Seasonal and Regional Patterns of Streamflow Droughts in Poland: A 50-Year Perspective
Abstract
1. Introduction
2. Study Area and Data
3. Methods
- -
- the duration Di of drought i:
- -
- the volume of drought Vi (shortage or deficit volume):
4. Results
4.1. The Number of Streamflow Droughts
4.2. Duration and Volume of Streamflow Droughts
4.3. Drought Start and End Time
4.4. Regionalization of Streamflow Droughts
4.5. Temporal Variability of the Annual Sum of Days with Hydrological Drought
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilhite, D.A. Drought as a Natural Hazard: Concepts and Definitions. In D. Drought: A Global Assessment; Wilhite, D.A., Ed.; Routledge: London, UK, 2000; Volume 1, pp. 3–18. [Google Scholar]
- Core Writing Team; Pachauri, R.K.; Meyer, L.A. (Eds.) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergov-ernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Cisneros, J.B.E.; Oki, N.W.; Arnell, G.; Benito, J.G.; Cogley, P.; Döll, T.J.; Mwakalila, S.S. Freshwater Resources. In Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part A: Global and Sectoral Aspects; Intergovernmental Panel on Climate Change (IPCC), Ed.; Cambridge University Press: Cambridge, UK, 2014; pp. 229–270. [Google Scholar]
- Allen, M.; Antwi-Agyei, P.; Aragon-Durand, F.; Babiker, M.; Bertoldi, P.; Bind, M.; Brown, S.; Buckeridge, M.; Camilloni, I.; Cartwright, A. Technical Summary: Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In Intergovernmental Panel on Climate Change; World Meteorological Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Wilhite, D.A.; Glantz, M.H. Understanding the Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Parry, S.; Hannaford, J.; Lloyd-Hughes, B.; Prudhomme, C. Multi-year droughts in Europe: Analysis of development and causes. Hydrol. Res. 2012, 43, 689–706. [Google Scholar] [CrossRef]
- Stahl, K. Hydrological Drought. A Study Across Europe. Ph.D. Thesis, Albert-Ludwigs Universität Freiburg, Freiburg, Germany, 2001. [Google Scholar]
- Tallaksen, L.M.; van Lanen, H. (Eds.) Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Water Law (Act of 20 July 2017, Journal of Laws 2017, Item 1566). Available online: https://unece.org/sites/default/files/2025-01/frPartyC146_06.06.2022_annex1.pdf (accessed on 19 October 2024).
- Maidment, D.R. (Ed.) Handbook of Hydrology; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Smakhtin, V.U. Low flow hydrology: A review. J. Hydrol. 2001, 240, 147–186. [Google Scholar] [CrossRef]
- Hejduk, L.; Kaznowska, E.; Wasilewicz, M.; Hejduk, A. Hydrological Droughts in the Bialowieza Primeval Forest, Poland, in the Years 1951–2020. Forests 2021, 12, 1744. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Wood, A.W. Accurate Computation of a Streamflow Drought Index. J. Hydrol. Eng. 2012, 17, 318–332. [Google Scholar] [CrossRef]
- Shukla, S.; Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett. 2008, 35, L02405. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Kumar, R.; Mishra, V. Testing the use of standardised indices and GRACE satellite data to estimate the European 2015 groundwater drought in near-real time. Hydrol. Earth Syst. Sci. 2017, 21, 1947–1971. [Google Scholar] [CrossRef]
- Shafer, B.A.; Dezman, L.E. Development of a Surface Water Supply Index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. In Proceedings of the Western Snow Conference, Reno, NV, USA, 19–23 April 1982; Volume 50, pp. 164–175. Available online: https://www.droughtmanagement.info/literature/CSU_Development_SWSI_Assess_Severity_Drought_Conditions_Snowpack_Runoff_Areas_1982.pdf (accessed on 19 October 2024).
- Staudinger, M.; Stahl, K.; Seibert, J. A drought index accounting for snow. Water Resour. Res. 2014, 50, 7861–7872. [Google Scholar] [CrossRef]
- Huning, L.S.; AghaKouchak, A. Global snow drought hot spots and characteristics. Proc. Natl. Acad. Sci. USA 2020, 117, 19753–19759. [Google Scholar] [CrossRef]
- Baez-Villanueva, O.M.; Tallaksen, L.M. On the timescale of drought indices for monitoring streamflow drought considering catchment hydrological regimes. Hydrol. Earth Syst. Sci. 2024, 28, 1415–1439. [Google Scholar] [CrossRef]
- Hisdal, H.; Tallaksen, L.M. Drought Event Definition. In Technical Report No. 6, Assessment of the Regional Impact of Droughts in Europe; Department of Geophysics, University of Oslo: Oslo, Norway, 2000. [Google Scholar]
- Fleig, A.K.; Tallaksen, L.M.; Hisdal, H.; Demuth, S. A global evaluation of streamflow drought characteristics. Hydrol. Earth Syst. Sci. 2006, 10, 535–552. [Google Scholar] [CrossRef]
- Tallaksen, L.M.; Madsen, H.; Clausen, B. On the definition and modelling of streamflow drought duration and deficit volume. Hydrol. Sci. J. 1997, 42, 15–33. [Google Scholar] [CrossRef]
- Spinoni, J.; Barbosa, P.; De Jager, A.; McCormick, N.; Naumann, G.; Vogt, J.V.; Magni, D.; Masante, D.; Mazzeschi, M. A new global database of meteorological drought events from 1951 to 2016. J. Hydrol. Reg. Stud. 2019, 22, 100593. [Google Scholar] [CrossRef] [PubMed]
- Ionita, M.; Nagavciuc, V.; Scholz, P.; Dima, M. Long-term drought intensification over Europe driven by the weakening trend of the Atlantic Meridional Overturning Circulation. J. Hydrol. Reg. Stud. 2022, 42, 101176. [Google Scholar] [CrossRef]
- Bakke, S.J.; Ionita, M.; Tallaksen, L.M. Recent European drying and its link to prevailing large-scale atmospheric patterns. Sci. Rep. 2023, 13, 21921. [Google Scholar] [CrossRef] [PubMed]
- Wałęga, A.; Cebulska, M.; Ziernicka-Wojtaszek, A.; Młocek, W.; Wałęga, A.; Nieróbca, A.; Caloiero, T. Spatial and temporal variability of meteorological droughts including atmospheric circulation in Central Europe. J. Hydrol. 2024, 642, 131857. [Google Scholar] [CrossRef]
- Tokarczyk, T.; Szalińska, W. Drought hazard assessment in the process of drought risk management. Acta Sci. Polonorum. Form. Circumiectus 2018, 17, 217–229. [Google Scholar] [CrossRef]
- Somorowska, U. Assessing the Impact of Climate Change on Snowfall Conditions in Poland Based on the Snow Fraction Sensitivity Index. Resources 2024, 13, 60. [Google Scholar] [CrossRef]
- Qiu, J.; Shen, Z.; Xie, H. Drought impacts on hydrology and water quality under climate change. Sci. Total Environ. 2023, 858, 159854. [Google Scholar] [CrossRef]
- Kozek, M.; Tomaszewski, E. Dynamics of hydrological droughts propagation in mountainous catchments. Misc. Geogr. 2022, 26, 111–124. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K.; Pilarska, A.; Kaminski, D. The Analysis of Long-Term Trends in the Meteorological and Hydrological Drought Occurrences Using Non-Parametric Methods-Case Study of the Catchment of the Upper Notec River (Central Poland). Atmosphere 2021, 12, 1098. [Google Scholar] [CrossRef]
- Karamuz, E.; Bogdanowicz, E.; Senbeta, T.B.; Napiórkowski, J.J.; Romanowicz, R.J. Is It a Drought or Only a Fluctuation in Precipitation Patterns?-Drought Reconnaissance in Poland. Water 2021, 13, 807. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K.; Juskiewicz, W. Relationships between meteorological and hydrological drought in a young-glacial zone (north-western Poland) based on Standardised Precipitation Index (SPI) and Standardized Runoff Index (SRI). Acta Montan. Slovaca 2020, 25, 517–531. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K.; Bak, B. Monitoring of meteorological and hydrological droughts in the Vistula basin (Poland). Environ. Monit. Assess 2018, 190, 691. [Google Scholar] [CrossRef] [PubMed]
- Baran-Gurgul, K. The spatial and temporal variability of hydrological drought in the Polish Carpathians. J. Hydrol. Hydromech. 2022, 70, 156–169. [Google Scholar] [CrossRef]
- Kondracki, J. Regional Geography of Poland; Wydawawnictwo Naukowe PWN: Warszawa, Poland, 2000. [Google Scholar]
- Solon, J.; Borzyszkowski, J.; Bidłasik, M.; Richling, A.; Badora, K.; Balon, J.; Brzezińska-Wójcik, T.; Chabudziński, Ł.; Dobrowolski, R.; Grzegorczyk, I.; et al. Physico—geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geogr. Pol. 2018, 91, 143–170. [Google Scholar] [CrossRef]
- White, J.C.; Khamis, K.; Dugdale, S.; Jackson, F.L.; Malcolm, I.A.; Krause, S.; Hannah, D.M. Drought impacts on river water temperature: A process-based understanding from temperate climates. Hydrol. Process. 2023, 37, e14958. [Google Scholar] [CrossRef]
- Lorenc, H. (Ed.) The Atlas of the Climate of Poland; The Institute of Meteorology and Management: Warszawa, Poland, 2005. [Google Scholar]
- Fleig, A. Hydrological Drought—A Comparative Study Using Daily Discharge Series from Around the World. Master’s Thesis, Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany, 2004. [Google Scholar]
- Stolarska, M.; Afelt, A.; Bartold, M.; Bochenek, Z.; Dąbrowska-Zielińska, K.; Domanowski, M.; Kłosowicz, M.; Kosieradzki, R.; Liszewska, M.; Łudczak, K.; et al. Opracowanie Materiałów Merytorycznych Do Sporządzenia Projektów Planów Przeciwdziałania Skutkom Suszy Na Obszarach Dorzeczy. Etap II—Aktualizacja Opracowania “Ochrona Przed Suszą W Planowaniu Gospodarowania Wodami—Metodyka Postępowania” [Development of Substantive Materials for Drafting Plans to Counteract the Effects of Drought in River Basins. Stage II—Update of the Study “Protection Against Drought in Water Management Planning—Methodology”]; KZGW: Warszawa, Poland, 2017. [Google Scholar]
- Baran-Gurgul, K. Exceedance probability of characteristic flows in Poland. Acta Sci. Pol.—Form. Circumiectus 2023, 22, 23–36. [Google Scholar] [CrossRef]
- Baran-Gurgul, K.; Kołodziejczyk, K.; Rutkowska, A. Spatial variability of average annual and monthly minimum river flow in Poland. Geoinformatica Pol. 2023, 22, 7–20. [Google Scholar] [CrossRef]
- Książek, L.; Woś, A.; Florek, J.; Wyrębek, M.; Młyński, D.; Wałęga, A. Combined use of the hydraulic and hydrological methods to calculate the environmental flow: Wisloka river, Poland: Case study. Environ. Monit. Assess. 2019, 191, 254. [Google Scholar] [CrossRef] [PubMed]
- Baran-Gurgul, K. The risk of extreme streamflow drought in the Polish Carpathians—A two-dimensional approach. Int. J. Environ. Res. Pub. He. 2022, 19, 14095. [Google Scholar] [CrossRef] [PubMed]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 163–171. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Bonferroni, C.E. Teoria Statistica Delle Classi e Calcolo Delle Probabilità; Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8:3–62; Encyclopedia of Research Design; Seeber: London, UK, 1936. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis, 1-2; confidence regions for the parameters of linear regression equations in two, three and more variables. Indag. Math. 1950, 1, 386–392. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 19 October 2024).
- Wojkowski, J.; Wałęga, A.; Radecki-Pawlik, A.; Młyński, D.; Lepeška, T. The influence of land cover changes on landscape hydric potential and river flows: Upper Vistula, Western Carpathians. Catena 2022, 210, 105878. [Google Scholar] [CrossRef]
- Radecki-Pawlik, A.; Wałęga, A.; Młyński, D.; Młocek, W.; Kokoszka, R.; Tokarczyk, T.; Szalińska, W. Seasonality of mean flows as a potential tool for the assessment of ecological processes: Mountain rivers, Polish Carpathians. Sci. Total Environ. 2020, 716, 136988. [Google Scholar] [CrossRef]
- Zimoch, I.; Grabunczyk, M. Water intake efficiency analysis in risk management of water supply systems—A case study of Glubczyce Collective Water Supply System, Poland. Desalin. Water Treat. 2023, 316, 669–681. [Google Scholar] [CrossRef]
- Kubiak-Wojcicka, K. Dynamics of meteorological and hydrological droughts in the agricultural catchments. Res. Rural Dev. 2019, 1, 111–117. [Google Scholar]
- Ministry of Infrastructure. Program Przeciwdziałania Niedoborowi Wody Na Lata 2021–2027 Z Perspektywą Do Roku 2023. (Water Shortage Prevention Program for 2021-2027 with a Perspective Until 2023); Ministry of Infrastructure: Tokyo, Japan, 2021.
- Cupak, A.; Kaczor, G. Determination of Seasonal Indices for the Regionalization of Low Flows in the Upper Vistula River Basin. Water 2023, 15, 246. [Google Scholar] [CrossRef]
- Wojkowski, J.; Młyński, D.; Lepeška, T.; Wałęga, A.; Radecki-Pawlik, A. Link between hydric potential and predictability of maximum flow for selected catchments in Western Carpathians. Sci. Total Environ. 2019, 683, 293–307. [Google Scholar] [CrossRef]
- Nadudvari, A.; Czajka, A.; Wyzga, B.; Zygmunt, M.; Wdowikowski, M. Patterns of Recent Changes in Channel Morphology and Flows in the Upper and Middle Odra River. Water 2023, 15, 370. [Google Scholar] [CrossRef]
- Mostowik, K.; Krzyczman, D.; Płaczkowska, E.; Rzonca, B.; Siwek, J.; Wacławczyk, P. Spring recharge and groundwater flow patterns in flysch aquifer in the Połonina Wetlińska Massif in the Carpathian Mountains. J. Mt. Sci. 2021, 18, 819–833. [Google Scholar] [CrossRef]
- Nygren, M.; Barthel, R.; Allen, D.M.; Giese, M. Exploring groundwater drought responsiveness in lowland post-glacial environments. Hydrogeol. J. 2022, 30, 1937–1961. [Google Scholar] [CrossRef]
- Staśko, S.; Buczyński, S. Drought and Its Effects on Spring Discharge Regimes in Poland and Germany during the 2015 Drought. Hydrol. Sci. J. 2018, 63, 741–751. [Google Scholar] [CrossRef]
- Olichwer, T.; Tarka, R. The Variability of Groundwater Resources in South-West Poland. In Proceedings of the 10th International Hydrogeological Congress of Greece, Thessaloniki, Greece, 8–11 October 2014; pp. 587–594. [Google Scholar] [CrossRef]
- Jokiel, P.; Marszelewski, W.; Pociask-Karteczka, J. (Eds.) Hydrology of Poland; PWN: Warsaw, Poland, 2017. [Google Scholar]
- Nowak, B.; Andrzejak, A.; Filipiak, G.; Ptak, M.; Sojka, M. Assessment of the Impact of Flow Changes and Water Management Rules in the Dam Reservoir on Energy Generation at the Jeziorsko Hydropower Plant. Energies 2022, 15, 7695. [Google Scholar] [CrossRef]
- Łabędzki, L. Controlled run-off as a method of grassland irrigation and peatland preservation in the Noteć River valley. Infrastruct. Ecol. Rural. Areas 2015, III/2, 717–726. [Google Scholar]
- Wrzesiński, D.; Marsz, A.A.; Sobkowiak, L.; Styszyńska, A. Response of Low Flows of Polish Rivers to Climate Change in 1987–1989. Water 2022, 14, 2780. [Google Scholar] [CrossRef]
- Senbeta, T.B.; Napiórkowski, J.J.; Karamuz, E.; Kochanek, K.; Woyessa, Y.E. Impacts of water regulation through a reservoir on drought dynamics and propagation in the Pilica River watershed. J. Hydrol. Reg Stud. 2024, 53, 101812. [Google Scholar] [CrossRef]
- Siwek, J.; Mostowik, K.; Liova, S.; Rzonca, B.; Wacławczyk, P. Baseflow Trends for Midsize Carpathian Catchments in Poland and Slovakia in 1970–2019. Water 2023, 15, 109. [Google Scholar] [CrossRef]
- Wrzesiński, D.; Ptak, M. Water level changes in Polish lakes during 1976–2010. J. Geogr. Sci. 2016, 26, 83–101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baran-Gurgul, K.; Wałęga, A. Seasonal and Regional Patterns of Streamflow Droughts in Poland: A 50-Year Perspective. Sustainability 2025, 17, 7531. https://doi.org/10.3390/su17167531
Baran-Gurgul K, Wałęga A. Seasonal and Regional Patterns of Streamflow Droughts in Poland: A 50-Year Perspective. Sustainability. 2025; 17(16):7531. https://doi.org/10.3390/su17167531
Chicago/Turabian StyleBaran-Gurgul, Katarzyna, and Andrzej Wałęga. 2025. "Seasonal and Regional Patterns of Streamflow Droughts in Poland: A 50-Year Perspective" Sustainability 17, no. 16: 7531. https://doi.org/10.3390/su17167531
APA StyleBaran-Gurgul, K., & Wałęga, A. (2025). Seasonal and Regional Patterns of Streamflow Droughts in Poland: A 50-Year Perspective. Sustainability, 17(16), 7531. https://doi.org/10.3390/su17167531