Techno-Economic Assessment of Hybrid Renewable Energy Systems for Direct Air Capture in Saudi Arabia
Abstract
1. Introduction
2. Review of HOMER Pro Applications and Renewable-Powered DAC System
2.1. Overview of HOMER Pro Software
- Simulation evaluates the feasibility of various configurations such as PV modules, wind turbines, DC–AC converters, and batteries to meet electric demand.
- Optimization identifies the most cost-effective combination of system components to satisfy the given load and operational requirements [18].
- Sensitivity analysis explores how fluctuations in inputs (e.g., fuel prices, resource availability) affect system performance, helping determine the most resilient and economical solutions [12].
2.2. Implementation of Energy System Modeling Using HOMER
2.3. Solid Sorbent Direct Air Capture: Technology and Economics
2.4. Technical and Economic Challenges Facing DAC Technology
2.5. The Role of HOMER Pro in Reducing the Cost of Direct Air Capture
3. Methodology
3.1. Solar and Wind Resources in Saudi Arabia
3.1.1. Solar Energy
3.1.2. Wind Energy
3.2. Region Selection
- Resource Potential: Strong sunlight availability and consistent wind patterns.
- Proximity to CO2 Sources: Industrial centers with high emissions to enable efficient carbon capture.
- Economic Feasibility: Assistance from the government, access to infrastructure, and consistency with national sustainability objectives.
3.3. Saudi Arabia Net Zero Emission by 2060
3.4. Selection and Justification of HOMER Pro for Renewable Energy System Optimization
3.4.1. System Description
3.4.2. Site Selection
3.4.3. Load Profile and System Inputs
3.4.4. Economical Optimization
- (i)
- Net Present Cost
- (ii)
- Levelized Cost of Energy
3.5. Simulation Process Using HOMER Pro
4. Results and Discussion
4.1. Integration of Renewable Energy Systems and Techno-Economic Assessment Using HOMER Pro
4.2. Economic Analysis
4.3. Scenario-Based Assessment of CO2 Avoidance in DAC Systems Using Renewable vs. Fossil Fuel Energy
5. Conclusions
Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muhammad, U.; Habib, S.; Sharma, N.; Joshi, D.; Kaushik, A.; Saminu, S. Innovative optimization of microgrid configuration for sustainable, reliable and economical energy using HOMER software [Preprint]. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Walker, M. HOMER Today, Tomorrow, and Beyond [Internet]. HOMER Microgrid News, 9 December 2020. Available online: https://microgridnews.com/homer-today-tomorrow-and-beyond/ (accessed on 22 May 2025).
- Lilienthal, P.; Lambert, T.; Gilman, P. Computer modeling of renewable power systems. In Encyclopedia of Energy; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Shepard, J. Microgrid Optimization and Decision Analysis Software [Internet]. EE Power, 9 November 2014. Available online: https://eepower.com/new-industry-products/microgrid-optimization-and-decision-analysis-software/ (accessed on 22 May 2025).
- Kavadias, K.A.; Triantafyllou, P. Hybrid renewable energy systems’ optimisation. A review and extended comparison of the most-used software tools. Energies 2021, 14, 8268. [Google Scholar] [CrossRef]
- Alharthi, Y.Z. An Analysis of Hybrid Renewable Energy-Based Hydrogen Production and Power Supply for Off-Grid Systems. Processes 2024, 12, 1201. [Google Scholar] [CrossRef]
- Al-Sharif, H.M.; Al-Shammari, S. Assessment of hybrid renewable energy systems in remote areas of Saudi Arabia using HOMER Pro. Renew. Energy Sustain. Dev. 2020, 6, 34–45. [Google Scholar]
- Barakat, S.; Elkhouly, H.I.; Al Muflih, A.; Harraz, N. Hybrid renewable hydrogen systems in Saudi Arabia: A techno-economic evaluation for three diverse locations. Renew. Energy 2024, 237, 121740. [Google Scholar] [CrossRef]
- Pürlü, M.; Beyarslan, S.; Türkay, B.N. On-grid and off-grid hybrid renewable energy system designs with Homer: A case study of rural electrification in Turkey. Turk. J. Electr. Power Energy Syst. 2022, 2, 75–84. [Google Scholar] [CrossRef]
- Mariño, F.; Tibanlombo, V.; Medina, J.; Chamorro, W. Optimal analysis of microgrid with HOMER according to the existing renewable resources in the sector of El Aromo and Villonaco, ecuador. Eng. Proc. 2023, 47, 3. [Google Scholar]
- Shezan, S.A.; Rawdah Ali, S.S.; Rahman, Z. Design and implementation of an islanded hybrid microgrid system for a large resort center for Penang Island with the proper application of excess energy. Environ. Prog. Sustain. Energy 2021, 40, e13584. [Google Scholar] [CrossRef]
- LADU LSD. Optimal Sizing of a Microgrid System Using HOMER Software: A Case Study for a University Campus; PAUWES: Tlemcen, Algeria, 2021. [Google Scholar]
- Ahamed, A.F.; Vibahar, R.R.; Purusothaman, S.; Gurudevan, M.; Ravivarma, P. Optimization of hybrid microgrid of renewable energy efficiency using Homer software. Rev. Geintec-Gest. Inov. E Tecnol. 2021, 11, 3427–3441. [Google Scholar]
- Lambert, T.; Gilman, P.; Lilienthal, P. Micropower system modeling with HOMER. Integr. Altern. Sources Energy 2006, 1, 379–385. [Google Scholar]
- Walker, A.; Gilman, P.; DiOrio, N. HOMER Software: Modeling Hybrid Renewable Energy Systems; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2021. [Google Scholar]
- Sinha, S.; Chandel, S.S. Review of software tools for hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2014, 32, 192–205. [Google Scholar] [CrossRef]
- Mahmoud, M.M.; El-Saadany, E.F. Optimization of microgrid operation in remote areas using HOMER. IEEE Trans. Sustain. Energy 2020, 11, 1607–1617. [Google Scholar]
- Mbasso, W.F.; Naoussi, S.R.D.; Molu, R.J.J.; Saatong, K.T.; Kamel, S. Technical assessment of a stand-alone hybrid renewable system for energy and oxygen optimal production for fishes farming in a residential building using HOMER pro. Clean. Eng. Technol. 2023, 17, 100688. [Google Scholar] [CrossRef]
- Khosravani, A.; Ranjbar, F.; Khalilpour, R. A review of HOMER Pro applications in hybrid energy systems. Renew Sustain. Energy Rev. 2021, 145, 111118. [Google Scholar]
- Alghamdi, O.A.; Alhussainy, A.A.; Alghamdi, S.; AboRas, K.M.; Rawa, M.; Abusorrah, A.M.; Alturki, Y.A. Optimal techno-economic-environmental study of using renewable energy resources for Yanbu city. Front. Energy Res. 2023, 10, 1115376. [Google Scholar] [CrossRef]
- Alshehri, M.A.H.; Guo, Y.; Lei, G. Renewable-Energy-Based Microgrid Design and Feasibility Analysis for King Saud University Campus, Riyadh. Sustainability 2023, 15, 10708. [Google Scholar] [CrossRef]
- Abusaq, M.; Zohdy, M. Techno-economic analysis of rooftop PV system in Najran Industrial Institute using HOMER Pro. J. Clean Prod. 2024, 429, 137122. [Google Scholar]
- Wilcox, J.; Psarras, P.C.; Liguori, S. Design and operational considerations for direct air capture. Nat. Rev. Earth Environ. 2021, 2, 405–419. [Google Scholar]
- Realmonte, G.; Drouet, L.; Gambhir, A.; Glynn, J.; Hawkes, A.; Köberle, A.C.; Tavoni, M. An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nat. Commun. 2019, 10, 3277. [Google Scholar] [CrossRef]
- Fuhrman, J.; Clarens, A.; Caldeira, K. The energy intensity of direct air capture. Environ. Res. Lett. 2022, 17, 124030. [Google Scholar]
- McQueen, N.; Kelemen, P.; Dipple, G.; Renforth, P.; Wilcox, J. Ambient weathering of magnesium oxide for CO2 removal from air. Nat. Commun. 2020, 11, 3299. [Google Scholar] [CrossRef]
- Climeworks. Technical Specifications of Orca and Mammoth DAC Systems [Internet]. 2024. Available online: https://www.climeworks.com (accessed on 22 May 2025).
- Prats-Salvado, E.; Friedmann, S.J. Flexible DAC for variable renewable integration. Joule 2024, 8, 39–54. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.; Mac Dowell, N. Direct air capture: Performance metrics and costs. Chem. Eng. J. 2021, 400, 125780. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Carbon Negative Shot: A Call for Innovation in Carbon Dioxide Removal [Internet]; 2021. Available online: https://www.energy.gov (accessed on 22 May 2025).
- Alotaibi, M.; Alharthi, Y.Z.; Aldossary, A. Renewable hydrogen and synthetic fuel production in Saudi Arabia: A techno-economic assessment using HOMER. Energy Convers Manag. 2024, 287, 116922. [Google Scholar] [CrossRef]
- Young, J.; McQueen, N.; Charalambous, C.; Foteinis, S.; Hawrot, O.; Ojeda, M.; Pilorgé, H.; Andresen, J.; Psarras, P.; Renforth, P.; et al. The cost of direct air capture and storage can be reduced via strategic deployment but is unlikely to fall below stated cost targets. One Earth 2023, 6, 899–917. [Google Scholar] [CrossRef]
- Eisenberger, P.; Realff, M. Path to Low-Cost Direct Air Capture [preprint]. arXiv 2024, arXiv:2411.15369. Available online: https://arxiv.org/abs/2411.15369 (accessed on 22 May 2025).
- Fasihi, M.; Efimova, O.; Breyer, C. Techno-economic assessment of CO2 direct air capture plants. J. Clean. Prod. 2019, 224, 957–980. [Google Scholar] [CrossRef]
- NREP. Why Invest in Renewable Energy 2024 [Internet]. Available online: https://misa.gov.sa/app/uploads/2024/03/investsaudi-renewable-energy-brochure.pdf (accessed on 22 May 2025).
- King Abdullah Petroleum Studies and Research Center. KSA RenewablesTracker [Internet]. Available online: https://apps.kapsarc.org/appboard/renewableprojects (accessed on 22 May 2025).
- Suliman, F.E.M. Solar-and wind-energy utilization in the Kingdom of Saudi Arabia: A comprehensive review. Energies 2024, 17, 1894. [Google Scholar] [CrossRef]
- Zell, E.; Gasim, S.; Wilcox, S.; Katamoura, S.; Stoffel, T.; Shibli, H.; Engel-Cox, J.; Al Subie, M. Assessment of solar radiation resources in Saudi Arabia. Sol. Energy 2015, 119, 422–438. [Google Scholar] [CrossRef]
- AccuWeather. Saudi Arabia Wind Flow [Internet]. Available online: https://www.accuweather.com/en/sa/national/wind-flow (accessed on 22 May 2025).
- Alharthi, Y.Z.; Siddiki, M.K.; Chaudhry, G.M. Resource assessment and techno-economic analysis of a grid-connected solar PV-wind hybrid system for different locations in Saudi Arabia. Sustainability 2018, 10, 3690. [Google Scholar] [CrossRef]
- Vision 2030. Saudi Vision 2030 [Internet]. Available online: https://www.vision2030.gov.sa/en (accessed on 22 May 2025).
- Ministry of Energy. Ministry of Energy—Kingdom of Saudi Arabia [Internet]. Available online: https://www.moenergy.gov.sa/ (accessed on 22 May 2025).
- Qiu, Y.; Iyer, G.; Fuhrman, J.; Hejazi, M.; Kamboj, P.; Kyle, P. The role and deployment timing of direct air capture in Saudi Arabia’s net-zero transition. Environ. Res. Lett. 2024, 19, 064042. [Google Scholar] [CrossRef]
- Kamboj, P.; Hejazi, M.; Qiu, Y.; Kyle, P.; Iyer, G. The path to 2060: Saudi Arabia’s long-term pathway for GHG emission reduction. Energy Strategy Rev. 2024, 55, 101537. [Google Scholar] [CrossRef]
- Gasim, A.A.; Hunt, L.C.; Mikayilov, J.I. Baseline Forecasts of Carbon Dioxide Emissions for Saudi Arabia Using the Structural Time Series Model and Autometrics; King Abdullah Petroleum Studies and Research Center Riyadh: Riyadh, Saudi Arabia, 2023. [Google Scholar]
- Al Garni, H.Z.; Mas’ud, A.A.; Wright, D. Design and economic assessment of alternative renewable energy systems using capital cost projections: A case study for Saudi Arabia. Sustain. Energy Technol. Assess. 2021, 48, 101675. [Google Scholar] [CrossRef]
- Al Garni, H.Z.; Awasthi, A.; Ramli, M.A. Optimal design and analysis of grid-connected photovoltaic under different tracking systems using HOMER. Energy Convers. Manag. 2018, 155, 42–57. [Google Scholar] [CrossRef]
- Homeida, A.; Algrouni, O.; Rehman, S.; Anwar, Z. Techno-economic Analysis of a Wind/Solar PV Hybrid Power System to Provide Electricity for Green Hydrogen Production. FME Trans. 2024, 52, 647–658. [Google Scholar] [CrossRef]
- Wang, Y.; He, X.; Liu, Q.; Razmjooy, S. Economic and technical analysis of an HRES (Hybrid Renewable Energy System) comprising wind, PV, and fuel cells using an improved subtraction-average-based optimizer. Heliyon 2024, 10, e32712. [Google Scholar] [CrossRef]
- Alghamdi, A.S. Evaluation of wind energy potential in Jubail Industrial City, Saudi Arabia. Nat. Resour. 2018, 9, 181–193. [Google Scholar]
- Alharbi, M. Analysis of wind characteristics for wind energy assessment in Jeddah, Saudi Arabia. J. Environ. Public Health 2020, 2020, 7043373. [Google Scholar]
- Said, T.R.; Kichonge, B.; Kivevele, T. Optimal design and analysis of a grid-connected hybrid renewable energy system using HOMER Pro: A case study of Tumbatu Island, Zanzibar. Energy Sci. Eng. 2024, 12, 2137–2163. [Google Scholar] [CrossRef]
- Al Garni, H.Z.; Awasthi, A. Techno-economic feasibility analysis of a solar PV grid-connected system with different tracking using HOMER software. Int. J. Sustain. Energy 2017, 36, 326–343. [Google Scholar]
- Attia, A.M.; Zentou, H.; Alyosef, H.A.; Abdelrazik, A.S.; Abdelnaby, M.M. Optimal Design of a PV/Hydrogen-Based Storage System to Supply Heat and Power to a Direct Air Carbon Capture System. Energy Storage 2025, 7, e70157. [Google Scholar] [CrossRef]
Project Name | Type | State | Expected Commissioning Year | Capacity (GW) |
---|---|---|---|---|
Shuaibah 2 | Solar | Installed | 2024 | 2.06 |
Ar Rass 1 | Solar | Installed | 2024 | 0.7 |
Shuibah 1 | Solar | Installed | 2024 | 0.6 |
Saad 1 | Solar | Installed | 2024 | 0.3 |
Layla | Solar | Installed | 2024 | 0.091 |
Sudair | Solar | Installed | 2023 | 1.5 |
Rabigh 1 | Solar | Installed | 2023 | 0.3 |
Jeddah | Solar | Installed | 2023 | 0.3 |
Dumat Al-jandal | Wind | Installed | 2022 | 0.4 |
Sakaka | Solar | Installed | 2020 | 0.3 |
Component | Parameter | Value | Unit |
---|---|---|---|
PV | Capacity | Determined by HOMER optimizer | kW |
Lifetime | 25 | Year | |
Capital cost | 758 | USD/kW | |
Replacement | 606.4 | USD/kW | |
O&M | 15.7 | USD | |
Derating Factor | 85 | % | |
Converter | Capacity | Determined by HOMER Optimizer | kW |
Lifetime | 15 | Year | |
Efficiency | 95 | % | |
Capital | 300 | USD | |
Replacement | 300 | USD | |
Battery | Nominal capacity | Determined by HOMER Optimizer | |
Initial state of Charge | 100 | % | |
Lifetime | Determined by HOMER Optimizer | ||
String size | 1 | ||
Wind turbine | Initial capacity | Determined by HOMER Optimizer | USD |
Replacement | 929 | USD | |
O&M | 23.2 | USD/year | |
Lifetime | 25 | Year | |
Hub Height | 100 | m | |
Temperature Effect | Yes | Kelvin | |
Economical parameter | Project lifetime | 25 | Year |
Deal Discount Rate | 6 | % |
Levelized Cost of Energy LCOE (USD/kWh) | Net Present Cost NPC (USD) | |||
---|---|---|---|---|
Cities | Wind/Battery | Wind/PV/Battery | Wind/Battery | Wind/PV/Battery |
Jubail | 0.128 | 0.129 | 842,375 | 849,525 |
Jeddah | 0.146 | 0.150 | 958,303 | 982,977 |
Neom | 0.154 | 0.149 | 1.01 M | 974,908 |
Scenarios | Energy Source | Total Annual Load Value (kWh/year) | Total Amount of CO2 Emissions (tons/year) | |
---|---|---|---|---|
1st | Renewable energy | 100% Renewable Energy | 416,976 | 0.0 |
2nd | Fossil fuel | 23% Electricity, 77% Natural Gas | 416,976 | 121.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljishi, S.; Alyami, S.; Alghorabi, E.; Faltakh, H.; Zentou, H.; Abdelnaby, M.; AL-Saleem, N.K.; Ameereh, G.I.; Alhajri, F. Techno-Economic Assessment of Hybrid Renewable Energy Systems for Direct Air Capture in Saudi Arabia. Sustainability 2025, 17, 7659. https://doi.org/10.3390/su17177659
Aljishi S, Alyami S, Alghorabi E, Faltakh H, Zentou H, Abdelnaby M, AL-Saleem NK, Ameereh GI, Alhajri F. Techno-Economic Assessment of Hybrid Renewable Energy Systems for Direct Air Capture in Saudi Arabia. Sustainability. 2025; 17(17):7659. https://doi.org/10.3390/su17177659
Chicago/Turabian StyleAljishi, Sana, Sarah Alyami, Eman Alghorabi, Hana Faltakh, Hamid Zentou, Mahmoud Abdelnaby, Nouf K. AL-Saleem, G. I. Ameereh, and Fawziah Alhajri. 2025. "Techno-Economic Assessment of Hybrid Renewable Energy Systems for Direct Air Capture in Saudi Arabia" Sustainability 17, no. 17: 7659. https://doi.org/10.3390/su17177659
APA StyleAljishi, S., Alyami, S., Alghorabi, E., Faltakh, H., Zentou, H., Abdelnaby, M., AL-Saleem, N. K., Ameereh, G. I., & Alhajri, F. (2025). Techno-Economic Assessment of Hybrid Renewable Energy Systems for Direct Air Capture in Saudi Arabia. Sustainability, 17(17), 7659. https://doi.org/10.3390/su17177659