Spatiotemporal Simulation Prediction and Driving Force Analysis of Carbon Storage in the Sanjiangyuan Region Based on SSP-RCP Scenarios
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.3. Research Protocol
2.4. Forecast of Future LUCC Based on PLUS
2.4.1. PLUS Model
2.4.2. Model Accuracy Verification
2.5. SSP-RCP Coupling Scenario Setting
2.6. InVEST Model
2.7. Geodetector
3. Results
3.1. Spatiotemporal Changes in Land Use of the Sanjiangyuan Area in Last 20 Years
3.2. Spatiotemporal Diversity of Carbon Storage in the Sanjiangyuan Region
3.3. Land-Use Change in the Sanjiangyuan Region in 2030 Under Multi-Scenario Simulation
3.3.1. Land-Use Simulation of the Sanjiangyuan Region in Various Development Scenarios of 2030
3.3.2. Analysis of Driving Factors of Land Use
3.4. Carbon Storage Change of the Sanjiangyuan Area in 2030 Under Multi-Scenario Simulation
3.4.1. Simulation of Carbon Storage in the Sanjiangyuan Region Within Various Scenarios for 2030
3.4.2. Driving Factors of Spatial Diversity in Carbon Storage
4. Discussion
4.1. Effect of Land-Use Shift on Ecosystem Carbon Storage
4.2. Land-Use Policy Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
EP126 | Cultivated Land | Woodland | Grassland | Water | Construction Land | Unused Land | Total | Reduce | |
---|---|---|---|---|---|---|---|---|---|
2020 | |||||||||
Cultivated Land | 25.57 | 0.02 | 0.06 | 0.16 | 0.00 | 0.00 | 25.80 | 0.24 | |
Woodland | 0.00 | 167.67 | 0.00 | 0.00 | 0.00 | 0.00 | 167.67 | 0.00 | |
Grassland | 0.00 | 0.00 | 2775.75 | 0.00 | 0.00 | 0.00 | 2775.75 | 0.00 | |
Water | 0.00 | 0.00 | 0.00 | 219.43 | 0.00 | 0.00 | 219.43 | 0.00 | |
Construction Land | 0.07 | 0.00 | 0.00 | 0.01 | 3.78 | 0.02 | 3.88 | 0.11 | |
Unused Land | 0.02 | 0.06 | 2.84 | 11.35 | 0.68 | 693.55 | 708.50 | 14.96 | |
Total | 25.67 | 167.74 | 2778.66 | 230.95 | 4.46 | 693.57 | 3901.04 | 0.00 | |
New addition | 0.10 | 0.07 | 2.90 | 11.52 | 0.68 | 0.02 |
ND126 | Cultivated Land | Woodland | Grassland | Water | Construction Land | Unused Land | Total | Reduce | |
---|---|---|---|---|---|---|---|---|---|
2020 | |||||||||
Cultivated Land | 25.64 | 0.02 | 0.05 | 0.06 | 0.03 | 0.01 | 25.80 | 0.16 | |
Woodland | 0.00 | 167.67 | 0.00 | 0.00 | 0.00 | 0.00 | 167.67 | 0.00 | |
Grassland | 0.00 | 0.00 | 2775.75 | 0.00 | 0.00 | 0.00 | 2775.75 | 0.00 | |
Water | 0.00 | 0.00 | 0.00 | 219.37 | 0.00 | 0.05 | 219.43 | 0.06 | |
Construction Land | 0.02 | 0.00 | 0.00 | 0.01 | 3.84 | 0.02 | 3.88 | 0.05 | |
Unused Land | 0.00 | 0.05 | 2.17 | 11.51 | 0.68 | 694.08 | 708.50 | 14.42 | |
Total | 25.67 | 167.74 | 2777.97 | 230.95 | 4.55 | 694.16 | 3901.04 | 0.00 | |
New addition | 0.02 | 0.07 | 2.22 | 11.58 | 0.72 | 0.09 |
EP245 | Cultivated Land | Woodland | Grassland | Water | Construction Land | Unused Land | Total | Reduce | |
---|---|---|---|---|---|---|---|---|---|
2020 | |||||||||
Cultivated Land | 25.74 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 25.80 | 0.07 | |
Woodland | 0.00 | 167.67 | 0.00 | 0.00 | 0.00 | 0.00 | 167.67 | 0.00 | |
Grassland | 0.00 | 0.03 | 2771.78 | 3.94 | 0.00 | 0.00 | 2775.75 | 3.97 | |
Water | 0.00 | 0.00 | 0.00 | 219.43 | 0.00 | 0.00 | 219.43 | 0.00 | |
Construction Land | 0.28 | 0.00 | 0.00 | 0.00 | 3.57 | 0.03 | 3.88 | 0.31 | |
Unused Land | 0.15 | 0.00 | 0.00 | 5.53 | 0.67 | 702.15 | 708.50 | 6.35 | |
Total | 26.17 | 167.71 | 2771.79 | 228.97 | 4.24 | 702.18 | 3901.04 | 0.00 | |
New addition | 0.43 | 0.03 | 0.00 | 9.54 | 0.67 | 0.03 |
ND245 | Cultivated Land | Woodland | Grassland | Water | Construction Land | Unused Land | Total | Reduce | |
---|---|---|---|---|---|---|---|---|---|
2020 | |||||||||
Cultivated Land | 25.72 | 0.00 | 0.00 | 0.05 | 0.03 | 0.01 | 25.80 | 0.08 | |
Woodland | 0.00 | 167.66 | 0.00 | 0.01 | 0.00 | 0.00 | 167.67 | 0.01 | |
Grassland | 0.22 | 0.00 | 2770.68 | 4.33 | 0.21 | 0.31 | 2775.75 | 5.07 | |
Water | 0.00 | 0.00 | 0.00 | 219.40 | 0.00 | 0.03 | 219.43 | 0.03 | |
Construction Land | 0.13 | 0.00 | 0.00 | 0.00 | 3.73 | 0.03 | 3.88 | 0.16 | |
Unused Land | 0.05 | 0.00 | 0.07 | 5.19 | 0.71 | 702.48 | 708.50 | 6.02 | |
Total | 26.12 | 167.66 | 2770.76 | 228.97 | 4.68 | 702.86 | 3901.04 | 0.00 | |
New addition | 0.40 | 0.00 | 0.07 | 9.57 | 0.95 | 0.38 |
EP585 | Cultivated Land | Woodland | Grassland | Water | Construction Land | Unused Land | Total | Reduce | |
---|---|---|---|---|---|---|---|---|---|
2020 | |||||||||
Cultivated Land | 25.61 | 0.14 | 0.01 | 0.04 | 0.00 | 0.00 | 25.80 | 0.20 | |
Woodland | 0.00 | 167.07 | 0.55 | 0.05 | 0.00 | 0.00 | 167.67 | 0.60 | |
Grassland | 0.00 | 0.79 | 2769.91 | 5.06 | 0.00 | 0.00 | 2775.75 | 5.85 | |
Water | 0.00 | 0.00 | 0.00 | 219.43 | 0.00 | 0.00 | 219.43 | 0.00 | |
Construction Land | 0.70 | 0.04 | 0.00 | 0.00 | 3.12 | 0.01 | 3.88 | 0.76 | |
Unused Land | 0.51 | 0.44 | 0.50 | 4.26 | 0.61 | 702.17 | 708.50 | 6.33 | |
Total | 26.82 | 168.49 | 2770.98 | 228.84 | 3.73 | 702.18 | 3901.04 | 0.00 | |
New addition | 1.21 | 1.42 | 1.07 | 9.41 | 0.61 | 0.01 |
ND585 | Cultivated Land | Woodland | Grassland | Water | Construction Land | Unused Land | Total | Reduce | |
---|---|---|---|---|---|---|---|---|---|
2020 | |||||||||
Cultivated Land | 25.43 | 0.08 | 0.00 | 0.04 | 0.13 | 0.11 | 25.80 | 0.37 | |
Woodland | 0.15 | 166.77 | 0.03 | 0.05 | 0.04 | 0.64 | 167.67 | 0.90 | |
Grassland | 0.23 | 0.39 | 2769.65 | 4.83 | 0.23 | 0.44 | 2775.75 | 6.11 | |
Water | 0.00 | 0.00 | 0.00 | 219.40 | 0.00 | 0.03 | 219.43 | 0.03 | |
Construction Land | 0.56 | 0.02 | 0.00 | 0.00 | 3.29 | 0.02 | 3.88 | 0.60 | |
Unused Land | 0.37 | 0.35 | 0.10 | 4.53 | 0.62 | 702.54 | 708.50 | 5.96 | |
Total | 26.75 | 167.60 | 2769.78 | 228.84 | 4.30 | 703.78 | 3901.04 | 0.00 | |
New addition | 1.31 | 0.83 | 0.14 | 9.44 | 1.01 | 1.24 |
References
- Sarkodie, S.A.; Owusu, P.A.; Leirvik, T. Global Effect of Urban Sprawl, Industrialization, Trade and Economic Development on Carbon Dioxide Emissions. Environ. Res. Lett. 2020, 15, 034049. [Google Scholar] [CrossRef]
- Li, S.; Bing, Z.; Jin, G. Spatially Explicit Mapping of Soil Conservation Service in Monetary Units Due to Land Use/Cover Change for the Three Gorges Reservoir Area, China. Remote Sens. 2019, 11, 468. [Google Scholar] [CrossRef]
- Zafar, Z.; Zubair, M.; Zha, Y.; Mehmood, M.S.; Rehman, A.; Fahd, S.; Nadeem, A.A. Predictive Modeling of Regional Carbon Storage Dynamics in Response to Land Use/Land Cover Changes: An InVEST-Based Analysis. Ecol. Inform. 2024, 82, 102701. [Google Scholar] [CrossRef]
- Zhu, L.; Song, R.; Sun, S.; Li, Y.; Hu, K. Land Use/Land Cover Change and Its Impact on Ecosystem Carbon Storage in Coastal Areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [Google Scholar] [CrossRef]
- Lal, R.; Smith, P.; Jungkunst, H.F.; Mitsch, W.J.; Lehmann, J.; Nair, P.K.R.; McBratney, A.B.; De Moraes Sá, J.C.; Schneider, J.; Zinn, Y.L.; et al. The Carbon Sequestration Potential of Terrestrial Ecosystems. J. Soil Water Conserv. 2018, 73, 145A–152A. [Google Scholar] [CrossRef]
- Houghton, R.A. Revised Estimates of the Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use and Land Management 1850–2000. Tellus B 2003, 55, 378–390. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y. Implementation Pathway and Policy System of Carbon Neutrality Visi. Chin. J. Environ. Manag. 2020, 12, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Shi, P.-J.; Wang, Z.-Y.; Cheng, F.-Y. Spatial-Temporal Evolution and Prediction of Carbon Storage in Jiuquan City Ecosystem Based on PLUS-InVEST Model. Huan Jing Ke Xue 2024, 45, 300–313. [Google Scholar] [CrossRef]
- Babbar, D.; Areendran, G.; Sahana, M.; Sarma, K.; Raj, K.; Sivadas, A. Assessment and Prediction of Carbon Sequestration Using Markov Chain and InVEST Model in Sariska Tiger Reserve, India. J. Clean. Prod. 2021, 278, 123333. [Google Scholar] [CrossRef]
- Wang, C.; Guo, X.; Guo, L.; Bai, L.; Xia, L.; Wang, C.; Li, T. Land Use Change and Its Impact on Carbon Storage in Northwest China Based on FLUS-Invest: A Case Study of Hu-Bao-Er-Yu Urban Agglomeration. Ecol. Environ. Sci. 2022, 31, 1667–1679. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, J.; Hou, J.; Zhou, G.; You, H.; Han, X. Study on Sustainable Development of Carbon Storage in Guilin Coupled with InVEST and GeoSOS-FLUS Model. China Environ. Sci. 2022, 42, 2799–2809. [Google Scholar] [CrossRef]
- Houghton, R.A.; Nassikas, A.A. Global and Regional Fluxes of Carbon from Land Use and Land Cover Change 1850–2015. Glob. Biogeochem. Cycles 2017, 31, 456–472. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Li, S.; Li, X. Multi-Scenario Simulation Analysis of Land Use and Carbon Storage Changes in Changchun City Based on FLUS and InVEST Model. Land 2022, 11, 647. [Google Scholar] [CrossRef]
- Xie, L.; Bai, Z.; Yang, B.; Fu, S. Simulation Analysis of Land-Use Pattern Evolution and Valuation of Terrestrial Ecosystem Carbon Storage of Changzhi City, China. Land 2022, 11, 1270. [Google Scholar] [CrossRef]
- Lahiji, R.N.; Dinan, N.M.; Liaghati, H.; Ghaffarzadeh, H.; Vafaeinejad, A. Scenario-Based Estimation of Catchment Carbon Storage: Linking Multi-Objective Land Allocation with InVEST Model in a Mixed Agriculture-Forest Landscape. Front. Earth Sci. 2020, 14, 637–646. [Google Scholar] [CrossRef]
- Yue, S.; Ji, G.; Chen, W.; Huang, J.; Guo, Y.; Cheng, M. Spatial and Temporal Variability Characteristics of Future Carbon Stocks in Anhui Province under Different SSP Scenarios Based on PLUS and InVEST Models. Land 2023, 12, 1668. [Google Scholar] [CrossRef]
- Yue, L.; Huacai, G.; Luhua, W.; Guangjie, L.; Fei, C. Ecosystem Service Functions of a Typical Karst Urban Basin Based on Land Use Change. J. Resour. Ecol. 2024, 15, 1–14. [Google Scholar] [CrossRef]
- Guo, P. Research on Land Use/Cover Structure and Space Optimization by Coupling MOP and PLUS Models—A Case Study of Hefei City. Master’s Dissertation, Hefei University of Technology, Hefei, China, 2021. [Google Scholar]
- Gong, S.; Zhang, Y.; Li, Y. Spatio-Temporal Variation and Prediction of Carbon Storage in Beijing Tianjin-Hebei Region-A PLUS-InVEST Model Approach. J. Arid. Land Resour. Environ. 2023, 37, 20–28. [Google Scholar] [CrossRef]
- Cao, P.; Qi, X.; Yang, W.; Tong, B. Multi Scenario Simulation and Prediction of Carbon Storage for Land Use Types in Inner Mongolia. J. Arid. Land Resour. Environ. 2023, 37, 83–90. [Google Scholar] [CrossRef]
- Zhang, X.; Han, Y.; Han, Y. Land Use Change and Carbon Stock Assessment in Southern Shaanxi Based on the PLUS-InVEST Model under Multiple Scenarios. Areal Res. Dev. 2024, 43, 160+146–152. [Google Scholar] [CrossRef]
- Cui, W.; Cai, L.; Xi, H.; Yang, F.; Chen, M. Ecological Security Assessment and Multi-Scenario Simulation Analysis of Zhejiang Greater Bay Area Based on LUCC. Acta Ecol. Sin. 2022, 42, 2136–2148. [Google Scholar] [CrossRef]
- Wang, W.; Fu, T.; Chen, H. Spatio-Temporal Evolution and Prediction of Carbon Storage in the Yangtze River Delta Urban Agglomeration Based on PLUS-InVEST Model. Environ. Sci. 2025, 46, 1937–1950. [Google Scholar]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon Emissions from Land-Use Change and Management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic Simulation of Land Use Change and Assessment of Carbon Storage Based on Climate Change Scenarios at the City Level: A Case Study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Cook, B.I.; Mankin, J.S.; Marvel, K.; Williams, A.P.; Smerdon, J.E.; Anchukaitis, K.J. Twenty-First Century Drought Projections in the CMIP6 Forcing Scenarios. Earth’s Future 2020, 8, e2019EF001461. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Dong, N.; You, L.; Cai, W.; Li, G.; Lin, H. Land Use Projections in China under Global Socioeconomic and Emission Scenarios: Utilizing a Scenario-Based Land-Use Change Assessment Framework. Glob. Environ. Change 2018, 50, 164–177. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Schiller, C.; Kattenborn, T.; Zhao, X.; Qu, J. A Landsat-Based Vegetation Trend Product of the Tibetan Plateau for the Time-Period 1990–2018. Sci. Data 2019, 6, 78. [Google Scholar] [CrossRef]
- Zhai, X.; Liang, X.; Yan, C.; Xing, X.; Jia, H.; Wei, X.; Feng, K. Vegetation Dynamic Changes and Their Response to Ecological Engineering in the Sanjiangyuan Region of China. Remote Sens. 2020, 12, 4035. [Google Scholar] [CrossRef]
- Chang, X.; Wang, S.; Cui, S.; Zhu, X.; Luo, C.; Zhang, Z.; Wilkes, A. Alpine Grassland Soil Organic Carbon Stock and Its Uncertainty in the Three Rivers Source Region of the Tibetan Plateau. PLoS ONE 2014, 9, e97140. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Li, Q.; Huo, L.; Xu, Q.; Chen, X.; He, F.; Zhao, L. Soil Nutrients Directly Drive Soil Microbial Biomass and Carbon Metabolism in the Sanjiangyuan Alpine Grassland. J. Soil Sci. Plant Nutr. 2023, 23, 3548–3560. [Google Scholar] [CrossRef]
- Nie, X.; Yang, L.; Li, F.; Xiong, F.; Li, C.; Zhou, G. Storage, Patterns and Controls of Soil Organic Carbon in the Alpine Shrubland in the Three Rivers Source Region on the Qinghai-Tibetan Plateau. CATENA 2019, 178, 154–162. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, G.; Mou, N.; Xie, Y.; Xu, Z.; Li, Y. Assessment of Carbon Storage and Its Influencing Factors in Qinghai-Tibet Plateau. Sustainability 2018, 10, 1864. [Google Scholar] [CrossRef]
- Peng, M. Spatiotemporal Evolution Characteristics and Driving Forces of Water Conservation in Three River Headwaters. Master’s Dissertation, Sichuan University, Chengdu, China, 2025. [Google Scholar]
- Yi, X.; Li, G.; Yin, Y.; Peng, J. Comparison on soil depth prediction among different spatial interpolation methods: A case study in the Three-River Headwaters Region of Qinghai Province. Geogr. Res. 2012, 31, 1793–1805. [Google Scholar]
- Gao, L.; Feng, Q.; Li, Z.; Deng, X.; Xue, J.; Zhang, B. Spatio-temporal Pattern and Key Influencing Factors of Water Conservation Value in the Three-River Source Region. Acta Ecol. Sin. 2024, 44, 7074–7086. [Google Scholar]
- Wang, C.; Li, T.; Guo, X.; Xia, L.; Lu, C.; Wang, C. Plus-InVEST Study of the Chengdu-Chongqing Urban Agglomeration’s Land-Use Change and Carbon Storage. Land 2022, 11, 1617. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, C.; Lu, M.; Wang, L.; Guo, B. Patterns and Dominant Driving Factors of Carbon Storage Changes in the Qinghai–Tibet Plateau under Multiple Land Use Change Scenarios. Forests 2024, 15, 418. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, L.; Wang, T.; Ruan, Z.; Du, P. Spatial–Temporal Evolution Analysis of Multi-Scenario Land Use and Carbon Storage Based on PLUS-InVEST Model: A Case Study in Dalian, China. Ecol. Indic. 2024, 166, 112448. [Google Scholar] [CrossRef]
- Liao, W.; Liu, X.; Xu, X.; Chen, G.; Liang, X.; Zhang, H.; Li, X. Projections of Land Use Changes under the Plant Functional Type Classification in Different SSP-RCP Scenarios in China. Sci. Bull. 2020, 65, 1935–1947. [Google Scholar] [CrossRef]
- Kok, K.; Pedde, S.; Gramberger, M.; Harrison, P.A.; Holman, I.P. New European Socio-Economic Scenarios for Climate Change Research: Operationalising Concepts to Extend the Shared Socio-Economic Pathways. Reg. Environ. Change 2019, 19, 643–654. [Google Scholar] [CrossRef]
- Ding, Y.; Peng, S. Spatiotemporal Change and Attribution of Potential Evapotranspiration over China from 1901 to 2100. Theor. Appl. Climatol. 2021, 145, 79–94. [Google Scholar] [CrossRef]
- Ding, Y.; Peng, S. Spatiotemporal Trends and Attribution of Drought across China from 1901–2100. Sustainability 2020, 12, 477. [Google Scholar] [CrossRef]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.H.; Bullock, J.M. Empirical Validation of the InVEST Water Yield Ecosystem Service Model at a National Scale. Sci. Total Environ. 2016, 569–570, 1418–1426. [Google Scholar] [CrossRef]
- Xu, L.; He, N.; Yu, G. A Dataset of Carbon Density in Chinese Terrestrial Ecosystems (2010s) (DB/OL). Science Data Bank 2018. Available online: https://www.scidb.cn/en/detail?dataSetId=633694461066477570 (accessed on 13 March 2025).
- Piyathilake, I.D.U.H.; Udayakumara, E.P.N.; Ranaweera, L.V.; Gunatilake, S.K. Modeling Predictive Assessment of Carbon Storage Using InVEST Model in Uva Province, Sri Lanka. Model. Earth Syst. Environ. 2022, 8, 2213–2223. [Google Scholar] [CrossRef]
- Li, K.; Cao, J.; Adamowski, J.F.; Biswas, A.; Zhou, J.; Liu, Y.; Zhang, Y.; Liu, C.; Dong, X.; Qin, Y. Assessing the Effects of Ecological Engineering on Spatiotemporal Dynamics of Carbon Storage from 2000 to 2016 in the Loess Plateau Area Using the InVEST Model: A Case Study in Huining County, China. Environ. Dev. 2021, 39, 100641. [Google Scholar] [CrossRef]
- Zhang, F.; Zhan, J.; Zhang, Q.; Yao, L.; Liu, W. Impacts of Land Use/Cover Change on Terrestrial Carbon Stocks in Uganda. Phys. Chem. Earth Parts A/B/C 2017, 101, 195–203. [Google Scholar] [CrossRef]
- Alam, S.A.; Starr, M.; Clark, B.J.F. Tree Biomass and Soil Organic Carbon Densities across the Sudanese Woodland Savannah: A Regional Carbon Sequestration Study. J. Arid. Environ. 2013, 89, 67–76. [Google Scholar] [CrossRef]
- Xiang, S.; Wang, Y.; Deng, H.; Yang, C.; Wang, Z.; Gao, M. Response and Multi-Scenario Prediction of Carbon Storage to Land Use/Cover Change in the Main Urban Area of Chongqing, China. Ecol. Indic. 2022, 142, 109205. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, B.; Wang, G. Spatial–Temporal Changes and Prediction of Carbon Storage in the Tibetan Plateau Based on PLUS-InVEST Model. Forests 2023, 14, 1352. [Google Scholar] [CrossRef]
- Abu-hashim, M.; Elsayed, M.; Belal, A.-E. Effect of Land-Use Changes and Site Variables on Surface Soil Organic Carbon Pool at Mediterranean Region. J. Afr. Earth Sci. 2016, 114, 78–84. [Google Scholar] [CrossRef]
- Bremer, L.L.; Farley, K.A.; Chadwick, O.A.; Harden, C.P. Changes in Carbon Storage with Land Management Promoted by Payment for Ecosystem Services. Environ. Conserv. 2016, 43, 397–406. [Google Scholar] [CrossRef]
- Liu, W.; Yan, Y.; Wang, D.; Ma, W. Integrate Carbon Dynamics Models for Assessing the Impact of Land Use Intervention on Carbon Sequestration Ecosystem Service. Ecol. Indic. 2018, 91, 268–277. [Google Scholar] [CrossRef]
- Wang, H.; Jin, H.; Li, X.; Zhou, L.; Qi, Y.; Huang, C.; He, R.; Zhang, J.; Yang, R.; Luo, D.; et al. Changes in Carbon Stock in the Xing’an Permafrost Regions in Northeast China from the Late 1980s to 2020. GIScience Remote Sens. 2023, 60, 2217578. [Google Scholar] [CrossRef]
- Zhang, T. Carrying Capacity and Sustainability of Alpine Grassland in the Three-River Headwaters under Future Land Use Scenarios. Master’s Dissertation, Yangtze University, Wuhan, China, 2024. [Google Scholar]
- Xu, Q.; Li, Q.; Chen, D.; Luo, C.; Zhao, X.; Zhao, L. Land Use Change in the Three-River Headwaters in Recent 40 Years. Arid Zone Res. 2018, 35, 695–704. [Google Scholar] [CrossRef]
- Xu, R.; Shi, P.; Gao, M.; Wang, Y.; Wang, G.; Su, B.; Huang, J.; Lin, Q.; Jiang, T. Projected Land Use Changes in the Qinghai-Tibet Plateau at the Carbon Peak and Carbon Neutrality Targets. Sci. China Earth Sci. 2023, 66, 1383–1398. [Google Scholar] [CrossRef]
- Hao, J.; Zhi, L.; Li, X.; Dong, S.; Li, W. Temporal and Spatial Variations and the Relationships of Land Use Pattern and Ecosystem Services in Qinghai-Tibet Plateau, China. Chin. J. Appl. Ecol. 2023, 34, 3053. [Google Scholar] [CrossRef]
- Liu, D.; Chen, Y.; Cai, W.; Dong, W.; Xiao, J.; Chen, J.; Zhang, H.; Xia, J.; Yuan, W. The Contribution of China’s Grain to Green Program to Carbon Sequestration. Landsc. Ecol. 2014, 29, 1675–1688. [Google Scholar] [CrossRef]
- Shen, X.; Liu, Y.; Zhang, J.; Wang, Y.; Ma, R.; Liu, B.; Lu, X.; Jiang, M. Asymmetric Impacts of Diurnal Warming on Vegetation Carbon Sequestration of Marshes in the Qinghai Tibet Plateau. Glob. Biogeochem. Cycles 2022, 36, e2022GB007396. [Google Scholar] [CrossRef]
- Yuan, L.; Xu, J.; Feng, B. Evaluation and Prediction of Carbon Storage in the Qinghai-Tibet Plateau by Coupling the GMMOP and PLUS Models. Sustainability 2024, 16, 5776. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, Q.; Huang, P.; Chen, D. Estimation and multiscenario prediction of land use carbon storage in Western Sichuan Plateau. J. Soiland Water Conserv. 2024, 38, 207–219. [Google Scholar] [CrossRef]
- Jia, J.; Guo, W.; Xu, L.; Gao, C. Spatio-Temporal Evolution and Driving Force Analysis of Carbon Storage in Anhui Province Coupled with PLUS-InVEST-GeoDetector Model. Environ. Sci. 2025, 46, 1703–1715. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, Q.; Zhang, R.; Song, C.; Li, Z. Evaluating the Changes and Driving Factors of Carbon Storage Using the PLUS-InVEST Model: A Case Study of Napa Sea Basin. China Environ. Sci. 2024, 44, 5192–5201. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, L.; Meng, Q.; Wu, H.; Hou, J.; Pan, J.; Wu, J. Land Use and Carbon Storage Evolution Under Multiple Scenarios: A Spatiotemporal Analysis of Beijing Using the PLUS-InVEST Model. Sustainability 2025, 17, 1589. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Wu, B.; Zhao, J.; Jiang, W.; Feng, X.; Li, Y. Spatio-Temporal Evolution and Prediction of Carbon Storage in Kunming Based on PLUS and InVEST Models. PeerJ 2023, 11, e15285. [Google Scholar] [CrossRef]
- Zhou, J.; Johnson, V.C.; Shi, J.; Tan, M.L.; Zhang, F. Multi-Scenario Land Use Change Simulation and Spatial-Temporal Evolution of Carbon Storage in the Yangtze River Delta Region Based on the PLUS-InVEST Model. PLoS ONE 2025, 20, e0316255. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hu, J.; Kang, J.; Shu, W. Spatio-Temporal Variation and Prediction of Land Use and Carbon Storage Based on PLUS-InVEST Model in Shanxi Province, China. Landsc. Ecol. Eng. 2025, 21, 107–119. [Google Scholar] [CrossRef]
- Wang, N.; Chen, X.; Zhang, Z.; Pang, J. Spatiotemporal Dynamics and Driving Factors of County-Level Carbon Storage in the Loess Plateau: A Case Study in Qingcheng County, China. Ecol. Indic. 2022, 144, 109460. [Google Scholar] [CrossRef]
Number | Type | Name of Data | Resolution (m) | Data Sources |
---|---|---|---|---|
Basic Data | Land use | 30 | National Geographic Information Resource Catalog Service System (https://www.webmap.cn/) (accessed on 15 March 2025) | |
X1 | Environmental Data | Soil type | 1000 | Soil Science Database (http://www.resdc.cn/) (accessed on 16 March 2025) |
X2 | Average annual temperature | 1000 | National Earth System Science Data Center (http://www.geodata.cn/) (accessed on 16 March 2025) | |
X3 | Average annual precipitation | 1000 | ||
X4 | DEM | 30 | Geospatial Data Cloud (http://www.gscloud.cn/search) (accessed on 16 March 2025) | |
X5 | Slope | 30 | Obtained directly from DEM calculation in ArcGIS | |
X6 | Socioeconomic Data | GDP | 1000 | Resource and Environment Science and Data Center (http://www.resdc.cn) (accessed on 16 March 2025) |
X7 | Population density | 1000 | ||
X8 | Nighttime light | 1000 | ||
X9 | Distance to railroads | 30 | Open Street Map (https://www.openstreetmap.org/) (accessed on 16 March 2025) | |
X10 | Distance to national highways | 30 | ||
X11 | Distance to provincial roads | 30 | ||
X12 | Distance to county roads | 30 | ||
X13 | Distance to township roads | 30 | ||
X14 | Distance to county governments | 30 | National Geographic Information Resource Catalog Service System (https://www.webmap.cn/) (accessed on 16 March 2025) | |
X15 | Distance to waters | 30 |
Land-Use Type | Cultivated Land | Woodland | Grassland | Water | Construction Land | Unused Land |
---|---|---|---|---|---|---|
Domain weight | 0.41 | 0.42 | 0.14 | 1.00 | 0.52 | 0.10 |
Land-Use Type | ND | EP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | A | B | C | D | E | F | |
A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
B | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
C | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
D | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
E | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
F | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Land-Use Type | C_Above | C_Below | C_Soil | C_Dead |
---|---|---|---|---|
Cultivated Land | 0.17 | 0.82 | 35.20 | 0.1 |
Woodland | 39.70 | 12.57 | 88.71 | 0.14 |
Grassland | 0.61 | 6.98 | 71.70 | 0.07 |
Water | 0 | 0 | 0 | 0 |
Construction Land | 0.03 | 0.28 | 0 | 0 |
Unused land | 0.01 | 0 | 0.22 | 0 |
Land-Use Type | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
Area/ha | Percentage/% | Area/ha | Percentage/% | Area/ha | Percentage/% | |
Cultivated Land | 251,061.66 | 0.64 | 258,653.34 | 0.66 | 258,016.95 | 0.67 |
Woodland | 1,676,811.69 | 4.30 | 1,676,730.87 | 4.30 | 1,676,716.74 | 4.30 |
Grassland | 27,886,071.87 | 71.48 | 27,805,857.21 | 71.27 | 27,757,545.30 | 71.15 |
Water | 2,081,886.84 | 5.34 | 2,093,165.37 | 5.37 | 2,194,290.81 | 5.62 |
Construction Land | 19,629.45 | 0.05 | 20,167.56 | 0.05 | 38,848.05 | 0.10 |
Unused Land | 7,096,691.70 | 18.19 | 7,157,578.77 | 18.35 | 7,085,025.45 | 18.16 |
Total | 39,012,153.21 | 100.00 | 39,012,153.12 | 100.00 | 39,010,443.30 | 100.00 |
Year | Scenarios | Cultivated Land | Woodland | Grassland | Water | Construction Land | Unused Land |
---|---|---|---|---|---|---|---|
2020 | 258,016.95 | 1,676,716.74 | 27,757,545.30 | 2,194,290.81 | 38,848.05 | 7,085,025.45 | |
2030 | EP126 | 256,657.32 | 1,677,436.38 | 27,786,553.56 | 2,309,501.16 | 44,622.18 | 6,935,672.70 |
ND126 | 256,657.41 | 1,677,403.98 | 27,779,708.34 | 2,309,501.16 | 45,524.07 | 6,941,648.34 | |
EP245 | 261,654.21 | 1,677,061.53 | 27,717,851.61 | 2,289,721.77 | 42,403.68 | 7,021,750.50 | |
ND245 | 261,228.87 | 1,676,600.82 | 27,707,585.04 | 2,289,691.62 | 46,773.45 | 7,028,563.50 | |
EP585 | 268,174.89 | 1,684,883.97 | 27,709,794.00 | 2,288,403.90 | 37,348.29 | 7,021,838.25 | |
ND585 | 267,463.35 | 1,676,044.44 | 27,697,820.22 | 2,288,369.07 | 42,958.17 | 7,037,788.05 | |
2020–2030 | EP126 | −1359.63 | 719.64 | 29,008.26 | 115,210.35 | 5774.13 | −149,352.75 |
ND126 | −1359.54 | 687.24 | 22,163.04 | 115,210.35 | 6676.02 | −143,377.11 | |
EP245 | 3637.26 | 344.79 | −39,693.69 | 95,430.96 | 3555.63 | −63,274.95 | |
ND245 | 3211.92 | −115.92 | −49,960.26 | 95,400.81 | 7925.40 | −56,461.95 | |
EP585 | 10,157.94 | 8167.23 | −47,751.30 | 94,113.09 | −1499.76 | −63,187.20 | |
ND585 | 9446.40 | −672.30 | −59,725.08 | 94,078.26 | 4110.12 | −47,237.40 |
EP126 | EP245 | EP585 | ND126 | ND245 | ND585 | |
---|---|---|---|---|---|---|
Cultivated Land | 9.315 | 9.496 | 9.733 | 9.315 | 9.481 | 9.707 |
Woodland | 236.718 | 236.665 | 237.769 | 236.714 | 236.600 | 236.522 |
Grassland | 2204.940 | 2199.489 | 2198.849 | 2204.397 | 2198.674 | 2197.899 |
Construction Land | 0.014 | 0.013 | 0.011 | 0.014 | 0.014 | 0.013 |
Unused Land | 1.605 | 1.625 | 1.625 | 1.607 | 1.627 | 1.629 |
Year | Scenarios | Grassland | Woodland | Cultivated Land | Unused Land | Construction Land | Total |
---|---|---|---|---|---|---|---|
2020 | 2202.639 | 236.617 | 9.364 | 1.640 | 0.012 | 2450.271 | |
2030 | ND126 | 2204.397 | 236.714 | 9.315 | 1.607 | 0.014 | 2452.047 |
ND245 | 2198.674 | 236.600 | 9.481 | 1.627 | 0.014 | 2446.396 | |
ND585 | 2197.899 | 236.522 | 9.707 | 1.629 | 0.013 | 2445.770 | |
EP126 | 2204.940 | 236.718 | 9.315 | 1.605 | 0.014 | 2452.593 | |
EP245 | 2199.489 | 236.665 | 9.496 | 1.625 | 0.013 | 2447.289 | |
EP585 | 2198.849 | 237.769 | 9.733 | 1.625 | 0.011 | 2447.988 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhang, H.; Zhao, L.; Xu, M.; Qi, C.; Gu, Q.; Wang, Y. Spatiotemporal Simulation Prediction and Driving Force Analysis of Carbon Storage in the Sanjiangyuan Region Based on SSP-RCP Scenarios. Sustainability 2025, 17, 7391. https://doi.org/10.3390/su17167391
Li Z, Zhang H, Zhao L, Xu M, Qi C, Gu Q, Wang Y. Spatiotemporal Simulation Prediction and Driving Force Analysis of Carbon Storage in the Sanjiangyuan Region Based on SSP-RCP Scenarios. Sustainability. 2025; 17(16):7391. https://doi.org/10.3390/su17167391
Chicago/Turabian StyleLi, Zeyu, Haichen Zhang, Linxing Zhao, Maqiang Xu, Changxian Qi, Qiang Gu, and Yanhe Wang. 2025. "Spatiotemporal Simulation Prediction and Driving Force Analysis of Carbon Storage in the Sanjiangyuan Region Based on SSP-RCP Scenarios" Sustainability 17, no. 16: 7391. https://doi.org/10.3390/su17167391
APA StyleLi, Z., Zhang, H., Zhao, L., Xu, M., Qi, C., Gu, Q., & Wang, Y. (2025). Spatiotemporal Simulation Prediction and Driving Force Analysis of Carbon Storage in the Sanjiangyuan Region Based on SSP-RCP Scenarios. Sustainability, 17(16), 7391. https://doi.org/10.3390/su17167391