: New York, NY, USA, 2016. [Google Scholar]
- Zhu, J.; Zhai, Y.; Feng, S.; Tan, Y.; Wei, W. Trade-offs and synergies among air-pollution-related SDGs as well as interactions between air-pollution-related SDGs and other SDGs. J. Clean. Prod. 2022, 331, 129890. [Google Scholar] [CrossRef]
- Allen, C.; Metternicht, G.; Wiedmann, T. Prioritising SDG targets: Assessing baselines, gaps and interlinkages. Sustain. Sci. 2019, 14, 421–438. [Google Scholar] [CrossRef]
- Emife, N.S.; Ujah, J.C. Achieving Infant Mortality SDG 3 Target in South Asia and Sub-Saharan Africa: Does Carbon Emission Matter? Green Low-Carbon Econ. 2024, 2, 299–309. [Google Scholar]
- Daghagh Yazd, S.; Pekin Alakoç, N.; Oroszlányová, M. Exploring the influence of high-technology and environmental factors on human development index: A longitudinal investigation. Cogent Soc. Sci. 2025, 11, 2473642. [Google Scholar] [CrossRef]
- López, L.R.; Dessì, P.; Cabrera-Codony, A.; Rocha-Melogno, L.; Kraakman, B.; Naddeo, V.; Balaguer, M.D.; Puig, S. CO2 in indoor environments: From environmental and health risk to potential renewable carbon source. Sci. Total Environ. 2023, 856, 159088. [Google Scholar] [CrossRef]
- Bikis, A. Urban air pollution and greenness in relation to public health. J. Environ. Public Health 2023, 2023, 8516622. [Google Scholar] [CrossRef]
- Mar, K.A.; Unger, C.; Walderdorff, L.; Butler, T. Beyond CO2 equivalence: The impacts of methane on climate, ecosystems, and health. Environ. Sci. Policy 2022, 134, 127–136. [Google Scholar] [CrossRef]
- Garg, A. Pro-equity effects of ancillary benefits of climate change policies: A case study of human health impacts of outdoor air pollution in New Delhi. World Dev. 2011, 39, 1002–1025. [Google Scholar] [CrossRef]
- Mlambo, C.; Ngonisa, P.; Ntshangase, B.; Ndlovu, N.; Mvuyana, B. Air pollution and health in Africa: The burden falls on children. Economies 2023, 11, 196. [Google Scholar] [CrossRef]
- Ahmad, N.A.; Ismail, N.W.; Ahmad Sidique, S.F.; Mazlan, N.S. Air pollution effects on adult mortality rate in developing countries. Environ. Sci. Pollut. Res. 2021, 28, 8709–8721. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, N.; Wang, J.; Liu, J.; Shi, L.; Du, J. Effect of PM2.5 air pollution on the global burden of neonatal diarrhea from 1990 to 2019. Environ. Pollut. 2025, 367, 125604. [Google Scholar] [CrossRef]
- Ren, B.; He, Q.; Ma, J.; Zhang, G. A preliminary analysis of global neonatal disorders burden attributable to PM2.5 from 1990 to 2019. Sci. Total Environ. 2023, 870, 161608. [Google Scholar] [CrossRef]
- Anita, W.M.; Ueda, K.; Uttajug, A.; Seposo, X.T.; Takano, H. Association between long-term ambient PM2.5 exposure and under-5 mortality: A scoping review. Int. J. Environ. Res. Public Health 2023, 20, 3270. [Google Scholar] [CrossRef]
- Anenberg, S.C.; Achakulwisut, P.; Brauer, M.; Moran, D.; Apte, J.S.; Henze, D.K. Particulate matter-attributable mortality and relationships with carbon dioxide in 250 urban areas worldwide. Sci. Rep. 2019, 9, 11552. [Google Scholar] [CrossRef]
- Abdullah, H.; Azam, M.; Zakariya, S.K. The impact of environmental quality on public health expenditure in Malaysia. Asia Pac. J. Adv. Bus. Soc. Stud. (APJABSS) 2016, 2, 365–379. [Google Scholar]
- Iungman, T.; Khomenko, S.; Barboza, E.P.; Cirach, M.; Gonçalves, K.; Petrone, P.; Erbertseder, T.; Taubenböck, H.; Chakraborty, T.; Nieuwenhuijsen, M. The impact of urban configuration types on urban heat islands, air pollution, CO2 emissions, and mortality in Europe: A data science approach. Lancet Planet. Health 2024, 8, e489–e505. [Google Scholar] [CrossRef]
- Rasoulinezhad, E.; Taghizadeh-Hesary, F.; Taghizadeh-Hesary, F. How is mortality affected by fossil fuel consumption, CO2 emissions and economic factors in CIS region? Energies 2020, 13, 2255. [Google Scholar] [CrossRef]
- Hochwald, O.; Borenstein-Levin, L.; Dinur, G.; Jubran, H.; Ben-David, S.; Kugelman, A. Continuous noninvasive carbon dioxide monitoring in neonates: From theory to standard of care. Pediatrics 2019, 144, e20183640. [Google Scholar] [CrossRef]
- Gbenga Wilfred, A.; Ohonba, A. The Effects of Fossil Fuel Consumption-Related CO2 on Health Outcomes in South Africa. Sustainability 2024, 16, 4751. [Google Scholar] [CrossRef]
- Adeleye, B.N.; Azam, M.; Bekun, F.V. Infant mortality rate and nonrenewable energy consumption in Asia and the Pacific: The mediating role of carbon emissions. Air Qual. Atmos. Health 2023, 16, 1333–1344. [Google Scholar] [CrossRef]
- Javanshirova, Z. The Impact of Carbon Emissions on Infant Mortality Rate in Azerbaijan. J. Sustain. Dev. Issues 2024, 2, 104–114. [Google Scholar] [CrossRef]
- Martins, F.P.; Closs, J.G.; Waked, D.; Saldiva, P.H.N.; Veras, M.M. Positive Impacts of Air Pollution Reduction on SDG 3 Targets in Urban Environment. In Integrated Science for Sustainable Development Goal 3; Springer Nature: Cham, Switzerland, 2024; pp. 269–292. [Google Scholar]
- Yue, H.; He, C.; Huang, Q.; Zhang, D.; Shi, P.; Moallemi, E.A.; Xu, F.; Yang, Y.; Qi, X.; Ma, Q. Substantially reducing global PM2.5-related deaths under SDG3.9 requires better air pollution control and healthcare. Nat. Commun. 2024, 15, 2729. [Google Scholar] [CrossRef]
- Naeem, M.Z.; Arshad, S.; Birau, R.; Spulbar, C.; Ejaz, A.; Hayat, M.A.; Popescu, J. Investigating the impact of CO2 emission and economic factors on infants health: A case study for Pakistan. Ind. Textila 2021, 72, 39–49. [Google Scholar] [CrossRef]
- Sparks, P.J.; McLaughlin, D.K.; Stokes, C.S. Differential neonatal and postneonatal infant mortality rates across US counties: The role of socioeconomic conditions and rurality. J. Rural Health 2009, 25, 332–341. [Google Scholar] [CrossRef]
- Daghagh Yazd, S.; Oroszlányová, M.; Pekin Alakoç, N. Understanding how gender inequality may affect children’s health: An empirical study across 161 countries. Cogent Soc. Sci. 2023, 9, 2209982. [Google Scholar] [CrossRef]
- Pekin Alakoç, N.; Daghagh Yazd, S.; Oroszlányová, M. Building a greener environment: Education levels and their links to CO2 reduction. J. Environ. Econ. Policy 2024, 13, 503–514. [Google Scholar] [CrossRef]
- Kiross, G.T.; Chojenta, C.; Barker, D.; Loxton, D. The effects of health expenditure on infant mortality in sub-Saharan Africa: Evidence from panel data analysis. Health Econ. Rev. 2020, 10, 5. [Google Scholar] [CrossRef]
- Garcia, L.P.; Schneider, I.J.C.; De Oliveira, C.; Traebert, E.; Traebert, J. What is the impact of national public expenditure and its allocation on neonatal and child mortality? A machine learning analysis. BMC Public Health 2023, 23, 793. [Google Scholar] [CrossRef]
- World Bank 2024. Available online: https://data.worldbank.org (accessed on 15 May 2025).
- World Health Organisation (WHO). Available online: https://www.who.int/data/#collection (accessed on 15 May 2025).
- Lee, J.; Park, T. Impacts of the Regional Greenhouse Gas Initiative (RGGI) on infant mortality: A quasi-experimental study in the USA, 2003–2014. BMJ Open 2019, 9, e024735. [Google Scholar] [CrossRef]
- Cheng, J.J.; Schuster-Wallace, C.J.; Watt, S.; Newbold, B.K.; Mente, A. An ecological quantification of the relationships between water, sanitation and infant, child, and maternal mortality. Environ. Health 2012, 11, 4. [Google Scholar] [CrossRef]
- Geruso, M.; Spears, D. Neighborhood sanitation and infant mortality. Am. Econ. J. Appl. Econ. 2018, 10, 125–162. [Google Scholar] [CrossRef]
- Brinda, E.M.; Rajkumar, A.P.; Enemark, U. Association between gender inequality index and child mortality rates: A cross-national study of 138 countries. BMC Public Health 2015, 15, 97. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Gkiouleka, A.; Milner, A.; Montag, D.; Gallo, V. Girls’ hidden penalty: Analysis of gender inequality in child mortality with data from 195 countries. BMJ Glob. Health 2018, 3, e001028. [Google Scholar] [CrossRef]
- Akinyemi, J.O.; Solanke, B.L.; Odimegwu, C.O. Maternal employment and child survival during the era of sustainable development goals: Insights from proportional hazards modelling of Nigeria birth history data. Ann. Glob. Health 2018, 84, 15. [Google Scholar] [CrossRef]
- Doku, D.T.; Bhutta, Z.A.; Neupane, S. Associations of women’s empowerment with neonatal, infant and under-5 mortality in low-and/middle-income countries: Meta-analysis of individual participant data from 59 countries. BMJ Glob. Health 2020, 5, e001558. [Google Scholar] [CrossRef] [PubMed]
- Nibogore, G.; Eryurt, M.A. Women’s Empowerment and Infant Mortality: Evidence from Rwanda. Matern. Child Health J. 2024, 28, 1092–1102. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, A. Deforestation and infant mortality: Evidence from Indonesia. Econ. Hum. Biol. 2021, 40, 100943. [Google Scholar] [CrossRef]
Variable | Indicator Name | Definition |
---|---|---|
X1 | Gender inequality index (GII) | It assesses disparities between women and men by examining factors such as reproductive health outcomes (maternal mortality rates, adolescent birth rates), empowerment indicators (access to at least some secondary education, proportion of parliamentary seats held by women), and women’s participation in the labor market. The scores range from 0 to 1, with lower values signifying less disparity between women and men. |
X2 | Women, business and the law index score (scale 1–100) | It assesses the impact of laws and regulations on women’s economic opportunities by averaging the score of each of eight indices, mobility, workplace, pay, marriage, parenthood, entrepreneurship, assets, and pension, with a maximum score of 100. |
X3 | Ratio of female to male labor force participation rate (%) (modeled ILO estimate) | The percentage of the population aged 15 and above that is engaged in economic activity, encompassing all individuals who provide labor for the production of goods and services over a designated period. It is determined by dividing the female labor force participation rate by the male labor force participation rate and then multiplying by 100. |
X4 | Current health expenditure per capita, PPP (current international USD) | Average spending on healthcare per person, measured in international dollars adjusted for local purchasing power. |
X5 | Hospital beds (per 1000 people) | Hospital beds for both acute and chronic care available in public, private, general, and specialized hospitals, and in rehabilitation centers. |
X6 | People using at least basic sanitation services (% of population) | Improved sanitation facilities (flush and pour-flush connections to piped sewer systems, septic tanks, or pit latrines; ventilated pit latrines, composting toilets, or pit latrines with concrete slabs) not shared with other households, considering individuals utilizing basic sanitation facilities, in addition to those who have access to safely managed sanitation services. |
X7 | Forest area (% of land area) | Land covered by natural or cultivated tree stands at least 5 m in height is considered forested, regardless of its productivity, excluding areas with trees used for agricultural purposes (such as fruit plantations and agroforestry systems) and trees in urban green spaces. |
X8 | Crop production index (2014–2016 = 100) | It displays agricultural output for each year compared to a base period spanning 2014–2016, excluding crops that are grown for animal feed. |
X9 | Rural population (% of total population) | The percentage of people living in rural areas, calculated using the difference between the total and the urban population. |
Y | CO2 | PM2.5 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Minimum | 0.79 | 0.11 | 4.90 | 0.01 | 46.88 | 21.74 | 56.67 | 1.98 | 14.75 | 0.52 | 53.79 | 1.85 |
Maximum | 28.64 | 15.11 | 63.74 | 0.65 | 100.00 | 98.35 | 8998.39 | 127.20 | 100.00 | 73.73 | 189.93 | 82.28 |
Mean | 9.11 | 3.88 | 20.54 | 0.28 | 84.79 | 76.32 | 2341.42 | 32.11 | 82.87 | 33.63 | 108.29 | 36.13 |
Median | 6.79 | 3.18 | 17.10 | 0.28 | 86.56 | 81.05 | 1208.45 | 25.31 | 94.28 | 33.10 | 106.92 | 34.01 |
Standard Deviation | 7.98 | 3.26 | 12.95 | 0.18 | 12.15 | 15.01 | 2469.43 | 25.02 | 23.26 | 18.40 | 19.89 | 20.43 |
Kurtosis | −0.45 | 0.84 | 2.23 | −1.24 | 0.97 | 2.15 | −0.01 | 1.93 | 1.36 | −0.75 | 2.94 | −0.51 |
Skewness | 0.90 | 1.03 | 1.56 | 0.10 | −0.94 | −1.45 | 1.12 | 1.29 | −1.58 | 0.15 | 0.58 | 0.47 |
High (n = 44) (Mean, SD) | Low (n = 44) (Mean, SD) | p-Value | |
---|---|---|---|
CO2 | 6.48 (2.65) | 1.29 (0.86) | 4.67E-17 |
PM2.5 | 14.28 (7.28) | 26.80 (14.36) | 2.632E-06 |
Neonatal mortality rate | 3.30 (2.63) | 14.92 (7.26) | 7.34E-14 |
GII | 0.15 (0.12) | 0.41 (0.13) | 2.67E-15 |
Women, business and the law index score | 90.82 (10.48) | 78.76 (10.69) | 7.38E-07 |
Ratio of female to male labor force participation rate (%) | 80.53 (9.62) | 72.12 (18.09) | 0.008305 |
Current health expenditure per capita, PPP | 4008.43 (2490.42) | 674.41 (669.84) | 2.55E-11 |
Hospital beds | 47.53 (24.73) | 16.69 (12.97) | 4.63E-10 |
People using at least basic sanitation services | 98.36 (3.18) | 85.38 (14.46) | 5.041E-07 |
Forest area | 357,611.7 (1,262,610) | 232,768.7 (751,482.4) | 0.5748 |
Crop production index | 102.14 (16.50) | 114.45 (21.22) | 0.003224 |
Rural population | 26.13 (14.53) | 46.12 (20.70) | 1.35E-06 |
High (n = 44) (Mean, SD) | Low (n = 44) (Mean, SD) | p-Value | |
---|---|---|---|
PM2.5 | 29.56 (12.72) | 11.51 (3.21) | 4.274E-12 |
CO2 | 2.24 (2.39) | 5.52 (3.21) | 5.949E-07 |
Neonatal mortality rate | 14.10 (7.71) | 4.12 (4.27) | 1.867E-10 |
GII | 0.38 (0.15) | 0.18 (0.15) | 1.248E-08 |
Women, business and the law index score | 78.41 (10.48) | 91.18 (10.27) | 1.198E-07 |
Ratio of female to male labor force participation rate (%) | 72.72 (18.30) | 79.93 (9.72) | 0.02428 |
Current health expenditure per capita, PPP | 671.73 (647.82) | 4011.11 (2492.57) | 2.422E-11 |
Hospital beds | 23.34 (21.98) | 40.89 (25.02) | 0.0007578 |
People using at least basic sanitation services | 85.97 (13.56) | 97.76 (7.11) | 3.057E-06 |
Forest area | 173,490.8 (358,376.7) | 416,889.6 (1,417,089) | 0.2748 |
Crop production index | 115.88 (19.36) | 100.71 (17.55) | 0.0002274 |
Rural population | 47.51 (19.38) | 24.74 (14.26) | 1.708E-08 |
Estimate | Std. Error | t-Value | p-Value | ||
---|---|---|---|---|---|
Model (1) | (Intercept) | 13.689087 | 5.78178 | 2.368 | 0.02324 * |
X1 | 13.58281 | 5.348579 | 2.54 | 0.01543 * | |
X2 | −0.11115 | 0.049992 | −2.223 | 0.03238 * | |
X3 | 0.102815 | 0.035784 | 2.873 | 0.00669 ** | |
X4 | −0.003 | 0.000854 | −3.512 | 0.00119 ** | |
X6 | −0.08338 | 0.031704 | −2.63 | 0.01237 * | |
X8 | 0.042391 | 0.021782 | 1.946 | 0.05926 | |
Model (2) | (Intercept) | 23.225189 | 4.4172839 | 5.258 | 0.00000592 *** |
X4 | −0.00032 | 0.0001239 | −2.61 | 0.012869 * | |
X5 | −0.03157 | 0.0102276 | −3.087 | 0.003766 ** | |
X6 | −0.17903 | 0.0459048 | −3.9 | 0.000379 *** | |
X7 | −0.02911 | 0.0146633 | −1.985 | 0.054410 | |
X9 | 0.036992 | 0.0203117 | 1.821 | 0.076455 |
Estimate | Std. Error | t-Value | p-Value | ||
---|---|---|---|---|---|
Model (3) | (Intercept) | 57.4783610 | 6.2779013 | 9.156 | 2.93E-11 *** |
X3 | −0.1022360 | 0.0389024 | −2.628 | 0.01222 * | |
X4 | −0.0002872 | 0.0001571 | −1.829 | 0.07509 | |
X5 | −0.0356932 | 0.0117184 | −3.046 | 0.00415 ** | |
X6 | −0.4354584 | 0.0484479 | −8.988 | 4.80E-11 *** | |
Model (4) | (Intercept) | 25.58 | 8.12 | 3.151 | 0.003330 ** |
X1 | 15.32 | 5.299 | 2.892 | 0.006540 ** | |
X2 | −0.1447 | 0.05.713 | −2.533 | 0.015956 * | |
X3 | 0.1339 | 0.03714 | 3.607 | 0.000958 *** | |
X4 | −0.003749 | 0.001421 | −2.639 | 0.012317 * | |
X6 | −0.1746 | 0.05105 | −3.419 | 0.001610 ** | |
X7 | −3.614E-06 | 1.476E-06 | −2.449 | 0.019468 * | |
X8 | 0.04595 | 0.02586 | 1.777 | 0.084318 | |
X9 | −0.06117 | 0.03423 | −1.787 | 0.082623 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oroszlányová, M.; Daghagh Yazd, S.; Pekin Alakoç, N. Neonatal Mortality Rate in the Context of Air Pollution: A Comparative Investigation. Sustainability 2025, 17, 7662. https://doi.org/10.3390/su17177662
Oroszlányová M, Daghagh Yazd S, Pekin Alakoç N. Neonatal Mortality Rate in the Context of Air Pollution: A Comparative Investigation. Sustainability. 2025; 17(17):7662. https://doi.org/10.3390/su17177662
Chicago/Turabian StyleOroszlányová, Melinda, Sahar Daghagh Yazd, and Nilüfer Pekin Alakoç. 2025. "Neonatal Mortality Rate in the Context of Air Pollution: A Comparative Investigation" Sustainability 17, no. 17: 7662. https://doi.org/10.3390/su17177662
APA StyleOroszlányová, M., Daghagh Yazd, S., & Pekin Alakoç, N. (2025). Neonatal Mortality Rate in the Context of Air Pollution: A Comparative Investigation. Sustainability, 17(17), 7662. https://doi.org/10.3390/su17177662