The Impact of Climate Risk on Agricultural New Quality Productive Forces—Evidence from Panel Data of 31 Provinces in China
Abstract
1. Introduction
2. Theoretical Analysis and Research Hypotheses
3. Research Design
3.1. Variables
3.1.1. Dependent Variable
3.1.2. Independent Variable
3.1.3. Control Variables
3.2. Empirical Model
3.3. Data Sources and Sample Selection
3.4. Descriptive Statistics
4. Empirical Results
4.1. Benchmark Regression Results
4.2. Robustness Test
4.2.1. Endogeneity Test
4.2.2. Sample Adjust
4.2.3. Adjusting the Weights of Explanatory Variables
4.2.4. Other Robustness
5. Mechanism and Heterogeneity Analysis
5.1. Mechanism Analysis
5.2. Heterogeneity Analysis
5.2.1. Agricultural Digital Economy
5.2.2. Government Investment in Environmental Protection
5.2.3. Agricultural Insurance
6. Further Discussion
7. Conclusions, Implication and Policy Recommendation
7.1. Conclusions
7.2. Policy Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, X.; Lei, J.; Shi, D.; Yu, W.; Tao, T.; Zhang, X.; Wang, A. New quality productivity of agriculture and rural areas at the provincial scale in China: Indicator construction and Spatiotemporal evolution. ISPRS Int. J. Geo-Inf. 2025, 14, 104. [Google Scholar] [CrossRef]
- Shen, J.; Cui, Z.; Miao, Y.; Mi, G.; Zhang, H.; Fan, M.; Zhang, C.; Jiang, R.; Zhang, W.; Li, H.; et al. Transforming agriculture in China: From solely high yield to both high yield and high resource use efficiency. Glob. Food Secur. 2013, 2, 1–8. [Google Scholar] [CrossRef]
- Jiang, Y.M.; Qiao, Z.Y. Construction of evaluation index system for new quality productive forces development. Reform Econ. Syst. 2024, 42, 5–15. [Google Scholar]
- Anwar, M.R.; Liu, D.L.; Macadam, I.; Kelly, G. Adapting agriculture to climate change: A review. Theor. Appl. Climatol. 2013, 113, 225–245. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Guo, W. Empowered or Negative? Research on the Impact of Industrial Agglomeration on the Development of Agricultural New Quality Productive Forces: Evidence from Shandong Province, China. Sustainability 2025, 17, 3348. [Google Scholar] [CrossRef]
- Blanc, E.; Schlenker, W. The use of panel models in assessments of climate impacts on agriculture. Rev. Environ. Econ. Policy 2017, 11, 258–279. [Google Scholar] [CrossRef]
- Nico, G.; Azzarri, C. Climate change and sex-specific labor intensity: An empirical analysis in Africa. Glob. Food Secur. 2024, 42, 100799. [Google Scholar] [CrossRef]
- Deschnes, O.; Greenstone, M. The economic impacts of climate change: Evidence from agricultural profits and random fluctuations in weather. Am. Econ. Rev. 2007, 97, 354–385. [Google Scholar] [CrossRef]
- Bohle, H.G.; Downing, T.E.; Watts, M.J. Climate change and social vulnerability: Toward a sociology and geography of food insecurity. Glob. Environ. Chang. 1994, 4, 37–48. [Google Scholar] [CrossRef]
- Nico, G.; Christiaensen, L. Jobs, Food and Greening: Exploring Implications of the Green Transition for Jobs in the Agri-Food System; World Bank: Washington, DC, USA, 2023. [Google Scholar]
- Bryan, E.; Deressa, T.T.; Gbetibouo, G.A.; Ringler, C. Adaptation to climate change in Ethiopia and South Africa: Options and constraints. Environ. Sci. Policy 2009, 12, 413–426. [Google Scholar] [CrossRef]
- Niles, M.T.; Salerno, J.D. A cross-country analysis of climate shocks and smallholder food insecurity. PLoS ONE 2018, 13, e0192928. [Google Scholar] [CrossRef] [PubMed]
- Welch, J.R.; Vincent, J.R.; Auffhammer, M.; Moya, P.F.; Dobermann, A.; Dawe, D. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proc. Natl. Acad. Sci. USA 2010, 107, 14562–14567. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, X.; Xu, J. Impacts of climate change on agriculture: Evidence from China. J. Environ. Econ. Manag. 2016, 76, 105–124. [Google Scholar] [CrossRef]
- Carter, C.; Cui, X.; Ghanem, D.; Mérel, P. Identifying the economic impacts of climate change on agriculture. Annu. Rev. Resour. Econ. 2018, 10, 361–380. [Google Scholar] [CrossRef]
- Dell, M.L.; Jones, B.F.; Olken, B.A. Temperature Shocks and Economic Growth: Evidence from the Last Half Century. Am. Econ. J. Macroecon. 2012, 4, 66–95. [Google Scholar] [CrossRef]
- Kalkuhl, M.; Wenz, L. The impact of climate conditions on economic production. Evidence from a global panel of regions. J. Environ. Econ. Manag. 2020, 103, 102360. [Google Scholar] [CrossRef]
- Burke, M.; Hsiang, S.M.; Miguel, E. Global non-linear effect of temperature on economic production. Nature 2015, 527, 235–239. [Google Scholar] [CrossRef]
- Araya, A.; Prasad, P.; Zambreski, Z.; Gowda, P.; Ciampitti, I.; Assefa, Y.; Girma, A. Spatial analysis of the impact of climate change factors and adaptation strategies on productivity of wheat in Ethiopia. Sci. Total Environ. 2020, 731, 139094. [Google Scholar] [CrossRef]
- Piao, S.L.; Ciais, P.; Huang, Y.; Shen, Z.H.; Peng, S.S.; Li, J.S.; Zhou, L.P.; Liu, H.Y.; Ma, Y.C.; Ding, Y.H.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Wen, Z.; Lingyun, X. On new quality productivity: Connotative characteristics and important focus. China Reform 2023, 36, 1–13. [Google Scholar]
- Gao, Y.; Ma, J. New quality agricultural productivity: A political economy perspective. Issues Agric. Econ 2024, 81–94. [Google Scholar] [CrossRef]
- Huang, Q.; Guo, W.; Wang, Y. A Study of the Impact of New Quality Productive Forces on Agricultural Modernization: Empirical Evidence from China. Agriculture 2024, 14, 1935. [Google Scholar] [CrossRef]
- Zhu, D.; Ye, L. New quality productive forces in Chinese Agriculture: Level Measurement and Dynamic Evolution. Stat. Decis. 2024, 40, 24–30. [Google Scholar]
- Xu, Y.; Wang, R.; Zhang, S. Digital economy, green innovation efficiency, and new quality productive forces: Empirical evidence from Chinese provincial panel data. Sustainability 2025, 17, 633. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, P.; Wang, X.; Ran, R.; Wu, W. New energy policy and new quality productive forces: A quasi-natural experiment based on demonstration cities. Econ. Anal. Policy 2024, 84, 1670–1688. [Google Scholar] [CrossRef]
- Jia, X. Digital economy, factor allocation, and sustainable agricultural development: The perspective of labor and capital misallocation. Sustainability 2023, 15, 4418. [Google Scholar] [CrossRef]
- Liu, Y.; He, Z. Synergistic industrial agglomeration, new quality productive forces and high-quality development of the manufacturing industry. Int. Rev. Econ. Financ. 2024, 94, 103373. [Google Scholar] [CrossRef]
- Zhang, L. Understanding the new quality productive forces in the energy sector. Energy Nexus 2024, 16, 100352. [Google Scholar] [CrossRef]
- Xie, F.; Jiang, N.; Kuang, X. Towards an accurate understanding of ‘new quality productive forces’. Econ. Political Stud. 2025, 13, 1–15. [Google Scholar] [CrossRef]
- Banholzer, S.; Kossin, J.; Donner, S. The impact of climate change on natural disasters. In Reducing Disaster: Early Warning Systems for Climate Change; Springer: Amsterdam, The Netherlands, 2014; pp. 21–49. [Google Scholar]
- Bareille, F.; Chakir, R. The impact of climate change on agriculture: A repeat-Ricardian analysis. J. Environ. Econ. Manag. 2023, 119, 102822. [Google Scholar] [CrossRef]
- Bett, B.; Lindahl, J.; Delia, G. Climate change and infectious livestock diseases: The case of rift valley fever and tick-borne diseases. In the Climate-Smart Agriculture Papers: Investigating the Business of a Productive, Resilient and Low Emission Future; Springer: Amsterdam, The Netherlands, 2019; pp. 29–37. [Google Scholar]
- Habeeb, A.A.; Gad, A.E.; Atta, M.A. Temperature-humidity indices as indicators to heat stress of climatic conditions with relation to production and reproduction of farm animals. Int. J. Biotechnol. Recent Adv. 2018, 1, 35–50. [Google Scholar] [CrossRef]
- Bellprat, O.; Guemas, V.; Doblas-Reyes, F.; Donat, M.G. Towards reliable extreme weather and climate event attribution. Nat. Commun. 2019, 10, 1732. [Google Scholar] [CrossRef] [PubMed]
- Albala-Bertrand, J.M. Natural disaster situations and growth: A macroeconomic model for sudden disaster impacts. World Dev. 1993, 21, 1417–1434. [Google Scholar] [CrossRef]
- Warner, K.; Afifi, T. Where the rain falls: Evidence from 8 countries on how vulnerable households use migration to manage the risk of rainfall variability and food insecurity. Clim. Dev. 2014, 6, 1–17. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Sun, H.; Wang, X. How Can digital financial inclusion promote high-quality agricultural development? The multiple-mediation model research. Int. J. Environ. Res. Public Health 2023, 20, 3311. [Google Scholar] [CrossRef]
- Imran, M.A.; Ali, A.; Ashfaq, M.; Hassan, S.; Culas, R.; Ma, C. Impact of Climate Smart Agriculture (CSA) Practices on Cotton Production and Livelihood of Farmers in Punjab, Pakistan. Sustainability 2018, 10, 2101. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, X.; Li, H.; Zhang, Q. Will social capital affect farmers’ choices of climate change adaptation strategies? Evidences from rural households in the Qinghai-Tibetan Plateau, China. J. Rural Stud. 2021, 83, 127–137. [Google Scholar] [CrossRef]
- Barnett, B.J.; Mahul, O. Weather index insurance for agriculture and rural areas in lower-income countries. Am. J. Agric. Econ. 2007, 89, 1241–1247. [Google Scholar] [CrossRef]
- Goodwin, B.K.; Smith, V.H. What harm is done by subsidizing crop insurance? Am. J. Agric. Econ. 2013, 95, 489–497. [Google Scholar] [CrossRef]
- Gunnsteinsson, S. Experimental identification of asymmetric information: Evidence on crop insurance in the Philippines. J. Dev. Econ. 2020, 144, 102414. [Google Scholar] [CrossRef]
- Karlan, D.; Osei, R.; Osei-Akoto, I.; Udry, C. Agricultural decisions after relaxing credit and risk constraints. Q. J. Econ. 2014, 129, 597–652. [Google Scholar] [CrossRef]
- Cole, S.; Giné, X.; Vickery, J. How does risk management influence production decisions? Evidence from a field experiment. Rev. Financ. Stud. 2017, 30, 1935–1970. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, F.; Liu, S.; Xu, D. Consistency between the subjective and objective flood risk and willingness to purchase natural disaster insurance among farmers: Evidence from rural areas in Southwest China. Environ. Impact Assess. Rev. 2023, 102, 107201. [Google Scholar] [CrossRef]
- Felbermayr, G.; Gröschl, J. Naturally negative: The growth effects of natural disasters. J. Dev. Econ. 2014, 111, 92–106. [Google Scholar] [CrossRef]
- Guo, K.; Ji, Q.; Zhang, D. A dataset to measure global climate physical risk. Data Brief 2024, 54, 110502. [Google Scholar] [CrossRef]
- Lyu, Z.; Yu, L.; Liu, C.; Ma, T. When temperatures matter: Extreme heat and labor share. Energy Econ. 2024, 138, 107811. [Google Scholar] [CrossRef]
- Combes, P.; Duranton, G.; Gobillon, L.; Puga, D.; Roux, S. The productivity advantages of large cities: Distinguishing agglomeration from firm selection. Econometrics 2012, 80, 2543–2594. [Google Scholar] [CrossRef]
- Saiz, A. The geographic determinants of housing supply. Q. J. Econ. 2010, 125, 1253–1296. [Google Scholar] [CrossRef]
- Dunne, J.P.; Stouffer, R.J.; John, J.G. Reductions in labour capacity from heat stress under climate warming. Nat. Clim. Change 2013, 3, 563–566. [Google Scholar] [CrossRef]
- Carroll, C.; Roberts, D.R.; Michalak, J.L.; Lawler, J.J.; Nielsen, S.E.; Stralberg, D.; Hamann, A.; Mcrae, B.H.; Wang, T. Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change. Glob. Chang. Biol. 2017, 23, 4508–4520. [Google Scholar] [CrossRef]
- Fan, Y.; Jin, X.; Gan, L.; Yang, Q.; Wang, L.; Lyu, L.; Li, Y. Exploring an integrated framework for “dynamic-mechanism-clustering” of multiple cultivated land functions in the Yangtze River Delta region. Appl. Geogr. 2023, 159, 103061. [Google Scholar] [CrossRef]
- Lawrence, A.; Hoffmann, S.; Beierkuhnlein, C. Topographic diversity as an indicator for resilience of terrestrial protected areas against climate change. Glob. Ecol. Conserv. 2021, 25, e01445. [Google Scholar] [CrossRef]
- Fang, G.; Wang, Q.; Tian, L. Green development of Yangtze River Delta in China under population-resources-environment-development-satisfaction perspective. Sci. Total Environ. 2020, 727, 138710. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Wang, L.-J.; Jiang, J.; Zhao, Y.-G. Direct and indirect effects of agricultural expansion and landscape fragmentation processes on natural habitats. Agric. Ecosyst. Environ. 2023, 353, 108555. [Google Scholar] [CrossRef]
- Li, S.; Pu, J.; Deng, X. Agricultural land use transition under multidimensional topographical gradients and its impact on ecosystem service interactions. J. Integr. Agric. 2025, 24, 3222–3241. [Google Scholar]
Criteria Layer | Primary Indicator | Secondary Indicator | Attribute |
---|---|---|---|
Technological Productivity | Investment in science and technology | Years of schooling per rural labor force | + |
Proportion of adult technical training in agriculture | + | ||
Output per capital in primary sector | + | ||
Per capital disposable income of rural residents | + | ||
Number of national leading enterprises specializing in agriculture | + | ||
Industrial development | Number of professional farmers’ cooperatives/employees in primary industry | + | |
Value added of agriculture, forestry, animal husbandry, and fishery services | + | ||
Output of primary sector/number of employees in primary sector | + | ||
Green Productivity | Environmental level of greening | Percentage of forest cover | + |
Financial expenditure on environmental protection/government public budget expenditure | + | ||
Energy consumption level | Percentage of COD pollution emissions from agriculture/primary sector output | + | |
Percentage of ammonia emissions from agriculture/primary sector production value | + | ||
Energy consumption in agriculture, forestry, and fisheries/gross value of production in agriculture, forestry, and fisheries | + | ||
Digital Productivity | Digitization level | Rural electricity consumption per capita | + |
Rural Digital Financial Inclusion Mobile Payments Index | + | ||
Digital infrastructure penetration | Number of rural broadband access subscribers/number of rural households | + | |
Cable line length per square meter | + |
Symbol | Definition | Variable |
---|---|---|
ANPFs | Synthesized using the entropy method in three dimensions: scientific productivity and technological productivity, green productivity, and digital productivity. | Agriculture new quality productive forces |
Clr | Sum of extreme high-temperature days, extreme low-temperature days, extreme heavy rainfall days and extreme drought days for each year. | Climate risk index |
GDP | Log regional GDP aggregates | Regional economic development level |
Ind | Value added of tertiary industry/value added of secondary industry | Industrial structure |
Gov | Fiscal expenditure/GDP | Government (provincial) expenditure |
Inn | Log total number of patent applications received | Regional innovation level |
Urb | Urban population/total regional population | Urbanization |
RD | Government science and technology expenditures/regional general budget expenditures | R&D intensity |
Con | Total retail sales of consumer goods/GDP | Consumption level |
Idu | Industrial value added/GDP | Regional industrialization level |
Variable | N | Mean | SD | Min | p50 | Max |
---|---|---|---|---|---|---|
ANPFs | 341 | 0.180 | 0.090 | 0.0500 | 0.160 | 0.510 |
Clr | 341 | 0.460 | 0.090 | 0.260 | 0.460 | 0.840 |
GDP | 341 | 9.820 | 1 | 6.570 | 9.960 | 11.770 |
Ind | 341 | 1.400 | 0.740 | 0.610 | 1.230 | 5.240 |
Gov | 341 | 0.290 | 0.210 | 0.110 | 0.230 | 1.350 |
Inn | 341 | 10.78 | 1.530 | 5.140 | 10.940 | 13.81 |
Urb | 341 | 0.600 | 0.130 | 0.230 | 0.590 | 0.900 |
RD | 341 | 0.020 | 0.020 | 0 | 0.020 | 0.070 |
Con | 341 | 0.390 | 0.070 | 0.180 | 0.400 | 0.610 |
Idu | 341 | 0.320 | 0.090 | 0.0700 | 0.330 | 0.540 |
Variable | (1) | (2) | (3) |
---|---|---|---|
ANPFs | ANPFs | ANPFs | |
Clr | −0.287 *** (0.081) | −0.117 ** (0.052) | −0.118 *** (0.042) |
GDP | 0.058 ** (0.023) | 0.085 (0.060) | |
Ind | −0.019 (0.023) | −0.018 (0.055) | |
Gov | 0.075 (0.081) | 0.043 (0.114) | |
Inn | −0.003 (0.015) | −0.038 ** (0.017) | |
Urb | 0.034 (0.120) | 0.032 (0.554) | |
RD | 2.344 ** (1.040) | 1.363 (1.035) | |
Con | −0.164 (0.100) | −0.018 (0.088) | |
Idu | −0.110 (0.214) | 0.254 (0.284) | |
Cons | 0.310 *** (0.045) | −0.265 (0.247) | −0.307 (0.626) |
Year–Province FE | YES | YES | YES |
Obs. | 341 | 341 | 341 |
R2 | 0.071 | 0.529 | 0.824 |
Variable | (1) Clr | (2) ANPFs | (3) ANPFs | (4) ANPFs | (5) ANPFs |
---|---|---|---|---|---|
Clr | −0.098 ** (0.047) | −0.102 ** (0.044) | −0.114 ** (0.050) | ||
IV | 0.0002 *** (0.000) | −0.120 *** (0.037) | |||
Lag 1 Clr | −0.069 ** (0.031) | −0.063 ** (0.033) | |||
Lag 2 Clr | −0.020 (0.051) | ||||
Controls | YES | YES | YES | YES | YES |
Year–Province FE | YES | YES | YES | YES | YES |
Kleibergen–Paaprk LM statistic | 68.561 | ||||
Kleibergen–Paaprk Wald F statistic | 2162.227 | ||||
Obs | 341 | 341 | 341 | 341 | 341 |
R2 | 0.977 | 0.102 | 0.828 | 0.834 | 0.827 |
Variable | (1) ANPFs | (2) ANPFs | (3) ANPFs | (4) ANPFs | (5) ANPFs | (6) ANPFs |
---|---|---|---|---|---|---|
Clr | −0.080 *** (0.029) | −0.085 ** (0.034) | −0.001 *** (0.0002) | −0.001 *** (0.0004) | −0.0009 ** (0.0004) | −0.001 ** (0.0005) |
Controls | YES | YES | YES | YES | YES | YES |
Year–Province FE | YES | YES | YES | YES | YES | YES |
Obs | 248 | 297 | 341 | 341 | 341 | 341 |
R2 | 0.892 | 0.882 | 0.822 | 0.823 | 0.823 | 0.825 |
Variable. | (1) ANPFs | (2) ANPFs |
---|---|---|
Clr | −0.087 * (0.049) | −0.107 *** (0.044) |
Controls | YES | YES |
Year–Province FE | YES | YES |
Year–Province FE | NO | YES |
Obs | 171 | 341 |
R2 | 0.825 | 0.828 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
DiS1 | DiS2 | DiS3 | DiS4 | |
Clr | 0.185 *** | 0.084 *** | 2.333 *** | 2.048 *** |
(0.050) | (0.021) | (0.682) | (0.742) | |
GDP | 0.026 | 0.001 | −0.434 | −0.517 |
(0.068) | (0.029) | (0.616) | (0.691) | |
Ind | −0.050 | −0.023 * | −0.875* | −0.922 ** |
(0.037) | (0.014) | (0.455) | (0.436) | |
Gov | −0.074 | −0.048 | −1.909 | −0.989 |
(0.129) | (0.051) | (1.460) | (1.768) | |
Inn | 0.005 | 0.006 | −0.035 | 0.036 |
(0.025) | (0.010) | (0.188) | (0.214) | |
Urb | 0.045 | −0.107 | −0.072 | −1.458 |
(0.397) | (0.184) | (4.463) | (6.354) | |
RD | 0.737 | −0.022 | 9.820 | 2.212 |
(0.852) | (0.332) | (7.754) | (9.817) | |
Con | −0.034 | 0.033 | −1.720* | −0.823 |
(0.074) | (0.041) | (0.968) | (1.378) | |
Idu | −0.352 | −0.157 | −6.600 * | −6.426 |
(0.314) | (0.152) | (3.438) | (4.208) | |
Cons | −0.143 | 0.072 | 13.691 ** | 13.434 ** |
(0.651) | (0.266) | (5.604) | (6.131) | |
Year–Province FE | YES | YES | YES | YES |
Obs. | 341 | 341 | 341 | 341 |
R2 | 0.505 | 0.425 | 0.879 | 0.844 |
Variable | (1) | (2) | (3) |
---|---|---|---|
ANPFs | ANPFs | ANPFs | |
Clr | −0.018 (0.045) | −0.025 (0.055) | 0.004 (0.042) |
Digital | 0.570 *** (0.191) | ||
Clr * Digital | −0.008 * (0.005) | ||
EI | 2.752 *** (0.864) | ||
Clr * EI | −0.050 ** (0.021) | ||
CI | 0.045 ** (0.017) | ||
Clr * CI | −0.001 *** (0.000) | ||
Controls | YES | YES | YES |
Yea/Province FE | YES | YES | YES |
Obs. | 341 | 341 | 331 |
R2 | 0.505 | 0.425 | 0.879 |
Dependent Variable: ANPFs | (1) | (2) | (3) | (4) |
---|---|---|---|---|
YR = 1 | YR = 0 | PL = 1 | PL = 0 | |
Clr | −0.093 | −0.109 *** | −0.044 | −0.143 ** |
(0.113) | (0.032) | (0.034) | (0.064) | |
GDP | −0.040 | 0.115 | 0.294 *** | 0.033 |
(0.142) | (0.068) | (0.071) | (0.094) | |
Ind | −0.023 | −0.003 | 0.024 | −0.056 |
(0.111) | (0.064) | (0.032) | (0.065) | |
Gov | 1.130 *** | −0.015 | 0.101 | 0.074 |
(0.257) | (0.117) | (0.205) | (0.128) | |
Inn | −0.050 * | −0.012 | −0.043 | −0.041 * |
(0.026) | (0.013) | (0.026) | (0.023) | |
Urb | 0.892 | −0.237 | −0.620 | −0.040 |
(0.549) | (0.715) | (0.649) | (0.680) | |
RD | 0.716 | 0.084 | −2.968 *** | 2.481 * |
(0.863) | (1.431) | (0.799) | (1.355) | |
Con | 0.052 | 0.008 | 0.244 ** | −0.129 |
(0.112) | (0.076) | (0.104) | (0.113) | |
Idu | 1.318 | 0.003 | 0.259 | 0.049 |
(0.870) | (0.305) | (0.293) | (0.340) | |
Cons | 0.002 | −0.609 | −2.008** | 0.426 |
(1.057) | (0.812) | (0.772) | (0.953) | |
Year–Province FE | YES | YES | YES | YES |
Obs. | 121 | 220 | 132 | 209 |
R2 | 0.862 | 0.813 | 0.910 | 0.799 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Gan, Z.; Lu, H. The Impact of Climate Risk on Agricultural New Quality Productive Forces—Evidence from Panel Data of 31 Provinces in China. Sustainability 2025, 17, 7566. https://doi.org/10.3390/su17167566
Li H, Gan Z, Lu H. The Impact of Climate Risk on Agricultural New Quality Productive Forces—Evidence from Panel Data of 31 Provinces in China. Sustainability. 2025; 17(16):7566. https://doi.org/10.3390/su17167566
Chicago/Turabian StyleLi, Hong, Zhijie Gan, and Hongjian Lu. 2025. "The Impact of Climate Risk on Agricultural New Quality Productive Forces—Evidence from Panel Data of 31 Provinces in China" Sustainability 17, no. 16: 7566. https://doi.org/10.3390/su17167566
APA StyleLi, H., Gan, Z., & Lu, H. (2025). The Impact of Climate Risk on Agricultural New Quality Productive Forces—Evidence from Panel Data of 31 Provinces in China. Sustainability, 17(16), 7566. https://doi.org/10.3390/su17167566