Assessing the Impact of the Digital Economy on Carbon Emission Reduction: A Test of the Mediation Effect Based on Industrial Agglomeration
Abstract
1. Introduction
2. Literature Review and Hypothesis
2.1. Digital Economy and Carbon Emissions
2.2. Digital Economy and Industrial Agglomeration
2.3. The Impact of the Digital Economy on Carbon Emissions: The Moderating Role of Industrial Agglomeration
3. Research Design
3.1. Model Construction
3.2. Variable Selection
3.2.1. Explained Variables
3.2.2. Explanatory Variables
3.2.3. Mediating Variables
3.2.4. Control Variables
3.3. Data Resources
4. Empirical Analysis
4.1. Panel Unit Root Tests and Multicollinearity Test
4.2. Benchmark Model Regression Results and Discussion
4.3. Robustness Test and Endogenous Treatment
4.3.1. Robustness Test
4.3.2. Endogenous Treatment
4.4. Further Discussion: Heterogeneity Analysis
4.4.1. City Size Heterogeneity
4.4.2. Geographical Region Heterogeneity
4.4.3. Industry Type Heterogeneity
5. Discussion
6. Conclusions and Policy Implications
6.1. Conclusions
6.2. Policy Implications
6.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, J.; Tong, D.; Zhang, Q.; Liu, Y.; Lei, Y.; Yan, G.; Yan, L.; Yu, S.; Cui, R.Y.; Clarke, L.; et al. Pathways of China’s PM2.5 Air Quality 2015–2060 in the Context of Carbon Neutrality. Natl. Sci. Rev. 2021, 8, nwab078. [Google Scholar] [CrossRef]
- Tian, X.; Bai, F.; Jia, J.; Liu, Y.; Shi, F. Realizing low-carbon development in a developing and industrializing region: Impacts of industrial structure change on CO2 emissions in southwest China. J. Environ. Manag. 2019, 233, 728–738. [Google Scholar] [CrossRef]
- Zheng, J.; Mi, Z.; Coffman, D.M.; Shan, Y.; Guan, D.; Wang, S. The slowdown in China’s carbon emissions growth in the new phase of economic development. One Earth 2019, 1, 240–253. [Google Scholar] [CrossRef]
- Sethi, S.S.; Vinoj, V. Urbanization and regional climate change-linked warming of Indian cities. Nat. Cities 2024, 6, 402–405. [Google Scholar] [CrossRef]
- Cattaneo, A.; Girgin, S.; de By, R.; McMenomy, T.; Nelson, A.; Vaz, S. Worldwide delineation of multi-tier city–regions. Nat. Cities 2024, 7, 469–479. [Google Scholar] [CrossRef]
- Yu, C.; Long, H.; Zhang, X.; Tu, C.; Tan, Y.; Zhou, Y.; Zang, C. Regional integration and city-level energy efficiency: Evidence from China. Sustain. Cities Soc. 2023, 88, 104285. [Google Scholar] [CrossRef]
- UNCTAD. Digital Economy Report 2024: Shaping an Environmentally Sustainable and Inclusive Digital Future; United Nations: New York, NY, USA, 2024; Available online: https://unctad.org/system/files/official-document/der2024_en.pdf (accessed on 7 August 2025).
- China Academy of Information and Communications Technology. White Paper on Global Digital Economy (2023); Beijing, China, 2024. Available online: https://www.caict.ac.cn/english/research/whitepapers/202404/P020240430470269289042.pdf (accessed on 7 August 2025).
- Ghobakhloo, M. Industry 4.0, digitization, and opportunities for sustainability. J. Clean. Prod. 2020, 252, 119869. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Pham, T.A.T.; Tram, H.T.X. Role of information and communication technologies and innovation in driving carbon emissions and economic growth in selected G-20 countries. J. Environ. Manag. 2020, 261, 110162. [Google Scholar] [CrossRef]
- Pan, W.; Xie, T.; Wang, Z.; Ma, L. Digital economy: An innovation driver for total factor productivity. J. Bus. Res. 2022, 139, 303–311. [Google Scholar] [CrossRef]
- Han, F.; Xie, R.; Fang, J.; Liu, Y. The effects of urban agglomeration economies on carbon emissions: Evidence from Chinese cities. J. Clean. Prod. 2018, 172, 1096–1110. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Z.; Cheng, S. Industrial agglomeration and haze pollution: Evidence from China. Sci. Total Environ. 2022, 845, 157392. [Google Scholar] [CrossRef]
- Liang, L.; Wang, Z.; Li, J. The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J. Clean. Prod. 2019, 237, 117649. [Google Scholar] [CrossRef]
- Wang, J.; Dong, X.; Dong, K. How does ICT agglomeration affect carbon emissions? The case of Yangtze River Delta urban agglomeration in China. Energy Econ. 2022, 111, 106107. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, T.; Hu, K.; Feng, Y.; Feng, C.; Jia, P. Influences and transmission mechanisms of financial agglomeration on environmental pollution. J. Environ. Manag. 2022, 303, 114136. [Google Scholar] [CrossRef]
- Williams, L.D. Concepts of Digital Economy and Industry 4.0 in Intelligent and information systems. Int. J. Intell. Netw. 2021, 2, 122–129. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, Y.; Shi, K.; Zhao, Z.; Wang, C.; Wu, B.; Qiu, B.; Yu, B. The potential of nighttime light remote sensing data to evaluate the development of digital economy: A case study of China at the city level. Comput. Environ. Urban Syst. 2022, 92, 101749. [Google Scholar] [CrossRef]
- Lyu, Y.; Xiao, X.; Zhang, J. Does the digital economy enhance green total factor productivity in China? The evidence from a national big data comprehensive pilot zone. Struct. Chang. Econ. Dyn. 2024, 69, 183–196. [Google Scholar] [CrossRef]
- Song, M.; Zheng, C.; Wang, J. The role of digital economy in China’s sustainable development in a post-pandemic environment. J. Enterp. Inf. Manag. 2022, 35, 58–77. [Google Scholar] [CrossRef]
- Wu, B.; Yang, W. Empirical test of the impact of the digital economy on China’s employment structure. Financ. Res. Lett. 2022, 49, 103047. [Google Scholar] [CrossRef]
- Wang, B.; Yu, M.; Zhu, Y.; Bao, P. Unveiling the driving factors of carbon emissions from industrial resource allocation in China: A spatial econometric perspective. Energy Policy 2021, 158, 112557. [Google Scholar] [CrossRef]
- Forero, M.D.P.B. Mobile communication networks and Internet technologies as drivers of technical efficiency improvement. Inf. Econ. Policy 2013, 25, 126–141. [Google Scholar] [CrossRef]
- Paunov, C.; Rollo, V. Has the internet fostered inclusive innovation in the developing world? World Dev. 2016, 78, 587–609. [Google Scholar] [CrossRef]
- Shostak, L.; Goi, V.; Timchenko, O.; Yastrubetska, L.; Derhaliuk, M. The impact of digital transformation on the economy: Technological innovation and efficiency. Econ. Aff. 2023, 68, 2081–2093. [Google Scholar] [CrossRef]
- Zhang, J.; Lyu, Y.; Li, Y.; Geng, Y. Digital economy: An innovation driving factor for low-carbon development. Environ. Impact Assess. Rev. 2022, 96, 106821. [Google Scholar] [CrossRef]
- Guo, B.; Wang, Y.; Zhang, H.; Liang, C.; Feng, Y.; Hu, F. Impact of the digital economy on high-quality urban economic development: Evidence from Chinese cities. Econ. Model. 2023, 120, 106194. [Google Scholar] [CrossRef]
- Myovella, G.; Karacuka, M.; Haucap, J. Digitalization and economic growth: A comparative analysis of Sub-Saharan Africa and OECD economies. Telecommun. Policy 2020, 44, 101856. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.; Dong, K.; Dong, X. How does the digital economy improve high-quality energy development? The case of China. Technol. Forecast. Soc. Chang. 2022, 184, 121960. [Google Scholar] [CrossRef]
- Dong, F.; Hu, M.; Gao, Y.; Liu, Y.; Zhu, J.; Pan, Y. How does digital economy affect carbon emissions? Evidence from global 60 countries. Sci. Total Environ. 2022, 852, 158401. [Google Scholar] [CrossRef]
- Yi, M.; Liu, Y.; Sheng, M.S.; Wen, L. Effects of digital economy on carbon emission reduction: New evidence from China. Energy Policy 2022, 171, 113271. [Google Scholar] [CrossRef]
- Carlsson, B. The Digital Economy: What is new and what is not? Struct. Chang. Econ. Dyn. 2004, 15, 245–264. [Google Scholar] [CrossRef]
- Bai, L.; Guo, T.; Xu, W.; Liu, Y.; Kuang, M.; Jiang, L. Effects of digital economy on carbon emission intensity in Chinese cities: A life-cycle theory and the application of non-linear spatial panel smooth transition threshold model. Energy Policy 2023, 183, 113792. [Google Scholar] [CrossRef]
- Wang, X.; Li, J. Heterogeneous effect of digital economy on carbon emission reduction. J. Clean. Prod. 2023, 429, 139560. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J. The dynamic impact of digital economy on carbon emission reduction: Evidence city-level empirical data in China. J. Clean. Prod. 2022, 351, 131570. [Google Scholar] [CrossRef]
- Niu, X.; Ma, Z.; Ma, W.; Yang, J.; Mao, T. The spatial spillover effects and equity of carbon emissions of digital economy in China. J. Clean. Prod. 2024, 434, 139885. [Google Scholar] [CrossRef]
- Xie, B.; Liu, R.; Dwivedi, R. Digital economy, structural deviation, and regional carbon emissions. J. Clean. Prod. 2024, 434, 139890. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J.; Xu, J. Assessing the role of digital economy agglomeration in energy conservation and emission reduction: Evidence from China. Energy 2023, 284, 128667. [Google Scholar] [CrossRef]
- Peng, H.R.; Zhang, Y.J.; Liu, J.Y. The energy rebound effect of digital development: Evidence from 285 cities in China. Energy 2023, 270, 126837. [Google Scholar] [CrossRef]
- Zhu, Y.; Lan, M. Digital economy and carbon rebound effect: Evidence from Chinese cities. Energy Econ. 2023, 126, 106957. [Google Scholar] [CrossRef]
- Ma, Z.; Xiao, H.; Li, J.; Chen, H.; Chen, W. Study on how the digital economy affects urban carbon emissions. Renew. Sustain. Energy Rev. 2025, 207, 114910. [Google Scholar] [CrossRef]
- Xu, Q.; Zhong, M.; Li, X. How does digitalization affect energy? International evidence. Energy Econ. 2022, 107, 105879. [Google Scholar] [CrossRef]
- Wang, J.; Dong, K.; Sha, Y.; Yan, C. Envisaging the carbon emissions efficiency of digitalization: The case of the internet economy for China. Technol. Forecast. Soc. Chang. 2022, 184, 121965. [Google Scholar] [CrossRef]
- Haldar, A.; Sethi, N. Environmental effects of Information and Communication Technology-Exploring the roles of renewable energy, innovation, trade and financial development. Renew. Sustain Energy Rev. 2022, 153, 111754. [Google Scholar] [CrossRef]
- Li, K.; Lin, B. How to promote energy efficiency through technological progress in China? Energy 2018, 143, 812–821. [Google Scholar] [CrossRef]
- Avotra, A.A.R.N.; Chengang, Y.; Wei, X.; Ming, J.; Marcelline, T.R.S. Struggling with business corporate cynical impression? Powerful methods of CSR to enhance corporate image and consumer purchase intention. Front. Public Health 2021, 9, 1250. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Chen, Y.; He, J. Digital economy, technological innovation, and green economic efficiency—Empirical evidence from 277 cities in China. Manag. Decis. Econ. 2022, 43, 616–629. [Google Scholar] [CrossRef]
- Kuhn, P.; Skuterud, M. Internet job search and unemployment durations. Am. Econ. Rev. 2004, 94, 218–232. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. The race between man and machine: Implications of technology for growth, factor shares, and employment. Am. Econ. Rev. 2018, 108, 1488–1542. [Google Scholar] [CrossRef]
- Zeng, G.; Wu, M.; Yuan, X. Digital economy and industrial agglomeration. Econ. Anal. Policy 2024, 84, 475–498. [Google Scholar] [CrossRef]
- Panayides, A.; Kern, C.R. Information technology and the future of cities: An alternative analysis. Urban Stud. 2005, 42, 163–167. [Google Scholar] [CrossRef]
- Giuliani, E. Towards an understanding of knowledge spillovers in industrial clusters. Appl. Econ. Lett. 2007, 14, 87–90. [Google Scholar] [CrossRef]
- Li, Y.; Li, N.; Li, Z. Evolution of carbon emissions in China’s digital economy: An empirical analysis from an entire industry chain perspective. J. Clean. Prod. 2023, 414, 137419. [Google Scholar] [CrossRef]
- Bai, T.; Qi, Y.; Li, Z.; Xu, D. Digital economy, industrial transformation and upgrading, and spatial transfer of carbon emissions: The paths for low-carbon transformation of Chinese cities. J. Environ. Manag. 2023, 344, 118528. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, P.; Hu, D. Influences of the ongoing digital transformation of the Chinese Economy on innovation of sustainable green technologies. Sci. Total Environ. 2023, 875, 162708. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Q. Digital transformation, corporate social responsibility and green technology innovation-based on empirical evidence of listed companies in China. J. Clean. Prod. 2023, 424, 138805. [Google Scholar] [CrossRef]
- Yamamura, E.; Shin, I. Dynamics of agglomeration economies and regional industrial structure: The case of the assembly industry of the Greater Tokyo Region, 1960–2000. Struct. Chang. Econ. Dyn. 2007, 18, 483–499. [Google Scholar] [CrossRef]
- Yamamura, E.; Shin, I. The emerging driving force of inclusive green growth: Does digital economy agglomeration work? Bus. Strategy Environ. 2022, 31, 1656–1678. [Google Scholar] [CrossRef]
- Henderson, J.V. Optimum city size: The external diseconomy question. J. Political Econ. 1974, 82 Pt 1, 373–388. [Google Scholar] [CrossRef]
- Ciccone, A.; Hall, R.E. Productivity and the Density of Economic Activity. Am. Econ. Rev. 1996, 86, 54–70. [Google Scholar]
- Glaeser, E. Cities, productivity, and quality of life. Science 2011, 333, 592–594. [Google Scholar] [CrossRef]
- Wu, Y.; Shen, J.; Zhang, X.; Skitmore, M.; Lu, W. The impact of urbanization on carbon emissions in developing countries: A Chinese study based on the U-Kaya method. J. Clean. Prod. 2016, 135, 589–603. [Google Scholar] [CrossRef]
- Cheng, Z. The spatial correlation and interaction between manufacturing agglomeration and environmental pollution. Ecol. Indic. 2016, 61, 1024–1032. [Google Scholar] [CrossRef]
- Chen, D.; Chen, S.; Jin, H. Industrial agglomeration and CO2 emissions: Evidence from 187 Chinese prefecture-level cities over 2005–2013. J. Clean. Prod. 2018, 172, 993–1003. [Google Scholar] [CrossRef]
- Qin, Q.; Yu, Y.; Liu, Y.; Zhou, J.; Chen, X. Industrial agglomeration and energy efficiency: A new perspective from market integration. Energy Policy 2023, 183, 113793. [Google Scholar] [CrossRef]
- Wu, R.; Lin, B. Does industrial agglomeration improve effective energy service: An empirical study of China’s iron and steel industry. Appl. Energy 2021, 295, 117066. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Kahn, M.E. The greenness of cities: Carbon dioxide emissions and urban development. J. Urban Econ. 2010, 67, 404–418. [Google Scholar] [CrossRef]
- Verhoef, E.T.; Nijkamp, P. Externalities in urban sustainability: Environmental versus localization-type agglomeration externalities in a general spatial equilibrium model of a single-sector monocentric industrial city. Ecol. Econ. 2002, 40, 157–179. [Google Scholar] [CrossRef]
- Ding, J.; Liu, B.; Shao, X. Spatial effects of industrial synergistic agglomeration and regional green development efficiency: Evidence from China. Energy Econ. 2022, 112, 106156. [Google Scholar] [CrossRef]
- Hu, R.; Xu, W.; Liu, L.F.; Cui, Z.; Zhao, C. The impact of urban agglomerations on carbon emissions in China: Spatial scope and mechanism. J. Clean. Prod. 2023, 419, 138250. [Google Scholar] [CrossRef]
- Liu, K.; Xue, M.; Peng, M.; Wang, C. Impact of spatial structure of urban agglomeration on carbon emissions: An analysis of the Shandong Peninsula, China. Technol. Forecast. Soc. 2020, 161, 120313. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, W.; Ma, D.; Zhang, C. Carbon emissions and optimal scale of China’s manufacturing agglomeration under heterogeneous environmental regulation. J. Clean. Prod. 2018, 176, 140–150. [Google Scholar] [CrossRef]
- Wen, H.; Yu, H.; Lee, C.C. Spatial imbalance in the digital era: How the digital economy affects urban sprawl in China. Appl. Econ. 2024, 57, 5992–6005. [Google Scholar] [CrossRef]
- Li, Z.; Yao, L.; Wang, M.; Wei, G.; Sun, P. Does the digital economy catalyze the emergence of urban shrinkage?—Empirical evidence from Chinese prefecture-level cities. Cities 2024, 154, 105363. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, K.; Yan, T.; Cao, X. The impact of digital infrastructure on regional green innovation efficiency through industrial agglomeration and diversification. Humanit. Soc. Sci. Commun. 2025, 12, 220. [Google Scholar] [CrossRef]
- Liu, J.; Fang, Y.; Ma, Y.; Chi, Y. Digital economy, industrial agglomeration, and green innovation efficiency: Empirical analysis based on Chinese data. J. Appl. Econ. 2024, 27, 2289723. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, M.; Chen, H.; Yu, D. How does digital economy promote the geographical agglomeration of manufacturing industry? Sustainability 2023, 15, 1727. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Aguinis, H.; Edwards, J.R.; Bradley, K.J. Improving our understanding of moderation and mediation in strategic management research. Organ. Res. Methods 2017, 20, 665–685. [Google Scholar] [CrossRef]
- Shehzad, M.U.; Zhang, J.; Latif, K.F.; Jamil, K.; Waseel, A.H. Do green entrepreneurial orientation and green knowledge management matter in the pursuit of ambidextrous green innovation: A moderated mediation model. J. Clean. Prod. 2023, 388, 135971. [Google Scholar] [CrossRef]
- Cong, J.H.; Liu, X.M.; Zhao, X.R. Demarcation problems and the corresponding measurement methods of the urban carbon accounting. China Popul. Resour. Environ. 2014, 24, 19–26. [Google Scholar]
- Jing, Q.; Bai, H.; Luo, W.; Cai, B.; Xu, H. A top-bottom method for city-scale energy-related CO2 emissions estimation: A case study of 41 Chinese cities. J. Clean. Prod. 2018, 202, 444–455. [Google Scholar] [CrossRef]
- Wang, L.; Shao, J. Digital economy, entrepreneurship and energy efficiency. Energy 2023, 269, 126801. [Google Scholar] [CrossRef]
- O’Donoghue, D.; Gleave, B. A note on methods for measuring industrial agglomeration. Reg. Stud. 2004, 38, 419–427. [Google Scholar] [CrossRef]
- Li, X.; Xu, Y.; Yao, X. Effects of industrial agglomeration on haze pollution: A Chinese city-level study. Energy Policy 2021, 148, 111928. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, B.; Liu, Z. Carbon emissions dynamics, efficiency gains, and technological innovation in China’s industrial sectors. Energy 2016, 99, 10–19. [Google Scholar] [CrossRef]
- Chang, N. Changing industrial structure to reduce carbon dioxide emissions: A Chinese application. J. Clean. Prod. 2015, 103, 40–48. [Google Scholar] [CrossRef]
- Zhang, W.; Li, G.; Uddin, M.K.; Guo, S. Environmental regulation, foreign investment behavior, and carbon emissions for 30 provinces in China. J. Clean. Prod. 2020, 248, 119208. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F. The effects of trade openness on decoupling carbon emissions from economic growth–evidence from 182 countries. J. Clean. Prod. 2021, 279, 123838. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, H.V.; Rybski, D.; Kropp, J.P. Effects of changing population or density on urban carbon dioxide emissions. Nat. Commun. 2019, 10, 3204. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Zhao, Y.; Shahbaz, M.; Bano, S.; Zhang, Z.; Wang, S.; Liu, Y. Carbon emissions, energy consumption and economic growth: An aggregate and disaggregate analysis of the Indian economy. Energy Policy 2016, 96, 131–143. [Google Scholar] [CrossRef]
- Granger, C.W.J.; Newbold, P.; Econom, J. Spurious regressions in econometrics. J. Econ. 1974, 2, 111–120. [Google Scholar] [CrossRef]
- Nunn, N.; Qian, N. US food aid and civil conflict. Am. Econ. Rev. 2014, 104, 1630–1666. [Google Scholar] [CrossRef]
- Gao, D.; Li, G.; Yu, J. Does digitization improve green total factor energy efficiency? Evidence from Chinese 213 cities. Energy 2022, 247, 123395. [Google Scholar] [CrossRef]
- Duflo, E.; Pande, R. Dams. Q. J. Econ. 2007, 122, 601–646. [Google Scholar] [CrossRef]
- Behrens, K.; Duranton, G.; Robert-Nicoud, F. Productive cities: Sorting, selection, and agglomeration. J. Political Econ. 2014, 122, 507–553. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.; Meng, Y.; Zhao, W. Research on the nexus between the digital economy and carbon emissions-Evidence at China’s province level. J. Clean. Prod. 2023, 413, 137484. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, S.; Xiao, C.; Feng, C.; Li, C. Evaluating cryospheric water withdrawal and virtual water flows in Tarim River Basin of China: An input–output analysis. Sustainability 2021, 13, 7589. [Google Scholar] [CrossRef]
- Zheng, H.; Gao, X.; Sun, Q.; Han, X.; Wang, Z. The impact of regional industrial structure differences on carbon emission differences in China: An evolutionary perspective. J. Clean. Prod. 2020, 257, 120506. [Google Scholar] [CrossRef]
Variables | Description | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
lnCI | carbon emission intensity | 0.679 | 0.876 | −1.954 | 3.208 |
lnDE | digital economy level | −3.186 | 0.687 | −5.976 | −0.236 |
lnAgg | industrial agglomeration level | 2.904 | 0.241 | 2.176 | 4.048 |
lnsci | scientific and technological innovation | 4.538 | 1.204 | 1.667 | 10.033 |
str | industrial structure | 1.026 | 0.580 | 0.114 | 5.348 |
lnei | environmental regulation intensity | −0.663 | 0.139 | −1.568 | −0.376 |
lnfdi | foreign direct investment | 6.458 | 1.723 | 0.000 | 7.762 |
lnden | population density | 5.758 | 0.896 | 1.609 | 7.882 |
lnec | energy consumption intensity | −2.871 | 0.768 | −5.499 | 2.705 |
Variables | LLC | Breitung | IPS | Fisher-ADF |
---|---|---|---|---|
lnCI | −13.2469 *** (0.0000) | −3.0114 *** (0.0013) | −14.1226 *** (0.0000) | 41.2567 *** (0.0000) |
lnDE | −28.034 *** (0.0000) | −6.8489 *** (0.0000) | −12.8414 *** (0.0000) | 49.8142 *** (0.0000) |
lnAgg | −35.2644 *** (0.0000) | −3.8626 *** (0.0001) | −9.0141 *** (0.0000) | 84.1622 *** (0.0000) |
lnsci | −13.2429 *** (0.0000) | −2.2599 ** (0.0119) | −6.9593 *** (0.0000) | 52.0277 *** (0.0000) |
str | −11.1849 *** (0.0000) | −2.4296 *** (0.0076) | −3.3723 *** (0.0004) | 34.8830 *** (0.0000) |
lnei | −45.7399 *** (0.0000) | −3.0570 *** (0.0011) | −14.4470 *** (0.0000) | 47.2148 *** (0.0000) |
lnfdi | −60.6075 *** (0.0000) | −2.6581 *** (0.0039) | −12.9011 *** (0.0000) | 66.6766 *** (0.0000) |
lnden | −2.7 × 102 *** (0.0000) | −2.3497 *** (0.0094) | −6.0179 *** (0.0000) | 114.2309 *** (0.0000) |
lnec | −19.2647 *** (0.0000) | −2.7955 *** (0.0026) | −10.1035 *** (0.0000) | 77.2898 *** (0.0000) |
Explanatory Variables | Explained Variables | |||
---|---|---|---|---|
(1) | (2) | (3) | ||
lnCI | lnAgg | lnCI | lnCI | |
lnDE | −0.091 *** (0.000) | 0.082 *** (0.000) | −0.097 *** (0.000) | |
lnAgg | 0.066 ** (0.019) | 0.080 *** (0.004) | ||
lnsci | −0.101 *** (0.000) | −0.010 ** (0.030) | −0.101 *** (0.000) | −0.100 *** (0.000) |
str | 0.178 *** (0.000) | −0.007 (0.444) | 0.175 *** (0.000) | 0.178 *** (0.000) |
lnei | −0.089 *** (0.007) | −0.043 * (0.071) | −0.115 *** (0.000) | −0.086 *** (0.010) |
lnfdi | −0.007 *** (0.003) | −0.003 (0.137) | −0.008 *** (0.003) | −0.007 *** (0.004) |
lnden | −0.584 *** (0.000) | −0.100 (0.208) | −0.579 *** (0.000) | −0.576 *** (0.000) |
lnec | 0.108 *** (0.000) | −0.001 (0.907) | 0.108 *** (0.000) | 0.108 *** (0.000) |
Intercept | 4.216 *** (0.000) | 3.463 *** (0.000) | 4.242 *** (0.000) | 3.916 *** (0.000) |
City fixed | Yes | Yes | Yes | Yes |
Year fixed | Yes | Yes | Yes | Yes |
Sobel Z | −11.284 *** (0.000) | |||
Observations | 2780 | 2780 | 2780 | 2780 |
R-squared | 0.499 | 0.019 | 0.496 | 0.501 |
F-Statistic | 154.72 *** (0.000) | 2.930 *** (0.000) | 153.10 *** (0.000) | 146.51 *** (0.000) |
Explanatory Variables | Explained Variables | ||||
---|---|---|---|---|---|
lnCI | lnCI | lnCI | lnCI | lnCI | |
lnCIt−1 | 0.594 *** (0.005) | ||||
lnCIt−2 | 0.083 (0.518) | ||||
lnDE’ | −0.087 *** (0.000) | ||||
lnDE | −0.128 *** (0.000) | −0.097 *** (0.000) | −0.450 * (0.060) | −0.233 *** (0.000) | |
lnAgg | 0.083 *** (0.003) | 0.097 *** (0.002) | 0.080 *** (0.004) | 0.572 * (0.082) | 0.094 *** (0.003) |
Control | Yes | Yes | Yes | Yes | Yes |
City fixed | Yes | Yes | Yes | Yes | Yes |
Year fixed | Yes | Yes | Yes | Yes | Yes |
Observations | 2780 | 2590 | 2780 | 2224 | 2502 |
R-squared | 0.505 | 0.490 | 0.501 | 0.346 | 0.406 |
AR (1) | −3.500 *** (0.000) | ||||
AR (2) | 0.660 (0.561) | ||||
Hansen J Statistic | 12.84 (0.381) | 4.534 (0.104) | |||
Kleibergen-Paaprk LM Statistic | 163.707 *** (0.000) | ||||
Cragg-Donald Wald F Statistic | 280.114 [22.30] | ||||
F-Statistic | 149.03 *** (0.000) | 131.00 *** (0.000) | 146.51 *** (0.000) | 355.36 *** (0.000) | 131.00 *** (0.000) |
Explanatory Variables | Explained Variables | ||||
---|---|---|---|---|---|
Large Cities | Small- and Medium-Sized Cities | Eastern Cities | Central Cities | Western Cities | |
lnCI | lnCI | lnCI | lnCI | lnCI | |
lnDE | −0.051 (0.202) | −0.166 *** (0.000) | −0.007 (0.840) | −0.015 (0.729) | −0.082 ** (0.046) |
lnAgg | 0.065 (0.166) | 0.098 *** (0.005) | 0.030 (0.511) | 0.033 (0.394) | 0.127 ** (0.030) |
Control | Yes | Yes | Yes | Yes | Yes |
City fixed | Yes | Yes | Yes | Yes | Yes |
Year fixed | Yes | Yes | Yes | Yes | Yes |
Observations | 1000 | 1780 | 1190 | 770 | 820 |
R-squared | 0.590 | 0.489 | 0.534 | 0.695 | 0.438 |
F-Statistic | 74.78 *** (0.000) | 89.06 *** (0.000) | 71.12 *** (0.000) | 90.51 *** (0.000) | 33.02 *** (0.000) |
Explanatory Variables | Explained Variables | ||
---|---|---|---|
Primary Industry | Secondary Industry | Tertiary Industry | |
lnCI | lnCI | lnCI | |
lnDE | −0.089 *** (0.000) | −0.090 *** (0.000) | −0.097 *** (0.000) |
lnAgg1 | 0.005 (0.236) | ||
lnAgg2 | −0.013 (0.568) | ||
lnAgg3 | 0.053 ** (0.015) | ||
Control | Yes | Yes | Yes |
City fixed | Yes | Yes | Yes |
Year fixed | Yes | Yes | Yes |
Observations | 2780 | 2780 | 2780 |
R-squared | 0.496 | 0.499 | 0.500 |
F-Statistic | 145.00 *** (0.000) | 145.49 *** (0.000) | 146.15 *** (0.000) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Y.; Dai, W.; Yang, Y.; Liang, Q.; Wei, Z. Assessing the Impact of the Digital Economy on Carbon Emission Reduction: A Test of the Mediation Effect Based on Industrial Agglomeration. Sustainability 2025, 17, 7472. https://doi.org/10.3390/su17167472
Mao Y, Dai W, Yang Y, Liang Q, Wei Z. Assessing the Impact of the Digital Economy on Carbon Emission Reduction: A Test of the Mediation Effect Based on Industrial Agglomeration. Sustainability. 2025; 17(16):7472. https://doi.org/10.3390/su17167472
Chicago/Turabian StyleMao, Yuanlong, Wenjing Dai, Yang Yang, Qiaoxia Liang, and Zichao Wei. 2025. "Assessing the Impact of the Digital Economy on Carbon Emission Reduction: A Test of the Mediation Effect Based on Industrial Agglomeration" Sustainability 17, no. 16: 7472. https://doi.org/10.3390/su17167472
APA StyleMao, Y., Dai, W., Yang, Y., Liang, Q., & Wei, Z. (2025). Assessing the Impact of the Digital Economy on Carbon Emission Reduction: A Test of the Mediation Effect Based on Industrial Agglomeration. Sustainability, 17(16), 7472. https://doi.org/10.3390/su17167472