Green and Efficient Technology Investment Strategies for a Contract Farming Supply Chain Under the CVaR Criterion
Abstract
1. Introduction
- When will the risk-averse farmer adopt GET for agricultural production?
- Which investment strategies will the firm and farmer choose for the adoption of GET, and what cooperative mechanisms can facilitate implementation?
- How do the wholesale prices of contract farming, the degree of farmers’ risk aversion, and the uncertainty of yield affect the decisions and profits of supply chain members?
2. Literature Review
2.1. Technology Applications for Sustainable Agricultural Development
2.2. Contract Farming
2.3. Risk Preference
3. Problem Description and Notations
4. Model and Results
4.1. Case : Neither Invests
- (1) ; if , , otherwise, ; if , , otherwise, ;
- (2) , , , ;
4.2. Case : The Farmer Invests in GET
- (1)
- (2)
- (3) , , , ;
4.3. Case : The Firm Invests in GET
- (1);
- (2) When , if , otherwise,
- ;
- (3) When ,, otherwise,;
4.4. Case : Cost-Sharing Between the Parties
- (1) ;
- (2) When , if and , , otherwise, ;
- (3) When ,, otherwise,;
- (1);
- (2) When , if and , , otherwise,;
5. Models’ Comparison
- (1) ;
- (2) When , ;
- When and
- , then ;
- When , then ;
- (1) ;
- (2) When , ;
- When and
- , ;
- When , ;
6. Numerical Analysis
6.1. Effect of Wholesale Price
6.2. Effect of the Degree of Risk Aversion
6.3. Effect of Yield Uncertainty
6.4. Analysis of the Conditions for Cooperation Mechanisms
7. Discussion and Conclusions
7.1. Key Findings
7.2. Theoretical and Managerial Implications
7.3. Limitations and Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
GET | Green and efficient technology |
Appendix A
- , .
- , hence, .
- when , .
- when , .
- , hence, .
- , .
- , hence .
References
- Liu, Y.; Sun, D.; Wang, H.; Wang, X.; Yu, G.; Zhao, X. An Evaluation of China’s Agricultural Green Production: 1978–2017. J. Clean. Prod. 2020, 243, 118483. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Zhang, S.; Wang, Y. What Could Promote Farmers to Replace Chemical Fertilizers with Organic Fertilizers? J. Clean. Prod. 2018, 199, 882–890. [Google Scholar] [CrossRef]
- Ju, X.T.; Kou, C.L.; Christie, P.; Dou, Z.X.; Zhang, F.S. Changes in the Soil Environment from Excessive Application of Fertilizers and Manures to Two Contrasting Intensive Cropping Systems on the North China Plain. Environ. Pollut. 2007, 145, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Circular on the Issuance of the Action Plan for the Reduction of Chemical Fertilizers by 2025 and the Action Plan for the Reduction of Chemical Pesticides by 2025. 2022. Available online: https://www.moa.gov.cn/govpublic/ZZYGLS/202212/t20221201_6416398.htm (accessed on 20 July 2025).
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Promoting the Reduction and Efficiency of Agricultural Inputs and Accelerating the Comprehensive Green Transformation of Agricultural Development. 2025. Available online: http://www.jhs.moa.gov.cn/lsfz/202501/t20250114_6469147.htm (accessed on 8 July 2025).
- Li, Q.; Liu, Z.; Wang, L.; Zhang, Y.; Guo, M.; Jin, W.; Hu, W.; Meng, Y.; Yang, H.; Zhou, Z. Enhancement Joint Fertilization Efficacy of Straw and Nitrogen Fertilizer on Soil Quality and Seedcotton Yield for Sustainable Cotton Farming. Resour. Environ. Sustain. 2025, 20, 100218. [Google Scholar] [CrossRef]
- Shang, B.; Tian, T.; Mo, Y.; Zhang, H.; Zhang, K.; Agathokleous, E.; Ji, Y.; Feng, Z. Combined Application of Organic and Inorganic Fertilizers Sustained Rice Yields and N Accumulation and Decreased Soil-Canopy System NH3 Emission. Agric. Ecosyst. Environ. 2025, 377, 109260. [Google Scholar] [CrossRef]
- Ambrus, B.; Teschner, G.; Kovács, A.J.; Neményi, M.; Helyes, L.; Pék, Z.; Takács, S.; Alahmad, T.; Nyéki, A. Field-Grown Tomato Yield Estimation Using Point Cloud Segmentation with 3D Shaping and RGB Pictures from a Field Robot and Digital Single Lens Reflex Cameras. Heliyon 2024, 10, e37997. [Google Scholar] [CrossRef]
- Ye, F.; Lin, Q.; Li, Y. Coordination for Contract Farming Supply Chain with Stochastic Yield and Demand under CVaR Criterion. Oper. Res. Int. J. 2020, 20, 369–397. [Google Scholar] [CrossRef]
- Bai, Z.; Ma, L.; Jin, S.; Ma, W.; Velthof, G.L.; Oenema, O.; Liu, L.; Chadwick, D.; Zhang, F. Nitrogen, Phosphorus, and Potassium Flows through the Manure Management Chain in China. Environ. Sci. Technol. 2016, 50, 13409–13418. [Google Scholar] [CrossRef]
- Jin, J.; Xuhong, T.; Wan, X.; He, R.; Kuang, F.; Ning, J. Farmers’ Risk Aversion, Loss Aversion and Climate Change Adaptation Strategies in Wushen Banner, China. J. Environ. Plan. Manag. 2020, 63, 2593–2606. [Google Scholar] [CrossRef]
- Wong, H.L.; Kahsay, H.B. Risk Preference Interactions between Individual Farmers and Small Farmer Groups: Experimental Evidence from Rural Ethiopia. Rev. Dev. Econ. 2023, 27, 1157–1176. [Google Scholar] [CrossRef]
- Cillis, D.; Maestrini, B.; Pezzuolo, A.; Marinello, F.; Sartori, L. Modeling Soil Organic Carbon and Carbon Dioxide Emissions in Different Tillage Systems Supported by Precision Agriculture Technologies under Current Climatic Conditions. Soil Tillage Res. 2018, 183, 51–59. [Google Scholar] [CrossRef]
- Acs, S.; Berentsen, P.; Huirne, R.; Van Asseldonk, M. Effect of Yield and Price Risk on Conversion from Conventional to Organic Farming. Aust. J. Agric. Resour. Econ. 2009, 53, 393–411. [Google Scholar] [CrossRef]
- Anderson, E.; Monjardino, M. Contract Design in Agriculture Supply Chains with Random Yield. Eur. J. Oper. Res. 2019, 277, 1072–1082. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, W.; Cai, Z.; Tong, Y.; Chen, J. Research on Contract Coordination Mechanism of Contract Farming Considering the Green Innovation Level. Sustainability 2023, 15, 3314. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Zhang, W.; Gao, G.; Zhang, H. Incentive Mechanisms in a Green Supply Chain under Demand Uncertainty. J. Clean. Prod. 2021, 279, 123636. [Google Scholar] [CrossRef]
- Freudenreich, H.; Musshoff, O. Experience of Losses and Aversion to Uncertainty—Experimental Evidence from Farmers in Mexico. Ecol. Econ. 2022, 195, 107379. [Google Scholar] [CrossRef]
- Chen, X.; Sim, M.; Simchi-Levi, D.; Sun, P. Risk Aversion in Inventory Management. Oper. Res. 2007, 55, 828–842. [Google Scholar] [CrossRef]
- Rockafellar, R.T.; Uryasev, S. Optimization of Conditional Value-at-Risk. JOR 2000, 2, 21–41. [Google Scholar] [CrossRef]
- Rockafellar, R.T.; Uryasev, S. Conditional Value-at-Risk for General Loss Distributions. J. Bank. Financ. 2002, 26, 1443–1471. [Google Scholar] [CrossRef]
- Belles-Sampera, J.; Guillén, M.; Santolino, M. Beyond Value-at-Risk: GlueVaR Distortion Risk Measures. Risk Anal. 2014, 34, 121–134. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Tang, C.S. The Economic Value of Market Information for Farmers in Developing Economies. Prod. Oper. Manag. 2015, 24, 1441–1452. [Google Scholar] [CrossRef]
- Dusadeerungsikul, P.O.; Nof, S.Y. A Collaborative Control Protocol for Agricultural Robot Routing with Online Adaptation. Comput. Ind. Eng. 2019, 135, 456–466. [Google Scholar] [CrossRef]
- Gentilhomme, T.; Villamizar, M.; Corre, J.; Odobez, J.-M. Towards Smart Pruning: ViNet, a Deep-LearningApproach for Grapevine Structure Estimation. Comput. Electron. Agric. 2023, 207, 107736. [Google Scholar] [CrossRef]
- Patil, S.; Aklade, N.; Uikey, A.A. Revolutionizing Vegetable Value Chains: A Comprehensive Review of Digital Technologies and Their Impact on Agricultural Transformation. Curr. J. Appl. Sci. Technol. 2023, 42, 54–65. [Google Scholar] [CrossRef]
- Cisdeli, P.; Nocera Santiago, G.; Hernandez, C.; Carcedo, A.; Prasad, P.V.V.; Stamm, M.; Lingenfelser, J.; Ciampitti, I. A Digital Interactive Decision Dashboard for Crop Yield Trials. Comput. Electron. Agric. 2025, 231, 110037. [Google Scholar] [CrossRef]
- Niu, B.; Jin, D.; Pu, X. Coordination of Channel Members’ Efforts and Utilities in Contract Farming Operations. Eur. J. Oper. Res. 2016, 255, 869–883. [Google Scholar] [CrossRef]
- Masunga, H.R.; Chernet, M.; Ezui, K.S.; Mlay, P.D.; Olojede, A.; Olowokere, F.; Busari, M.; Hauser, S.; Kreye, C.; Baijukya, F.; et al. Explaining Variation in Cassava Root Yield Response to Fertiliser under Smallholder Farming Conditions Using Digital Soil Maps. Eur. J. Agron. 2024, 155, 127105. [Google Scholar] [CrossRef]
- Prasad, R.; Shivay, Y.S.; Kumar, D. Current Status, Challenges, and Opportunities in Rice Production. In Rice Production Worldwide; Chauhan, B.S., Jabran, K., Mahajan, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–32. ISBN 978-3-319-47516-5. [Google Scholar]
- Vasquez-Zambrano, E.; Woittiez, L.S.; Van Heerwaarden, J.; Rusinamhodzi, L.; Hauser, S.; Giller, K.E. Deriving Fertiliser Recommendations for Cocoa: An Offtake Model Approach. Eur. J. Agron. 2025, 164, 127463. [Google Scholar] [CrossRef]
- Guo, X.; Cheng, L.; Yu, Y. Government Subsidy Policy for Green and Efficient Raw Materials Considering Farmer Heterogeneity. Prod. Oper. Manag. 2022, 31, 4095–4112. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, K.; Chen, S.; Fu, X.; Feng, S.; Zhuang, Z. A Sustainable Agricultural Supply Chain Considering Substituting Organic Manure for Chemical Fertilizer. Sustain. Prod. Consum. 2022, 29, 432–446. [Google Scholar] [CrossRef]
- Cai, Z.; Ye, F.; Xie, Z.; Zhang, L.; Cui, T. The Choice of Cooperation Mode in the Bioenergy Supply Chain with Random Biomass Feedstock Yield. J. Clean. Prod. 2021, 311, 127587. [Google Scholar] [CrossRef]
- Tang, C.S.; Sodhi, M.S.; Formentini, M. An Analysis of Partially-Guaranteed-Price Contracts between Farmers and Agri-Food Companies. Eur. J. Oper. Res. 2016, 254, 1063–1073. [Google Scholar] [CrossRef]
- Nematollahi, M.; Guitouni, A.; Heydari, J.; Gerbrandt, E.M. Win–Win Contract Farming in Dual-Channel Agribusiness Supply Chains under Yield, Quality, and Price Uncertainty. Int. J. Prod. Econ. 2025, 286, 109635. [Google Scholar] [CrossRef]
- Li, J.; Huang, S.; Fu, H.; Dan, B. Weather Risk Hedging Mechanism for Contract Farming Supply Chain with Weather-Dependent Yield. Comput. Ind. Eng. 2024, 191, 110157. [Google Scholar] [CrossRef]
- Cao, Y.; Tao, L.; Wu, K.; Wan, G. Coordinating Joint Greening Efforts in an Agri-Food Supply Chain with Environmentally Sensitive Demand. J. Clean. Prod. 2020, 277, 123883. [Google Scholar] [CrossRef]
- Yang, H.; Zhuo, W.; Shao, L.; Talluri, S. Mean-Variance Analysis of Wholesale Price Contracts with a Capital-Constrained Retailer: Trade Credit Financing vs. Bank Credit Financing. Eur. J. Oper. Res. 2021, 294, 525–542. [Google Scholar] [CrossRef]
- Bellantuono, N.; Giannoccaro, I.; Pontrandolfo, P.; Tang, C.S. The Implications of Joint Adoption of Revenue Sharing and Advance Booking Discount Programs. Int. J. Prod. Econ. 2009, 121, 383–394. [Google Scholar] [CrossRef]
- Nan, C.; Cai, J.; Han, W. Coordination of Supply Chain of a Three-Level Fresh Products Based on Conditional Value at Risk. In Proceedings of the 2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 13–16 December 2021; pp. 153–157. [Google Scholar]
- Huang, F.; He, J.; Lei, Q. Coordination in a Retailer-Dominated Supply Chain with a Risk-Averse Manufacturer under Marketing Dependency. Int. Trans. Oper. Res. 2020, 27, 3056–3078. [Google Scholar] [CrossRef]
- Liu, Z.; Hua, S.; Zhai, X. Supply Chain Coordination with Risk-Averse Retailer and Option Contract: Supplier-Led vs. Retailer-Led. Int. J. Prod. Econ. 2020, 223, 107518. [Google Scholar] [CrossRef]
- Deng, W.; Liu, L. Comparison of Carbon Emission Reduction Modes: Impacts of Capital Constraint and Risk Aversion. Sustainability 2019, 11, 1661. [Google Scholar] [CrossRef]
- Peng, H.; Pang, T. Optimal Strategies for a Three-Level Contract-Farming Supply Chain with Subsidy. Int. J. Prod. Econ. 2019, 216, 274–286. [Google Scholar] [CrossRef]
- Liao, C.; Lu, Q.; Lin, L. Coordinating a Three-Level Contract Farming Supply Chain with Option Contracts Considering Risk-Averse Farmer and Retailer. PLoS ONE 2023, 18, e0279115. [Google Scholar] [CrossRef] [PubMed]
- Golmohammadi, A.; Hassini, E. Capacity, Pricing and Production under Supply and Demand Uncertainties with an Application in Agriculture. Eur. J. Oper. Res. 2019, 275, 1037–1049. [Google Scholar] [CrossRef]
- Xing, G.; Zhong, Y.; Zhou, Y.-W.; Cao, B. Distributionally Robust Production and Pricing for Risk-Averse Contract-Farming Supply Chains with Uncertain Demand and Yield. Transp. Res. Part. E Logist. Transp. Rev. 2025, 198, 104074. [Google Scholar] [CrossRef]
- Tan, Y.; Guo, C.; Cai, D. Value-Added Service Decision and Coordination under Fresh Produce e-Commerce Considering Order Cancelation. Manag. Decis. Econ. 2023, 44, 2199–2210. [Google Scholar] [CrossRef]
- Peng, H.; Pang, T.; Cong, J. Coordination Contracts for a Supply Chain with Yield Uncertainty and Low-Carbon Preference. J. Clean. Prod. 2018, 205, 291–302. [Google Scholar] [CrossRef]
- Yi, Z.; Wang, Y.; Chen, Y.-J. Financing an Agricultural Supply Chain with a Capital-Constrained Smallholder Farmer in Developing Economies. Prod. Oper. Manag. 2021, 30, 2102–2121. [Google Scholar] [CrossRef]
- Shi, L.; Pang, T.; Peng, H. Production and Green Technology Investment Strategy for Contract-Farming Supply Chain under Yield Insurance. J. Oper. Res. Soc. 2023, 74, 225–238. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2019 Agricultural Reclamation Summer Grain Production and Wheat Green, High-Quality, and Efficient Technology Model Improvement Observation and Exchange Event Held in Yancheng, Jiangsu Province. 2019. Available online: http://www.nkj.moa.gov.cn/gzdt/201905/t20190528_6315737.htm (accessed on 8 August 2025).
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Hebei Province Has Been Conducting Demonstrations of Green and Efficient Water and Fertiliser Management Techniques for High-Quality Pears for Five Consecutive Years. 2023. Available online: https://www.moa.gov.cn/xw/qg/202309/t20230920_6436833.htm (accessed on 8 August 2025).
- Liao, C.; Lu, Q. Digital Technology Adoption Strategies for a Contract Farming Supply Chain under CVaR Criterion. Manag. Decis. Econ. 2024, 45, 1435–1453. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, M.; Zhang, Z.G. Technical Note—A Risk-Averse Newsvendor Model Under the CVaR Criterion. Oper. Res. 2009, 57, 1040–1044. [Google Scholar] [CrossRef]
- Wang, L.; Ye, M.; Ma, S.; Sha, Y. Pricing and Coordination Strategy in a Green Supply Chain with a Risk-Averse Retailer. Math. Probl. Eng. 2019, 2019, 7482080. [Google Scholar] [CrossRef]
- Cai, J.; Cao, Z.; Zhang, X.; Jia, L.; Xu, J. Coordination Contract Design for a Two-Echelon Supply Chain Considering Risk Aversion and Yield Uncertainties. Int. Trans. Oper. Res. 2024, 1–25. [Google Scholar] [CrossRef]
- Ministry of Finance of the People’s Republic of China. Wheat Data Query Results. 2025. Available online: http://zdscxx.moa.gov.cn:8080/nyb/pc/search.jsp (accessed on 7 August 2025).
- Ministry of Finance of the People’s Republic of China. The Reform of the Three Agricultural Subsidies Has Achieved Remarkable Results. 2021. Available online: https://www.mof.gov.cn/zhengwuxinxi/caijingshidian/zgcjb/202109/t20210916_3753468.htm (accessed on 7 August 2025).
- Department of Agriculture and Rural Affairs of Heilongjiang Province. The ‘Digital Revolution’ of the Black Soil Granary. 2025. Available online: https://nynct.hlj.gov.cn/nynct/c115379/202508/c00_31862066.shtml (accessed on 7 August 2025).
Notations | Meaning |
---|---|
The planned production quantity of the farmer | |
The green and efficient technology (GET) investment level | |
Wholesale price | |
The unit retail price | |
The marginal profit of the firm, | |
A random output factor with support on , mean value , probability density function (PDF) and cumulative distribution function (CDF) | |
The sensitivity coefficient of the GET investment to yield, | |
The production cost per unit of agricultural products, | |
The cost coefficient of the farmer’s effort, | |
The cost coefficient of digital investment, | |
Proportion of the GET investment cost shared by the firm, | |
The degree of the farmer’s risk aversion, | |
The possible upper limit of the farmer’s profit under a certain η | |
, | The profit of the farmer and the firm |
, | The farmer’s and the firm’s expected utility, [57] |
The supply chain’s expected utility in different models, = [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Cao, W. Green and Efficient Technology Investment Strategies for a Contract Farming Supply Chain Under the CVaR Criterion. Sustainability 2025, 17, 7600. https://doi.org/10.3390/su17177600
Li Y, Cao W. Green and Efficient Technology Investment Strategies for a Contract Farming Supply Chain Under the CVaR Criterion. Sustainability. 2025; 17(17):7600. https://doi.org/10.3390/su17177600
Chicago/Turabian StyleLi, Yuying, and Wenbin Cao. 2025. "Green and Efficient Technology Investment Strategies for a Contract Farming Supply Chain Under the CVaR Criterion" Sustainability 17, no. 17: 7600. https://doi.org/10.3390/su17177600
APA StyleLi, Y., & Cao, W. (2025). Green and Efficient Technology Investment Strategies for a Contract Farming Supply Chain Under the CVaR Criterion. Sustainability, 17(17), 7600. https://doi.org/10.3390/su17177600