Assessment of Soil Quality in Peruvian Andean Smallholdings: A Comparative Study of PCA and Expert Opinion Approaches
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Analysis
2.3. Soil Quality Evaluation
2.3.1. Selecting the MDS
Principal Component Analysis Approach
Expert Opinion Aproach
2.3.2. Transformation of the MDS Indicators and Weight Assignment
2.4. Spatial Mapping Using GWRK
2.5. Statistical Analysis
3. Results
3.1. Statistical Summary of Soil Properties
3.2. Principal Component Analysis
3.3. Expert Opinion
3.4. Indicator Scores
3.5. Results of Weighted Soil Quality Index
3.6. Soil Quality Index
3.7. Spatial Mapping of Soil Quality Indices
4. Discussion
4.1. Soil Properties and Their Role in Soil Quality
4.2. Comparative Analysis of SQI Construction
4.3. Soil Quality Maps
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SQI | Soil quality index |
MDS | Minimum dataset |
PCA | Principal component analysis |
EO | Expert opinion |
GWRK | Geographically weighted regression kriging |
PC | Principal component |
LAgre | Large aggregates |
SAgre | Small aggregates |
SOC | Soil organic carbon |
POCX | Permanganate oxidizable carbon, |
cPOM | Coarse particulate organic matter |
fPOM | Fine particulate organic matter |
Ava_P | Available P |
Ava_K | Available K |
Ex_Ca | Exchangeable Ca |
Ex_Mg | Exchangeable Mg |
Ex_Na | Exchangeable Na |
Ex_K | Exchangeable K |
EC | Electric conductivity |
CEC | Cation exchange capacity |
ESP | Exchangeable sodium percentage |
Carb | Carbonates percentage |
References
- Doran, J.W.; Parkin, T.B. Defining and Assessing Soil Quality. In Defining Soil Quality for a Sustainable Environment; Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A., Eds.; Soil Science Society of America Book Series: Madison, WI, USA, 1994. [Google Scholar]
- Nakajima, T.; Lal, R.; Jiang, S. Soil Quality Index of a Crosby Silt Loam in Central Ohio. Soil. Tillage Res. 2015, 146, 323–328. [Google Scholar] [CrossRef]
- Vasu, D.; Tiwari, G.; Sahoo, S.; Dash, B.; Jangir, A.; Sharma, R.P.; Naitam, R.; Tiwary, P.; Karthikeyan, K.; Chandran, P. A Minimum Data Set of Soil Morphological Properties for Quantifying Soil Quality in Coastal Agroecosystems. Catena 2021, 198, 105042. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Mitchell, J.P. A Comparison of Soil Quality Indexing Methods for Vegetable Production Systems in Northern California. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Pouladi, N.; Jafarzadeh, A.A.; Shahbazi, F.; Ghorbani, M.A.; Greve, M.H. Assessing the Soil Quality Index as Affected by Two Land Use Scenarios in Miandoab Region. SN Appl. Sci. 2020, 2, 1875. [Google Scholar] [CrossRef]
- Stott, D.E.; Cambardella, C.A.; Tomer, M.D.; Karlen, D.L.; Wolf, R. A Soil Quality Assessment within the Iowa River South Fork Watershed. Soil. Sci. Soc. Am. J. 2011, 75, 2271–2282. [Google Scholar] [CrossRef]
- Gelaw, A.M.; Singh, B.R.; Lal, R. Soil Quality Indices for Evaluating Smallholder Agricultural Land Uses in Northern Ethiopia. Sustainability 2015, 7, 2322–2337. [Google Scholar] [CrossRef]
- Askari, M.S.; Holden, N.M. Indices for Quantitative Evaluation of Soil Quality under Grassland Management. Geoderma 2014, 230–231, 131–142. [Google Scholar] [CrossRef]
- Vasu, D.; Singh, S.K.; Ray, S.K.; Duraisami, V.P.; Tiwary, P.; Chandran, P.; Nimkar, A.M.; Anantwar, S.G. Soil Quality Index (SQI) as a Tool to Evaluate Crop Productivity in Semi-Arid Deccan Plateau, India. Geoderma 2016, 282, 70–79. [Google Scholar] [CrossRef]
- Chaudhry, H.; Vasava, H.B.; Chen, S.; Saurette, D.; Beri, A.; Gillespie, A.; Biswas, A. Evaluating the Soil Quality Index Using Three Methods to Assess Soil Fertility. Sensors 2024, 24, 864. [Google Scholar] [CrossRef]
- Evangelou, E.; Giourga, C. Identification of Soil Quality Factors and Indicators in Mediterranean Agro-Ecosystems. Sustainability 2024, 16, 10717. [Google Scholar] [CrossRef]
- Luján Soto, R.; Cuéllar Padilla, M.; de Vente, J. Participatory Selection of Soil Quality Indicators for Monitoring the Impacts of Regenerative Agriculture on Ecosystem Services. Ecosyst. Serv. 2020, 45, 101157. [Google Scholar] [CrossRef]
- Amorim, H.C.S.; Ashworth, A.J.; Wienhold, B.J.; Savin, M.C.; Allen, F.L.; Saxton, A.M.; Owens, P.R.; Curi, N. Soil Quality Indices Based on Long-Term Conservation Cropping Systems Management. Agrosyst. Geosci. Environ. 2020, 3, e20036. [Google Scholar] [CrossRef]
- Raiesi, F. A Minimum Data Set and Soil Quality Index to Quantify the Effect of Land Use Conversion on Soil Quality and Degradation in Native Rangelands of Upland Arid and Semiarid Regions. Ecol. Indic. 2017, 75, 307–320. [Google Scholar] [CrossRef]
- Garcia, Y.; Ramírez, W.; Sánchez, S. Soil Quality Indicators: A New Way to Evaluate This Resource. Pastos Y Forrajes 2012, 35, 125–138. [Google Scholar]
- Shukla, M.K.; Lal, R.; Ebinger, M. Determining Soil Quality Indicators by Factor Analysis. Soil. Tillage Res. 2006, 87, 194–204. [Google Scholar] [CrossRef]
- Doran, J.W.; Jones, A.J. Methods for Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; Soil Science Society of America Book Series NO. 49; CABI: Madison, WI, USA, 1996. [Google Scholar]
- Li, G.; Chen, J.; Sun, Z.; Tan, M. Establishing a Minimum Dataset for Soil Quality Assessment Based on Soil Properties and Land-Use Changes. Acta Ecol. Sin. 2007, 27, 2715–2724. [Google Scholar] [CrossRef]
- El Behairy, R.A.; El Arwash, H.M.; El Baroudy, A.A.; Ibrahim, M.M.; Mohamed, E.S.; Kucher, D.E.; Shokr, M.S. How Can Soil Quality Be Accurately and Quickly Studied? A Review. Agronomy 2024, 14, 1682. [Google Scholar] [CrossRef]
- Fernandes, J.C.; Gamero, C.A.; Rodrigues, J.G.L.; Mirás-Avalos, J.M. Determination of the Quality Index of a Paleudult under Sunflower Culture and Different Management Systems. Soil. Tillage Res. 2011, 112, 167–174. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R. Comparison of Soil Quality Index Using Three Methods. PLoS ONE 2014, 9, e105981. [Google Scholar] [CrossRef]
- Wu, L.C.; Zhang, Z.Z.; Xu, D.K. Variable Selection in Joint Location and Scale Models of the Skew-Normal Distribution. J. Stat. Comput. Simul. 2013, 83, 1266–1278. [Google Scholar] [CrossRef]
- Kumar, S.; Lal, R.; Liu, D. A Geographically Weighted Regression Kriging Approach for Mapping Soil Organic Carbon Stock. Geoderma 2012, 189–190, 627–634. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.M.; Stein, A. A Generic Framework for Spatial Prediction of Soil Variables Based on Regression-Kriging. Geoderma 2004, 120, 75–93. [Google Scholar] [CrossRef]
- Bedoya Garland, E.; Aramburú, C.E.; Burneo, Z. Una Agricultura Insostenible y La Crisis Del Barbecho: El Caso de Los Agricultores Del VRAE. Anthropologica 2017, 35, 211–240. [Google Scholar] [CrossRef]
- Taboada-Hermoza, R.; Martínez, A.G. “No One Is Safe”: Agricultural Burnings, Wildfires and Risk Perception in Two Agropastoral Communities in the Puna of Cusco, Peru. Fire 2025, 8, 60. [Google Scholar] [CrossRef]
- Lal, R. Climate Change and Soil Degradation Mitigation by Sustainable Management of Soils and Other Natural Resources. Agric. Res. 2012, 1, 199–212. [Google Scholar] [CrossRef]
- Coaguila, L.; Mataix-Solera, J.; Nina, S.; García-Carmona, M.; Salazar, E.T. Soil Degradation Evidence Following a Wildfire in Arequipa’s Andean Region, Peru. Span. J. Soil. Sci. 2025, 15, 13983. [Google Scholar] [CrossRef]
- Alavi-Murillo, G.; Diels, J.; Gilles, J.; Willems, P. Soil Organic Carbon in Andean High-Mountain Ecosystems: Importance, Challenges, and Opportunities for Carbon Sequestration. Reg. Environ. Change 2022, 22, 128. [Google Scholar] [CrossRef]
- Natural Resources and Environment Secretary Mexican Official Standard. NOM-021-RECNAT-2000: Especificaciones De Fertilidad, Salinidad Y Clasificación De Suelos. Available online: https://www.fao.org/faolex/results/details/es/c/LEX-FAOC050674/ (accessed on 6 May 2025).
- United States Environmental Protection Agency (USEPA). Soil and Wate PH (9045D). Available online: https://www.epa.gov/sites/default/files/2015-12/documents/9045d.pdf (accessed on 6 May 2025).
- ISO 11265:1994; Soil Quality—Determination of the Specific Electrical Conductivity. International Organization for Standardization: Geneva, Switzerland, 1994. Available online: https://www.iso.org/standard/19243.html (accessed on 6 May 2025).
- Bazán, R. Manual De Procedimientos De Los Análisis De Suelos Y Agua Con Fines De Riego; Instituto Nacional de Innovación Agraria -INIA: Lima, Peru, 2017. [Google Scholar]
- Cambardella, C.A.; Elliott, E.T. Particulate Soil Organic-Matter Changes across a Grassland Cultivation Sequence. Soil. Sci. Soc. Am. J. 1992, 56, 777–783. [Google Scholar] [CrossRef]
- Culman, S.W.; Snapp, S.S.; Freeman, M.A.; Schipanski, M.E.; Beniston, J.; Lal, R.; Drinkwater, L.E.; Franzluebbers, A.J.; Glover, J.D.; Grandy, A.S.; et al. Permanganate Oxidizable Carbon Reflects a Processed Soil Fraction That Is Sensitive to Management. Soil. Sci. Soc. Am. J. 2012, 76, 494. [Google Scholar] [CrossRef]
- NRCS-USDA. Guía Para La Evaluación De La Calidad Y Salud Del Suelo; Natural Resources Conservation Service-USDA: Washington, DC, USA, 1999. [Google Scholar]
- Martín-Sanz, J.P.; de Santiago-Martín, A.; Valverde-Asenjo, I.; Quintana-Nieto, J.R.; González-Huecas, C.; López-Lafuente, A.L. Comparison of Soil Quality Indexes Calculated by Network and Principal Component Analysis for Carbonated Soils under Different Uses. Ecol. Indic. 2022, 143, 109374. [Google Scholar] [CrossRef]
- Yao, R.; Yang, J.; Gao, P.; Zhang, J.; Jin, W. Determining Minimum Data Set for Soil Quality Assessment of Typical Salt-Affected Farmland in the Coastal Reclamation Area. Soil. Tillage Res. 2013, 128, 137–148. [Google Scholar] [CrossRef]
- Lenka, N.K.; Meena, B.P.; Lal, R.; Khandagle, A.; Lenka, S.; Shirale, A.O. Comparing Four Indexing Approaches to Define Soil Quality in an Intensively Cropped Region of Northern India. Front. Environ. Sci. 2022, 10, 865473. [Google Scholar] [CrossRef]
- Porta Casanellas, J.; López-Acevedo Reguerín, M.; Roquero de Laburu, C. Edafología: Para La Agricultura Y El Medio Ambiente, 3rd ed.; Ediciones Mundi-Prensa: Madrid, Spain, 2003; ISBN 8484761487. [Google Scholar]
- Mandal, N.; Dey, A.; Rakshit, R. Soil Management For Sustainable Agriculture, 1st ed.; Apple Academic Press: New York, NY, USA, 2022. [Google Scholar]
- Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil Quality: A Concept, Definition, and Framework for Evaluation. Soil. Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef]
- Zhang, C.; Xue, S.; Liu, G.-B.; Song, Z.-L. A Comparison of Soil Qualities of Different Revegetation Types in the Loess Plateau, China. Plant Soil. 2011, 347, 163–178. [Google Scholar] [CrossRef]
- Sinha, S.; Masto, R.E.; Ram, L.C.; Selvi, V.A.; Srivastava, N.K.; Tripathi, R.C.; George, J. Rhizosphere Soil Microbial Index of Tree Species in a Coal Mining Ecosystem. Soil. Biol. Biochem. 2009, 41, 1824–1832. [Google Scholar] [CrossRef]
- Kozak, M.; Krzanowski, W.; Tartanus, M. Use of the Correlation Coefficient in Agricultural Sciences: Problems, Pitfalls and How to Deal with Them. Anais da Academia Brasileira de Ciências 2012, 84, 1147–1156. [Google Scholar] [CrossRef]
- Jia, B.-B.; Liu, J.Y.; Zhang, M.L. Pairwise Statistical Comparisons of Multiple Algorithms. Front. Comput. Sci. 2025, 19, 1912372. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 5 August 2025).
- Udom, B.E.; Nuga, B.O.; Adesodun, J.K. Water-Stable Aggregates and Aggregate-Associated Organic Carbon and Nitrogen after Three Annual Applications of Poultry Manure and Spent Mushroom Wastes. Appl. Soil. Ecol. 2016, 101, 5–10. [Google Scholar] [CrossRef]
- Sui, Y.-Y.; Jiao, X.-G.; Liu, X.-B.; Zhang, X.-Y.; Ding, G.-W. Water-Stable Aggregates and Their Organic Carbon Distribution after Five Years of Chemical Fertilizer and Manure Treatments on Eroded Farmland of Chinese Mollisols. Can. J. Soil. Sci. 2012, 92, 551–557. [Google Scholar] [CrossRef]
- Tang, X.; Qiu, J.; Xu, Y.; Li, J.; Chen, J.; Li, B.; Lu, Y. Responses of Soil Aggregate Stability to Organic C and Total N as Controlled by Land-Use Type in a Region of South China Affected by Sheet Erosion. Catena 2022, 218, 106543. [Google Scholar] [CrossRef]
- He, Y.; Yang, M.; Huang, R.; Wang, Y.; Ali, W. Soil Organic Matter and Clay Zeta Potential Influence Aggregation of a Clayey Red Soil (Ultisol) under Long-Term Fertilization. Sci. Rep. 2021, 11, 20498. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Liu, C.; Wang, J.; Meng, Q.; Yuan, Y.; Ma, X.; Liu, X.; Zhu, Y.; Ding, G.; Zhang, J.; et al. Soil Aggregates Stability and Storage of Soil Organic Carbon Respond to Cropping Systems on Black Soils of Northeast China. Sci. Rep. 2020, 10, 265. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, X.; Zhang, Y.; Fang, Y.; Zhan, Y.; Guo, R.; Qian, R.; Cai, T.; Liu, T.; Jia, Z.; et al. Soil Aggregates and Aggregate-Associated Carbon and Nitrogen in Farmland in Relation to Long-Term Fertilization on the Loess Plateau, China. Agronomy 2023, 13, 1312. [Google Scholar] [CrossRef]
- Feng, M.; Xiang, J.; Ji, X.; Jiang, J. Larger Soil Water-Stable Aggregate May Exert a Negative Effect on Nutrient Availability: Results from Red Soil (Ultisol), in South China. Forests 2023, 14, 975. [Google Scholar] [CrossRef]
- Soinne, H.; Keskinen, R.; Tähtikarhu, M.; Kuva, J.; Hyväluoma, J. Effects of Organic Carbon and Clay Contents on Structure-Related Properties of Arable Soils with High Clay Content. Eur. J. Soil. Sci. 2023, 74, e13424. [Google Scholar] [CrossRef]
- Krinari, G.A.; Shinkarev, A.A.; Giniyatullin, K.G. Mineralogy of the Clay Fraction of Water-Stable Aggregates from Dark Gray Forest Soil. Eurasian Soil. Sci. 2006, 39, 71–83. [Google Scholar] [CrossRef]
- Hurisso, T.T.; Culman, S.W.; Horwath, W.R.; Wade, J.; Cass, D.; Beniston, J.W.; Bowles, T.M.; Grandy, A.S.; Franzluebbers, A.J.; Schipanski, M.E.; et al. Comparison of Permanganate-Oxidizable Carbon and Mineralizable Carbon for Assessment of Organic Matter Stabilization and Mineralization. Soil. Sci. Soc. Am. J. 2016, 80, 1352. [Google Scholar] [CrossRef]
- Chambers, L.G.; Mirabito, A.J.; Brew, S.; Nitsch, C.K.; Bhadha, J.H.; Hurst, N.R.; Berkowitz, J.F. Evaluating Permanganate Oxidizable Carbon (POXC)’s Potential for Differentiating Carbon Pools in Wetland Soils. Ecol. Indic. 2024, 167, 112624. [Google Scholar] [CrossRef]
- Bongiorno, G.; Bünemann, E.K.; Oguejiofor, C.U.; Meier, J.; Gort, G.; Comans, R.; Mäder, P.; Brussaard, L.; de Goede, R. Sensitivity of Labile Carbon Fractions to Tillage and Organic Matter Management and Their Potential as Comprehensive Soil Quality Indicators across Pedoclimatic Conditions in Europe. Ecol. Indic. 2019, 99, 38–50. [Google Scholar] [CrossRef]
- Woodings, F.S.; Margenot, A.J. Revisiting the Permanganate Oxidizable Carbon (POXC) Assay Assumptions: POXC Is Lignin Sensitive. Agric. Environ. Lett. 2023, 8, e20108. [Google Scholar] [CrossRef]
- Mikha, M.M.; Marake, M.V. Soil Organic Matter Fractions and Carbon Distribution under Different Management in Lesotho, Southern Africa. Soil. Sci. Soc. Am. J. 2023, 87, 140–155. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, K.; Wang, J.; Gui, H.; Xiao, Y.; Chen, Z.; Miao, Y.; Han, S. Effects of Forest Types on Soil Carbon Content in Aggregate Faction under Climate Transition Zone. Front. Environ. Sci. 2023, 10, 1052175. [Google Scholar] [CrossRef]
- Liu, D.; Li, S.; Zhu, W.; Wang, Y.; Zhang, S.; Fang, Y. Storage and Stability of Soil Organic Carbon in Two Temperate Forests in Northeastern China. Land 2023, 12, 1019. [Google Scholar] [CrossRef]
- Semenov, V.M.; Lebedeva, T.N.; Pautova, N.B. Particulate Organic Matter in Noncultivated and Arable Soils. Eurasian Soil. Sci. 2019, 52, 396–404. [Google Scholar] [CrossRef]
- Awale, R.; Emeson, M.A.; Machado, S. Soil Organic Carbon Pools as Early Indicators for Soil Organic Matter Stock Changes under Different Tillage Practices in Inland Pacific Northwest. Front. Ecol. Evol. 2017, 5, 96. [Google Scholar] [CrossRef]
- Samaniego, T.; Ramirez, J.; Solórzano, R. Litter Decomposition Rates of Four Species of Agroecological Importance in the Peruvian Coast and Andean Highland. Nitrogen 2024, 5, 772–789. [Google Scholar] [CrossRef]
- Dinkecha, K. Effects of Liming on Physicochemical Properties and Nutrient Availability of Acidic Soils in Welmera Woreda, Central Highlands of Ethiopia. Biochem. Mol. Biol. 2017, 2, 102. [Google Scholar] [CrossRef]
- Mohiuddin, M.; Irshad, M.; Sher, S.; Hayat, F.; Ashraf, A.; Masood, S.; Bibi, S.; Ali, J.; Waseem, M. Relationship of Selected Soil Properties with the Micronutrients in Salt-Affected Soils. Land 2022, 11, 845. [Google Scholar] [CrossRef]
- Obasi, S.N.; Jokthan, G.E.; Obasi, C.C.; Madueke, C.O. Micronutrient Dynamics in Relation to Soil Properties in Arable Soils of Rigachikun-Kaduna, Northern Guinea Savannah, Nigeria. J. CleanWAS 2022, 6, 14–22. [Google Scholar] [CrossRef]
- Peng, Z.; Liu, Y.; An, Y.; Wang, Z.; Li, X.; Gao, H.; Wei, G.; Jiao, S. Contrasting Patterns and Drivers of Soil Micronutrient Availability in Paddy and Maize Fields of Eastern China. Geoderma 2023, 431, 116342. [Google Scholar] [CrossRef]
- Covelo, E.F.; Vega, F.A.; Andrade, M.L. Competitive Sorption and Desorption of Heavy Metals by Individual Soil Components. J. Hazard. Mater. 2007, 140, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Guo, X.; Lin, J.; Wang, X.; He, D.; Zeng, R.; Meng, J.; Luo, J.; Delgado-Baquerizo, M.; Moreno-Jiménez, E.; et al. Metallic Micronutrients Are Associated with the Structure and Function of the Soil Microbiome. Nat. Commun. 2023, 14, 8456. [Google Scholar] [CrossRef] [PubMed]
- Curtin, D.; Smillie, G.W. Origin of the PH-Dependent Cation Exchange Capacities of Irish Soil Clays. Geoderma 1979, 22, 213–224. [Google Scholar] [CrossRef]
- Juhos, K.; Madarász, B.; Kotroczó, Z.; Béni, Á.; Makádi, M.; Fekete, I. Carbon Sequestration of Forest Soils Is Reflected by Changes in Physicochemical Soil Indicators─A Comprehensive Discussion of a Long-Term Experiment on a Detritus Manipulation. Geoderma 2021, 385, 114918. [Google Scholar] [CrossRef]
- de Albuquerque, C.G.; Gavelaki, F.; Matera, H.B.; Motta, A.C.V.; Prior, S.A.; Ercole, T.M.; Araújo, E.M. Relationship between PH and Base Saturation Associated with Soil Cation Exchange Capacity in Soils of Mato Grosso Do Sul, Brazil. Bragantia 2024, 83, e20230291. [Google Scholar] [CrossRef]
- Zamanian, K.; Pustovoytov, K.; Kuzyakov, Y. Pedogenic Carbonates: Forms and Formation Processes. Earth Sci. Rev. 2016, 157, 1–17. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.; Yang, Z.; Chen, Y.; Shao, W.; Ji, J. An Invisible Soil Acidification: Critical Role of Soil Carbonate and Its Impact on Heavy Metal Bioavailability. Sci. Rep. 2015, 5, 12735. [Google Scholar] [CrossRef]
- Ortiz, A.C.; Jin, L.; Ogrinc, N.; Kaye, J.; Krajnc, B.; Ma, L. Dryland Irrigation Increases Accumulation Rates of Pedogenic Carbonate and Releases Soil Abiotic CO2. Sci. Rep. 2022, 12, 464. [Google Scholar] [CrossRef]
- Yolcubal, I.; Brusseau, M.L.; Artiola, J.F.; Wierenga, P.J.; Wilson, L.G. Environmental Properties and Processes. In Environmental Monitoring and Characterization; Artiola, J.F., Pepper, I.L., Brusseau, M.L., Eds.; Academic Press: New York, NY, USA, 2004; pp. 207–239. ISBN 9780080491271. [Google Scholar]
- Fagodiya, R.K.; Sharma, G.; Verma, K.; Rai, A.K.; Prajapat, K.; Singh, R.; Chandra, P.; Sheoran, P.; Yadav, R.K.; Biswas, A.K. Computation of Soil Quality Index after Fifteen Years of Long-Term Tillage and Residue Management Experiment (LT&RE) under Rice Wheat System. Agric. Syst. 2024, 219, 104039. [Google Scholar] [CrossRef]
- Blanco, H.; Lal, R. Soil Fertility Management. In Soil Conservation and Management; Blanco, H., Lal, R., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 363–390. ISBN 978-3-031-30341-8. [Google Scholar]
- Damiba, W.A.F.; Gathenya, J.M.; Raude, J.M.; Home, P.G. Soil Quality Index (SQI) for Evaluating the Sustainability Status of Kakia-Esamburmbur Catchment under Three Different Land Use Types in Narok County, Kenya. Heliyon 2024, 10, e25611. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, H.; Liu, J.; Chen, C.; Guo, Y. A Framework for Selecting and Assessing Soil Quality Indicators for Sustainable Soil Management in Waste Dumps. Sci. Rep. 2024, 14, 8491. [Google Scholar] [CrossRef]
- Karlen, D.L.; Ditzler, C.A.; Andrews, S.S. Soil Quality: Why and How? Geoderma 2003, 114, 145–156. [Google Scholar] [CrossRef]
- Qi, Y.; Darilek, J.L.; Huang, B.; Zhao, Y.; Sun, W.; Gu, Z. Evaluating Soil Quality Indices in an Agricultural Region of Jiangsu Province, China. Geoderma 2009, 149, 325–334. [Google Scholar] [CrossRef]
- Vasu, D.; Tiwary, P.; Chandran, P. A Novel and Comprehensive Soil Quality Index Integrating Soil Morphological, Physical, Chemical, and Biological Properties. Soil. Tillage Res. 2024, 244, 106246. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Kim, M.K.; Fu, N.; Liu, J.; Wang, J.; Srebric, J. Investigating the Impact of Data Normalization Methods on Predicting Electricity Consumption in a Building Using Different Artificial Neural Network Models. Sustain. Cities Soc. 2025, 118, 105570. [Google Scholar] [CrossRef]
- Muhammad Ali, P.J. Investigating the Impact of Min-Max Data Normalization on the Regression Performance of K-Nearest Neighbor with Different Similarity Measurements. ARO Sci. J. Koya Univ. 2022, 10, 85–91. [Google Scholar] [CrossRef]
- Mahajan, G.R.; Das, B.; Morajkar, S.; Desai, A.; Murgaokar, D.; Patel, K.P.; Kulkarni, R.M. Comparison of Soil Quality Indexing Methods for Salt-Affected Soils of Indian Coastal Region. Environ. Earth Sci. 2021, 80, 725. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, K.; Cheng, L.; Bai, Y.; Wang, Y.; Hou, Y.; Ding, A. Effect of Normalization Methods on Accuracy of Estimating Low- and High-Molecular Weight PAHs Distribution in the Soils of a Coking Plant. Int. J. Environ. Res. Public Health 2022, 19, 15470. [Google Scholar] [CrossRef]
- Reimann, C. Statistical Data Analysis Explained: Applied Environmental Statistics with R; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 9780470985816. [Google Scholar]
- Harris, P.; Charlton, M.; Fotheringham, A.S. Moving Window Kriging with Geographically Weighted Variograms. Stoch. Environ. Res. Risk Assess. 2010, 24, 1193–1209. [Google Scholar] [CrossRef]
- Comber, A.; Brunsdon, C.; Charlton, M.; Dong, G.; Harris, R.; Lu, B.; Lü, Y.; Murakami, D.; Nakaya, T.; Wang, Y.; et al. A Route Map for Successful Applications of Geographically Weighted Regression. Geogr. Anal. 2023, 55, 155–178. [Google Scholar] [CrossRef]
- Bahmani, S.; Naganna, S.R.; Ghorbani, M.A.; Shahabi, M.; Asadi, E.; Shahid, S. Geographically Weighted Regression Hybridized with Kriging Model for Delineation of Drought-Prone Areas. Environ. Model. Assess. 2021, 26, 803–821. [Google Scholar] [CrossRef]
- Lloyd, C.D. Spatial Data Analysis: An Introduction for GIS Users, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9780199554324. [Google Scholar]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil Quality–A Critical Review. Soil. Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Ellur, R.; Ankappa, A.M.; Dharumarajan, S.; Puttavenkategowda, T.; Nanjundegowda, T.M.; Sannegowda, P.S.; Pratap Mishra, A.; Đurin, B.; Dogančić, D. Soil Quality Assessment and Its Spatial Variability in an Intensively Cultivated Area in India. Land 2024, 13, 970. [Google Scholar] [CrossRef]
- de Melo, D.M.A.; Pérez-Marin, A.M.; de Araújo, A.E.; de Oliveira, M.R.G.; Macedo, R.S.; do Nascimento, S.M.S.G. Soil Quality Indicators in Peasant Agroecosystems in Paraíba State, Brazil. Trop. Conserv. Sci. 2024, 17. [Google Scholar] [CrossRef]
Function | Weight | Function Indicators | Weight | Scoring Function |
---|---|---|---|---|
Soil structural stability and water storage | 0.35 | SOC | 0.20 | More is better |
LAgre | 0.10 | More is better | ||
Sand | 0.05 | More is better | ||
Nutrient supply function | 0.30 | POXC | 0.0375 | More is better |
fPOM | 0.0375 | More is better | ||
Ava_P | 0.0375 | More is better | ||
Ava_K | 0.0375 | More is better | ||
Fe | 0.0375 | More is better | ||
Cu | 0.0375 | More is better | ||
Zn | 0.0375 | More is better | ||
Mn | 0.0375 | More is better | ||
Soil basic properties, potential to limit production | 0.35 | pH | 0.10 | Optimum is better |
EC | 0.10 | Less is better | ||
CEC | 0.10 | More is better | ||
Carb | 0.05 | Less is better |
Covariate | Source |
---|---|
NDMI | Image collection “COPERNICUS/S2_SR” |
Elevation | Shuttle Radar Topographic Mission (SRTM) |
Slope | Shuttle Radar Topographic Mission (SRTM) |
Aspect | Shuttle Radar Topographic Mission (SRTM) |
Variable | Min | Max | Mean | Median | Std. Deviation | CV | Kurtosis | Skewness |
---|---|---|---|---|---|---|---|---|
Sand (%) | 36.70 | 79.06 | 57.49 | 56.98 | 7.82 | 13.59 | 1.32 | 0.12 |
Silt (%) | 18.78 | 60.29 | 36.84 | 37.63 | 8.64 | 23.46 | 0.49 | 0.16 |
Clay (%) | 1.46 | 22.46 | 5.66 | 2.94 | 5.33 | 94.09 | 1.83 | 1.08 |
LAgre (%) | 8.50 | 83.88 | 42.89 | 44.51 | 20.84 | 48.60 | −1.17 | −0.04 |
SAgre (%) | 5.24 | 59.61 | 28.30 | 28.46 | 13.22 | 46.73 | −0.51 | 0.27 |
SOC (%) | 0.12 | 3.31 | 1.27 | 1.04 | 0.84 | 66.01 | −0.27 | 0.50 |
Variable | Min | Max | Mean | Median | Std. Deviation | CV | Kurtosis | Skewness |
---|---|---|---|---|---|---|---|---|
POXC mg kg−1 | 203.64 | 1011.81 | 716.31 | 768.55 | 203.97 | 28.47 | 0.09 | −0.51 |
cPOM (g kg−1) | 0.62 | 11.32 | 2.74 | 2.24 | 1.78 | 64.91 | 11.32 | 1.94 |
fPOM (g kg−1) | 1.68 | 28.15 | 4.75 | 4.10 | 3.64 | 76.63 | 32.38 | 3.39 |
Ava_P (mg kg−1) | 2.37 | 44.02 | 16.68 | 13.45 | 10.59 | 63.46 | −0.36 | 0.50 |
Ava_K (mg kg−1) | 35.60 | 766.00 | 179.20 | 151.20 | 133.08 | 74.26 | 8.00 | 1.71 |
Ex_Ca (cmol(+) kg−1) | 3.68 | 16.51 | 8.52 | 8.48 | 2.94 | 34.49 | −0.29 | 0.21 |
Ex_Mg (cmol(+) kg−1) | 0.13 | 3.03 | 1.17 | 1.10 | 0.56 | 47.88 | 3.10 | 0.80 |
Ex_Na (cmol(+) kg−1) | 0.06 | 1.56 | 0.42 | 0.39 | 0.31 | 75.06 | 1.72 | 0.72 |
Ex_K (cmol(+) kg−1) | 0.03 | 1.01 | 0.25 | 0.18 | 0.21 | 83.34 | 5.01 | 1.42 |
Fe (mg kg−1) | 10.24 | 339.52 | 48.20 | 25.28 | 56.64 | 117.51 | 12.79 | 2.06 |
Cu (mg kg−1) | 0.08 | 4.24 | 0.82 | 0.40 | 1.07 | 130.22 | 4.08 | 1.45 |
Zn (mg kg−1) | 0.10 | 8.62 | 1.74 | 0.64 | 2.17 | 124.71 | 2.11 | 1.11 |
Mn (mg kg−1) | 1.84 | 173.08 | 24.68 | 15.36 | 28.86 | 116.93 | 12.60 | 2.02 |
Variable | Min | Max | Mean | Median | Std. Deviation | CV | Kurtosis | Skewness |
---|---|---|---|---|---|---|---|---|
pH | 4.57 | 7.90 | 6.77 | 6.76 | 0.62 | 9.16 | 1.85 | −0.51 |
EC (dS m−1) | 0.29 | 2.72 | 0.95 | 0.74 | 0.62 | 64.58 | 0.84 | 0.81 |
CEC (cmol(+) kg−1) | 4.77 | 19.60 | 10.35 | 9.98 | 3.18 | 30.73 | 0.23 | 0.38 |
ESP (%) | 0.53 | 11.64 | 4.19 | 3.18 | 3.05 | 72.81 | −0.48 | 0.47 |
Carb. (%) | 0.36 | 10.83 | 3.23 | 2.33 | 2.09 | 64.74 | 1.75 | 0.83 |
Principal Components | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 |
---|---|---|---|---|---|---|
Eigenvalue | 2.464 | 2.437 | 1.918 | 1.846 | 1.808 | 1.357 |
% variance | 0.154 | 0.152 | 0.120 | 0.115 | 0.113 | 0.085 |
% cumulative variance | 0.154 | 0.306 | 0.426 | 0.542 | 0.655 | 0.739 |
Weightage factor | 0.21 | 0.42 | 0.58 | 0.73 | 0.89 | 1.00 |
Factor Loadings from the Rotated Component Matrix | ||||||
Sand | −0.08 | −0.06 | −0.09 | 0.09 | 0.05 | −0.91 |
Clay | 0.82 | 0.05 | −0.09 | 0.03 | −0.23 | 0.17 |
LAgre | −0.16 | 0.77 | 0.16 | −0.15 | 0.42 | 0.12 |
SOC | 0.36 | 0.72 | 0.16 | 0.14 | 0.01 | −0.25 |
POXC | 0.12 | 0.60 | 0.13 | 0.26 | 0.24 | 0.06 |
fPOM | −0.24 | 0.05 | 0.17 | 0.16 | 0.77 | 0.11 |
cPOM | 0.23 | 0.12 | −0.15 | −0.01 | 0.85 | −0.17 |
Ava_P | 0.13 | 0.15 | −0.32 | 0.69 | −0.15 | −0.02 |
Ava_K | 0.22 | 0.42 | 0.08 | 0.45 | 0.11 | 0.48 |
Ex_Mg | 0.06 | 0.21 | 0.78 | 0.17 | −0.12 | 0.09 |
Fe | 0.78 | 0.19 | −0.22 | 0.09 | 0.15 | 0.11 |
Zn | −0.05 | 0.79 | −0.07 | 0.04 | −0.18 | 0.19 |
pH | −0.51 | 0.16 | 0.36 | −0.54 | −0.07 | 0.27 |
EC | −0.04 | 0.10 | 0.23 | 0.78 | 0.25 | −0.03 |
Carb | −0.16 | 0.03 | 0.79 | −0.28 | 0.18 | 0.05 |
ESP | 0.74 | −0.04 | 0.45 | 0.06 | 0.04 | −0.10 |
PCALinear | PCANLinear | EOLinear | EONLinear | |
---|---|---|---|---|
Min | 0.31 | 0.31 | 0.23 | 0.25 |
Max | 0.73 | 0.80 | 0.67 | 0.72 |
Mean | 0.43 | 0.47 | 0.43 | 0.46 |
Median | 0.42 | 0.46 | 0.42 | 0.44 |
Std. deviation | 0.071 | 0.088 | 0.087 | 0.101 |
CV | 16.683 | 18.965 | 20.280 | 22.194 |
Kurtosis | 5.142 | 2.374 | 0.362 | −0.356 |
Skewness | 1.666 | 1.171 | 0.971 | 0.881 |
Friedman Test | Friedman χ2 (df = 3) | p-value | ||
33.48 | <0.001 *** | |||
Comparison | Nemenyi p-value | |||
Nemenyi Test | PCALinear vs. PCANLinear | <0.001 (***) | ||
PCALinear vs. EOLinear | 0.998 (ns) | |||
PCALinear vs. EONLinear | <0.001 (***) | |||
PCANLinear vs. EOLinear | <0.001 (***) | |||
PCANLinear vs. EONLinear | 0.921 (ns) | |||
EOLinear vs. EONLinear | 0.002 (**) |
R2 | RMSE | MAE | AIC | CV_RMSE | |
---|---|---|---|---|---|
PCALinear | 0.588 | 0.0451 | 0.0242 | −132.32 | 10.49 |
PCANLinear | 0.736 | 0.0459 | 0.0233 | −136.51 | 9.77 |
EOLinear | 0.689 | 0.0478 | 0.0346 | −134.58 | 11.12 |
EONLinear | 0.688 | 0.0558 | 0.0435 | −127.33 | 12.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samaniego, T.; Sales, B.; Solórzano, R. Assessment of Soil Quality in Peruvian Andean Smallholdings: A Comparative Study of PCA and Expert Opinion Approaches. Sustainability 2025, 17, 7610. https://doi.org/10.3390/su17177610
Samaniego T, Sales B, Solórzano R. Assessment of Soil Quality in Peruvian Andean Smallholdings: A Comparative Study of PCA and Expert Opinion Approaches. Sustainability. 2025; 17(17):7610. https://doi.org/10.3390/su17177610
Chicago/Turabian StyleSamaniego, Tomás, Beatriz Sales, and Richard Solórzano. 2025. "Assessment of Soil Quality in Peruvian Andean Smallholdings: A Comparative Study of PCA and Expert Opinion Approaches" Sustainability 17, no. 17: 7610. https://doi.org/10.3390/su17177610
APA StyleSamaniego, T., Sales, B., & Solórzano, R. (2025). Assessment of Soil Quality in Peruvian Andean Smallholdings: A Comparative Study of PCA and Expert Opinion Approaches. Sustainability, 17(17), 7610. https://doi.org/10.3390/su17177610