Co-Pyrolysis of Biomass with Bituminous Coal in a Fixed-Bed Reactor for Biofuel and Bioreducing Agents Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Petrographic Analysis of HC
2.2. Maximum Thickness of the Plastic Layer of HC
2.3. Dilatometric Parameters of HC
2.4. Swelling Pressure of HC
2.5. Lab-Scale Fixed-Bed Reactor for Pyrolysis
- (1)
- Mass decrease in the sample over time (balance).
- (2)
- Concentrations of flue gas species over time:
- (a)
- Determination of H2O, CH4, ammonia (NH3), hydrogen cyanide (HCN), nitrous oxide (N2O), and basic hydrocarbons was performed with a multi-component FTIR spectroscopy device (Ansyco DX 4000, Vantaa, Finland).
- (b)
- CO2 and CO were measured with a multi-component non-dispersive infrared (NDIR) gas analyzer, which is equipped with an electrochemical sensor for O2 detection.
- (c)
- The amounts of total hydrocarbons (CxHy) were determined with a flame ionization detector (FID) (Messer Griesheim Modell VE7, Karlsfeld, Germany), which detects organic compounds by ionization in a burning H2 flame.
- (d)
- Wide band lambda sensor (O2).
- (3)
- Temperature measurements over time:
- (a)
- Five thermo-couples in the sample bed (3 different heights NiCr-Ni).
- (b)
- Thermo-couples in the gas phase (NiCr-Ni).
2.6. Thermogravimetric Analysis
3. Results and Discussions
3.1. Characterization of the Properties of Caking HC and Two Biomass Samples
3.2. Lab-Scale Fixed-Bed Reactor Experiments
3.3. Thermogravimetric Analysis of Individual Caking Hard Coal, Two Different Types of Biomasses, and Blends of Hard Coal and Biomasses
3.4. Kinetic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bridgwater, A.V. Renewable Fuels and Chemicals by Thermal Processing of Biomass. Chem. Eng. J. 2003, 91, 87–102. [Google Scholar] [CrossRef]
- Kieush, L. Coal Pyrolysis Products Utilisation for Synthesis of Carbon Nanotubes. Pet. Coal 2019, 61, 461–463. [Google Scholar]
- DiGiovanni, C.; Echterhof, T. Progress Toward Biocarbon Utilization in Electric Arc Furnace Steelmaking: Current Status and Future Prospects. J. Sustain. Metall. 2024, 10, 2047–2067. [Google Scholar] [CrossRef]
- Safarian, S. To What Extent Could Biochar Replace Coal and Coke in Steel Industries? Fuel 2023, 339, 127401. [Google Scholar] [CrossRef]
- Ibitoye, S.E.; Loha, C.; Mahamood, R.M.; Jen, T.-C.; Alam, M.; Sarkar, I.; Das, P.; Akinlabi, E.T. An Overview of Biochar Production Techniques and Application in Iron and Steel Industries. Bioresour. Bioprocess. 2024, 11, 65. [Google Scholar] [CrossRef] [PubMed]
- Beadle, C.L.; Long, S.P. Photosynthesis—Is It Limiting to Biomass Production? Biomass 1985, 8, 119–168. [Google Scholar] [CrossRef]
- Ye, L.; Peng, Z.; Wang, L.; Anzulevich, A.; Bychkov, I.; Kalganov, D.; Tang, H.; Rao, M.; Li, G.; Jiang, T. Use of Biochar for Sustainable Ferrous Metallurgy. JOM 2019, 71, 3931–3940. [Google Scholar] [CrossRef]
- Ng, K.W.; Liu, K.; Huang, X. Biocarbon Utilization in Cokemaking by Partial Briquetting. Fuel 2024, 365, 131283. [Google Scholar] [CrossRef]
- Castro-Díaz, M.; Vega, M.F.; Díaz-Faes, E.; Barriocanal, C.; Musa, U.; Snape, C. Evaluation of Demineralized Lignin and Lignin-Phenolic Resin Blends to Produce Biocoke Suitable for Blast Furnace Operation. Fuel 2019, 258, 116125. [Google Scholar] [CrossRef]
- Kieush, L.; Schenk, J.; Pfeiffer, A.; Koveria, A.; Rantitsch, G.; Hopfinger, H. Investigation on the Influence of Wood Pellets on the Reactivity of Coke with CO2 and Its Microstructure Properties. Fuel 2022, 309, 122151. [Google Scholar] [CrossRef]
- Wei, R.; Meng, K.; Long, H.; Xu, C. Biomass Metallurgy: A Sustainable and Green Path to a Carbon-Neutral Metallurgical Industry. Renew. Sustain. Energy Rev. 2024, 199, 114475. [Google Scholar] [CrossRef]
- Kieush, L.; Schenk, J.; Koveria, A.; Hrubiak, A.; Hopfinger, H.; Zheng, H. Evaluation of Slag Foaming Behavior Using Renewable Carbon Sources in Electric Arc Furnace-Based Steel Production. Energies 2023, 16, 4673. [Google Scholar] [CrossRef]
- Kieush, L.; Koveria, A.; Zhu, Z.Q.; Boyko, M.; Sova, A.; Yefimenko, V. Application of Biomass Pellets for Iron Ore Sintering. MSF 2021, 1045, 17–31. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An Overview of the Chemical Composition of Biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Goyal, H.B.; Seal, D.; Saxena, R.C. Bio-Fuels from Thermochemical Conversion of Renewable Resources: A Review. Renew. Sustain. Energy Rev. 2008, 12, 504–517. [Google Scholar] [CrossRef]
- Ram, M.; Mondal, M.K. Biomass Gasification. In Biofuels and Bioenergy; Elsevier: Amsterdam, The Netherlands, 2022; pp. 253–276. ISBN 9780323852692. [Google Scholar]
- Demirbaş, A. Mechanisms of Liquefaction and Pyrolysis Reactions of Biomass. Energy Convers. Manag. 2000, 41, 633–646. [Google Scholar] [CrossRef]
- Zhang, L.; Rao, T.U.; Wang, J.; Ren, D.; Sirisommboonchai, S.; Choi, C.; Machida, H.; Huo, Z.; Norinaga, K. A Review of Thermal Catalytic and Electrochemical Hydrogenation Approaches for Converting Biomass-Derived Compounds to High-Value Chemicals and Fuels. Fuel Process. Technol. 2022, 226, 107097. [Google Scholar] [CrossRef]
- Anca-Couce, A. Reaction Mechanisms and Multi-Scale Modelling of Lignocellulosic Biomass Pyrolysis. Prog. Energy Combust. Sci. 2016, 53, 41–79. [Google Scholar] [CrossRef]
- Kieush, L.; Schenk, J.; Koveria, A.; Rantitsch, G.; Hrubiak, A.; Hopfinger, H. Utilization of Renewable Carbon in Electric Arc Furnace-Based Steel Production: Comparative Evaluation of Properties of Conventional and Non-Conventional Carbon-Bearing Sources. Metals 2023, 13, 722. [Google Scholar] [CrossRef]
- Kumar, K.P.; Remya, N. Technoeconomic Analysis of Biofuel Production from Agricultural Residues through Pyrolysis. In Green Approach to Alternative Fuel for a Sustainable Future; Elsevier: Amsterdam, The Netherlands, 2023; pp. 463–469. ISBN 9780128243183. [Google Scholar]
- Bhaskar, T.; Balagurumurthy, B.; Singh, R.; Poddar, M.K. Thermochemical Route for Biohydrogen Production. In Biohydrogen; Elsevier: Amsterdam, The Netherlands, 2013; pp. 285–316. ISBN 9780444595553. [Google Scholar]
- Pahnila, M.; Koskela, A.; Sulasalmi, P.; Fabritius, T. Biocarbon Production Using Three-Stage Pyrolysis and Its Preliminary Suitability to the Iron and Steel Industry. Energies 2024, 17, 3131. [Google Scholar] [CrossRef]
- Orfão, J.J.M.; Antunes, F.J.A.; Figueiredo, J.L. Pyrolysis Kinetics of Lignocellulosic Materials—Three Independent Reactions Model. Fuel 1999, 78, 349–358. [Google Scholar] [CrossRef]
- White, J.E.; Catallo, W.J.; Legendre, B.L. Biomass Pyrolysis Kinetics: A Comparative Critical Review with Relevant Agricultural Residue Case Studies. J. Anal. Appl. Pyrolysis 2011, 91, 1–33. [Google Scholar] [CrossRef]
- Slezak, R.; Unyay, H.; Szufa, S.; Ledakowicz, S. An Extensive Review and Comparison of Modern Biomass Reactors Torrefaction vs. Biomass Pyrolizers—Part 2. Energies 2023, 16, 2212. [Google Scholar] [CrossRef]
- Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters. Renew. Sustain. Energy Rev. 2016, 57, 1126–1140. [Google Scholar] [CrossRef]
- Hu, X.; Gholizadeh, M. Biomass Pyrolysis: A Review of the Process Development and Challenges from Initial Researches up to the Commercialisation Stage. J. Energy Chem. 2019, 39, 109–143. [Google Scholar] [CrossRef]
- ISO 15585:2006(E); Hard Coal—Determination of Caking Index. International Organization for Standardization: Geneva, Switzerland, 2006.
- Hu, W.; Wang, Q.; Zhao, X.; Yang, S.; Wu, H.; Zhang, S.; Sun, J. Relevance between Various Phenomena during Coking Coal Carbonization. Part 3: Understanding the Properties of the Plastic Layer during Coal Carbonization. Fuel 2021, 292, 120371. [Google Scholar] [CrossRef]
- Sciazko, M.; Mertas, B.; Stepien, L. Kinetic Modelling of Coking Coal Fluidity Development. J Therm Anal Calorim 2020, 142, 977–990. [Google Scholar] [CrossRef]
- Arenillas, A.; Rubiera, F.; Pevida, C.; Pis, J.J. A Comparison of Different Methods for Predicting Coal Devolatilisation Kinetics. J. Anal. Appl. Pyrolysis 2001, 58–59, 685–701. [Google Scholar] [CrossRef]
- Koveria, A.; Kieush, L.; Saik, P.; Lozynskyi, V. Metallurgical Coke Production with Biomass Additives. Part 2. Production and Characterization of Laboratory Biocokes. In Modern Technologies in Energy and Transport; Boichenko, S., Zaporozhets, A., Yakovlieva, A., Shkilniuk, I., Eds.; Studies in Systems, Decision and Control; Springer: Cham, Switzerland, 2024; Volume 510, pp. 287–306. ISBN 9783031443503. [Google Scholar]
- Nowak, M.A.; Paul, A.D.; Srivastava, R.D.; Radziwon, A. Coal Conversion. In Encyclopedia of Energy; Elsevier: Amsterdam, The Netherlands, 2004; pp. 425–434. ISBN 9780121764807. [Google Scholar]
- Jeong, H.M.; Seo, M.W.; Jeong, S.M.; Na, B.K.; Yoon, S.J.; Lee, J.G.; Lee, W.J. Pyrolysis Kinetics of Coking Coal Mixed with Biomass under Non-Isothermal and Isothermal Conditions. Bioresour. Technol. 2014, 155, 442–445. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, S.; Zhao, J.; Chen, L.; Meng, H. Synergistic Effect on Thermal Behavior during Co-Pyrolysis of Lignocellulosic Biomass Model Components Blend with Bituminous Coal. Bioresour. Technol. 2014, 169, 220–228. [Google Scholar] [CrossRef]
- Yuan, S.; Dai, Z.; Zhou, Z.; Chen, X.; Yu, G.; Wang, F. Rapid Co-Pyrolysis of Rice Straw and a Bituminous Coal in a High-Frequency Furnace and Gasification of the Residual Char. Bioresour. Technol. 2012, 109, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Jiao, H.; Cai, J.; Wang, J.; Yang, Y.; Bridgwater, A.V. Co-Pyrolysis of Miscanthus Sacchariflorus and Coals: A Systematic Study on the Synergies in Thermal Decomposition, Kinetics and Vapour Phase Products. Fuel 2020, 262, 116603. [Google Scholar] [CrossRef]
- Yang, F.; Zhou, A.; Zhao, W.; Yang, Z.; Li, H. Thermochemical Behaviors, Kinetics and Gas Emission Analyses during Co-Pyrolysis of Walnut Shell and Coal. Thermochim. Acta 2019, 673, 26–33. [Google Scholar] [CrossRef]
- Gohar, H.; Khoja, A.H.; Ansari, A.A.; Naqvi, S.R.; Liaquat, R.; Hassan, M.; Hasni, K.; Qazi, U.Y.; Ali, I. Investigating the Characterisation, Kinetic Mechanism, and Thermodynamic Behaviour of Coal-Biomass Blends in Co-Pyrolysis Process. Process Saf. Environ. Prot. 2022, 163, 645–658. [Google Scholar] [CrossRef]
- Bhattacharyya, M.; Shadangi, K.P.; Purkayastha, R.; Mahanta, P.; Mohanty, K. Co-Pyrolysis of Coal and Biomass Blends: Impact of Pyrolysis Temperature and Biomass Blending on Thermal Stability of Coal, and Composition of Pyrolysis Products. Process Saf. Environ. Prot. 2024, 187, 1010–1021. [Google Scholar] [CrossRef]
- Tauseef, M.; Ansari, A.A.; Khoja, A.H.; Naqvi, S.R.; Liaquat, R.; Nimmo, W.; Daood, S.S. Thermokinetics Synergistic Effects on Co-Pyrolysis of Coal and Rice Husk Blends for Bioenergy Production. Fuel 2022, 318, 123685. [Google Scholar] [CrossRef]
- Lu, K.-M.; Lee, W.-J.; Chen, W.-H.; Lin, T.-C. Thermogravimetric Analysis and Kinetics of Co-Pyrolysis of Raw/Torrefied Wood and Coal Blends. Appl. Energy 2013, 105, 57–65. [Google Scholar] [CrossRef]
- Vuthaluru, H.B. Thermal Behaviour of Coal/Biomass Blends during Co-Pyrolysis. Fuel Process. Technol. 2004, 85, 141–155. [Google Scholar] [CrossRef]
- Cao, Z.; Xu, Q.; Kang, H.; Shi, J.; Lu, X.; Chen, B.; Guo, L. Synergistic Interactions between Lignite and Biomass during Co-Pyrolysis from Volatile Release, Kinetics, and Char Structure. J. Energy Inst. 2024, 114, 101662. [Google Scholar] [CrossRef]
- Wang, W.; Lemaire, R.; Bensakhria, A.; Luart, D. Review on the Catalytic Effects of Alkali and Alkaline Earth Metals (AAEMs) Including Sodium, Potassium, Calcium and Magnesium on the Pyrolysis of Lignocellulosic Biomass and on the Co-Pyrolysis of Coal with Biomass. J. Anal. Appl. Pyrolysis 2022, 163, 105479. [Google Scholar] [CrossRef]
- Li, S.; Wang, C.; Luo, Z.; Zhu, X. Investigation on the Catalytic Behavior of Alkali Metals and Alkaline Earth Metals on the Biomass Pyrolysis Assisted with Real-Time Monitoring. Energy Fuels 2020, 34, 12654–12664. [Google Scholar] [CrossRef]
- De’Nobili, M.D.; Bernhardt, D.C.; Basanta, M.F.; Rojas, A.M. Sunflower (Helianthus Annuus L.) Seed Hull Waste: Composition, Antioxidant Activity, and Filler Performance in Pectin-Based Film Composites. Front. Nutr. 2021, 8, 777214. [Google Scholar] [CrossRef]
- Domingos, I.; Ferreira, J.; Cruz-Lopes, L.P.; Esteves, B. Liquefaction and Chemical Composition of Walnut Shells. Open Agric. 2022, 7, 249–256. [Google Scholar] [CrossRef]
- ISO 7404-2:2009; Methods for the Petrographic Analysis of Coals—Part 2: Methods of Preparing Coal Samples. ISO: Geneva, Switzerland, 2009.
- ISO 7404-5:2009; Methods for the Petrographic Analysis of Coals—Part 5: Method of Determining Microscopically the Reflectance of Vitrinite. ISO: Geneva, Switzerland, 2009.
- Kieush, L.; Koveria, A.; Schenk, J.; Rysbekov, K.; Lozynskyi, V.; Zheng, H.; Matayev, A. Investigation into the Effect of Multi-Component Coal Blends on Properties of Metallurgical Coke via Petrographic Analysis under Industrial Conditions. Sustainability 2022, 14, 9947. [Google Scholar] [CrossRef]
- ISO/DTS 4699; Hard Coal—Determination of Plastometric Indices—Manual Sapozhnikov Penetration Plastometer Method. International Organization for Standardization: Geneva, Switzerland, 2020.
- Koveria, A.; Kieush, L.; Usenko, A.; Sova, A. Study of Cellulose Additive Effect on the Caking Properties of Coal. Min. miner. depos. 2023, 17, 1–8. [Google Scholar] [CrossRef]
- Sommersacher, P.; Brunner, T.; Obernberger, I.; Kienzl, N.; Kanzian, W. Application of Novel and Advanced Fuel Characterization Tools for the Combustion Related Characterization of Different Wood/Kaolin and Straw/Kaolin Mixtures. Energy Fuels 2013, 27, 5192–5206. [Google Scholar] [CrossRef]
- DIN 51729-11:1998-11; Testing of Solid Fuels—Determination of Chemical Composition of Fuel Ash—PART 11: Determination by Inductively Coupled Plasma Emission Spectrometry (ICP-OES). German Institute for Standardisation: Berlin, Germany, 1998.
- El-Sayed, S.A.; Khass, T.M.; Mostafa, M.E. Thermal Degradation Behaviour and Chemical Kinetic Characteristics of Biomass Pyrolysis Using TG/DTG/DTA Techniques. Biomass Conv. Bioref. 2024, 14, 17779–17803. [Google Scholar] [CrossRef]
- Coats, A.W.; Redfern, J.P. Kinetic Parameters from Thermogravimetric Data. Nature 1964, 201, 68–69. [Google Scholar] [CrossRef]
- Wei, R.; Zhang, L.; Cang, D.; Li, J.; Li, X.; Xu, C.C. Current Status and Potential of Biomass Utilization in Ferrous Metallurgical Industry. Renew. Sustain. Energy Rev. 2017, 68, 511–524. [Google Scholar] [CrossRef]
- ASTM D3172-13; Standard Practice for Proximate Analysis of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM E870-82(2019); Standard Test Methods for Analysis of Wood Fuels. ASTM International: West Conshohocken, PA, USA, 2019.
- Manmeen, A.; Kongjan, P.; Palamanit, A.; Jariyaboon, R. Biochar and Pyrolysis Liquid Production from Durian Peel by Using Slow Pyrolysis Process: Regression Analysis, Characterization, and Economic Assessment. Ind. Crops Prod. 2023, 203, 117162. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Yeng, L.C.; Wahit, M.U.; Othman, N. Thermal and flexural properties of regenerated cellulose(rc)/poly(3-hydroxybutyrate)(phb)biocomposites. J. Teknol. 2015, 75, 107–112. [Google Scholar] [CrossRef]
- Poletto, M.; Pistor, V.; Santana, R.M.C.; Zattera, A.J. Materials Produced from Plant Biomass: Part II: Evaluation of Crystallinity and Degradation Kinetics of Cellulose. Mat. Res. 2012, 15, 421–427. [Google Scholar] [CrossRef]
- Burhenne, L.; Messmer, J.; Aicher, T.; Laborie, M.-P. The Effect of the Biomass Components Lignin, Cellulose and Hemicellulose on TGA and Fixed Bed Pyrolysis. J. Anal. Appl. Pyrolysis 2013, 101, 177–184. [Google Scholar] [CrossRef]
- Ye, Z.; Li, S.; Pan, Z.; Wang, J.; Hu, Z.-T.; Xu, C.C.; Hu, M. Towards Enhanced Understanding of the Synergistic Effects between Potassium and Calcium in Biomass Catalyzed Pyrolysis. J. Anal. Appl. Pyrolysis 2024, 184, 106848. [Google Scholar] [CrossRef]
- Liu, N.; Dou, C.; Yang, X.; Bai, B.; Zhu, S.; Tian, J.; Wang, Z.; Xu, L.; Shen, B. Effects of Pretreatment Procedure, Compositional Feature and Reaction Condition on the Devolatilization Characteristics of Biomass during Pyrolysis Process: A Review. J. Energy Inst. 2025, 118, 101943. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, L.; Xu, S. Effects of Feedstock on Co-Pyrolysis of Biomass and Coal in a Free-Fall Reactor. J. Fuel Chem. Technol. 2011, 39, 728–734. [Google Scholar] [CrossRef]
- Morgan, T.J.; Kandiyoti, R. Pyrolysis of Coals and Biomass: Analysis of Thermal Breakdown and Its Products. Chem. Rev. 2014, 114, 1547–1607. [Google Scholar] [CrossRef]
- Park, D.K.; Kim, S.D.; Lee, S.H.; Lee, J.G. Co-Pyrolysis Characteristics of Sawdust and Coal Blend in TGA and a Fixed Bed Reactor. Bioresour. Technol. 2010, 101, 6151–6156. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Wang, J.; Qiao, Y.; Huang, H.; Xu, L.; Tian, Y. Understanding the Pyrolysis Synergy of Biomass and Coal Blends Based on Volatile Release, Kinetics and Char Structure. Biomass Bioenergy 2023, 168, 106687. [Google Scholar] [CrossRef]
- Merdun, H.; Laougé, Z.B. Kinetic and Thermodynamic Analyses during Co-Pyrolysis of Greenhouse Wastes and Coal by TGA. Renew. Energy 2021, 163, 453–464. [Google Scholar] [CrossRef]
Index | HC | SFH | WS |
---|---|---|---|
Proximate analysis (wt.%) | |||
Moisture, M ar | 8.4 | 8.0 | 7.2 |
Ash, A db | 8.1 | 3.0 | 0.9 |
Volatile matter, VM db | 26.70 | 76.84 | 81.02 |
Total Sulfur, St db | 0.71 | 0.14 | 0.02 |
Fixed Carbon (a), fC db | 65.2 | 20.2 | 18.1 |
Fuel ratio (b) | 2.44 | 0.27 | 0.23 |
Ultimate analysis | |||
Carbon, C, wt.%, db | 80.10 | 49.67 | 50.32 |
Hydrogen, H, wt.%, db | 4.70 | 5.85 | 5.87 |
Nitrogen, N, wt.%, db | 1.63 | 0.59 | 0.17 |
Oxygen, O (c), wt.%, db | 4.76 | 40.75 | 42.72 |
O/C atomic ratio | 0.045 | 0.615 | 0.637 |
H/C atomic ratio | 0.704 | 1.410 | 1.400 |
Heating value HHV (d), MJ/kg | 32.9 | 19.9 | 20.0 |
Petrographic Analysis, % | Plastometric Parameters, mm | Dilatometric Parameters | ||||
---|---|---|---|---|---|---|
Mean reflectance of vitrinite, Ro | Σcaking components | Plastic layer, y | Plastometric shrinkage, x | Swelling index, mm | Swelling time, s | Pre-swelling time, s |
1.23 | 89.6 | 13.0 | 22.0 | 60.0 | 514 | 495 |
P1, kPa | P2, kPa | P3, kPa | a, s | ta, °C | b, s | tb, °C | c, s | tc, °C | d, s | td, °C | e, s | te, °C | f, s | tf, °C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1488 | 3356 | 2609 | 342 | 0–376 | 111 | 376–434 | 8 | 434–437 | 80 | 437–464 | 8 | 464–466 | 250 | 466– 492 |
Index | SFH Char | WS Char | SFH/HC Char | WS/HC Char |
---|---|---|---|---|
Char yield, wt.% | 34 ± 0.54 | 33 ± 0.03 | 63 ± 1.10 | 66 ± 0.94 |
Proximate analysis (wt.%) | ||||
Moisture, W ad | 5.1 | 4.8 | 3.3 | 2.8 |
Ash, A db | 3.9 | 1.4 | 6.4 | 5.0 |
Volatile matter, VM db | 22.2 | 23.5 | 16.9 | 17.2 |
Total Sulfur, St db | 0.08 | trace | 0.40 | 0.35 |
Fixed Carbon (a), fC db | 73.9 | 75.1 | 76.7 | 77.8 |
Fuel ratio (b) | 3.33 | 3.20 | 4.54 | 4.52 |
Ultimate analysis | ||||
Carbon, C, wt.%, db | 82.38 | 79.32 | 80.42 | 78.23 |
Hydrogen, H, wt.%, db | 4.19 | 3.55 | 3.79 | 3.81 |
Nitrogen, N, wt.%, db | 0.74 | 0.26 | 1.29 | 1.22 |
Oxygen (c), O, wt.%, db | 8.71 | 15.47 | 7.70 | 11.39 |
O/C atomic ratio | 0.079 | 0.146 | 0.072 | 0.109 |
H/C atomic ratio | 0.610 | 0.537 | 0.565 | 0.584 |
Heating value (d), HHV, MJ/kg | 32.7 | 30.2 | 31.6 | 30.5 |
Element, (mg/kg) TSs | HC | SFH | WS | SFH/HC | WS/HC |
---|---|---|---|---|---|
Si | 8810.0 ± 440 | 147.0 ± 15 | 196.0 ± 20 | 7500.0 ± 375 | 8570.0 ± 428 |
Al | 7970.0 ± 398 | 21.0 ± 4 | 31.0 ± 6 | 5890.0 ± 294 | 6570.0 ± 328 |
Ca | 198.0 ± 20 | 3710.0 ± 186 | 1470.0 ± 74 | 1840.0 ± 92 | 1090.0 ± 54 |
Fe | 1550.0 ± 78 | 164.0 ± 16 | 77.0 ± 15 | 2380.0 ± 119 | 3330.0 ± 166 |
K | 1360.0 ± 68 | 8320.0 ± 416 | 2640.0 ± 132 | 4410.0 ± 220 | 2470.0 ± 124 |
S | 7080.0 ± 354 | 1380.0 ± 69 | 118.0 ± 12 | 4500.0 ± 225 | 3810.0 ± 190 |
Cl | 1480.0 ± 74 | 664.0 ± 66 | 261.0 ± 26 | 1160.0 ± 58 | 903.0 ± 90 |
Mg | 383.0 ± 38 | 1880.0 ± 94 | 139.0 ± 14 | 1120.0 ± 56 | 494.0 ± 49 |
Mn | 15.0 ± 3 | 9.0 ± 1.8 | 6.0 ± 1.2 | 35.0 ± 7 | 56.0 ± 11 |
Na | 185.0 ± 18 | 10.0 ± 2 | 17.0 ± 3 | 187.0 ± 19 | 241.0 ± 24 |
Ni | 49.0 ± 10 | 18.0 ± 4 | 1.0 ± 0.2 | 35.0 ± 7 | 31.0 ± 6 |
P | 56.0 ± 11 | 466.0 ± 47 | 134.0 ± 13 | 237.0 ± 24 | 186.0 ± 19 |
Ti | 271.0 ± 27 | 317.0 ± 32 | 9.0 ± 1.8 | 314.0 ± 31 | 285.0 ± 28 |
Zn | 14.0 ± 3 | 9.0 ± 1.8 | 2.0 ± 0.4 | 13.0 ± 3 | 11.0 ± 2 |
Sr | 30.0 ± 6 | 21.0 ± 4 | 6.0 ± 1.2 | 26.0 ± 5 | 24.0 ± 5 |
Cu | 21.0 ± 4 | 9.0 ± 1.8 | 2.0 ± 0.4 | 16.0 ± 3 | 13.0 ± 3 |
Cr | 19.0 ± 4 | 32.0 ± 6 | 2.0 ± 0.4 | 25.0 ± 5 | 19.0 ± 4 |
Ba | 34.0 ± 7 | 2.0 ± 0.4 | 2.0 ± 0.4 | 24.0 ± 5 | 31.0 ± 6 |
Samples | Ea, kJ/mol | R2 (COD) | A, 1/min | Temperature Range for Apparent Ea, °C |
---|---|---|---|---|
HC | 55.1 | 0.996 | 9.9 × 103 | 360–500 |
SFHs | 43.8 | 0.998 | 3.7 × 102 | 250–350 |
WSs | 52.4 | 0.996 | 1.8 × 103 | 250–350 |
SFH/HC | 62.8 | 0.998 | 1.1 × 104 | 250–350 |
11.2 | 0.919 | 1.48 | 445–600 | |
WS/HC | 61.8 | 0.996 | 1.0 × 104 | 250–350 |
9.9 | 0.932 | 0.86 | 440–600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kieush, L.; Koveria, A.; Sommersacher, P.; Retschitzegger, S.; Kienzl, N. Co-Pyrolysis of Biomass with Bituminous Coal in a Fixed-Bed Reactor for Biofuel and Bioreducing Agents Production. Sustainability 2025, 17, 7654. https://doi.org/10.3390/su17177654
Kieush L, Koveria A, Sommersacher P, Retschitzegger S, Kienzl N. Co-Pyrolysis of Biomass with Bituminous Coal in a Fixed-Bed Reactor for Biofuel and Bioreducing Agents Production. Sustainability. 2025; 17(17):7654. https://doi.org/10.3390/su17177654
Chicago/Turabian StyleKieush, Lina, Andrii Koveria, Peter Sommersacher, Stefan Retschitzegger, and Norbert Kienzl. 2025. "Co-Pyrolysis of Biomass with Bituminous Coal in a Fixed-Bed Reactor for Biofuel and Bioreducing Agents Production" Sustainability 17, no. 17: 7654. https://doi.org/10.3390/su17177654
APA StyleKieush, L., Koveria, A., Sommersacher, P., Retschitzegger, S., & Kienzl, N. (2025). Co-Pyrolysis of Biomass with Bituminous Coal in a Fixed-Bed Reactor for Biofuel and Bioreducing Agents Production. Sustainability, 17(17), 7654. https://doi.org/10.3390/su17177654