Evaluating Porcelain Polishing Waste as a Pyro-Expansive Agent in Clay Formulations for Sustainable Lightweight Aggregates
Abstract
1. Introduction
2. Methodology
2.1. Collection and Processing of Raw Materials
2.2. Characterization of Raw Materials
2.3. Preparation and Characterization of Samples
- —average bloating index, in percentage (%);
- —initial volume (before sintering), in cm3;
- —final volume (after sintering), in cm3.
- —average mass loss, in percentage (%);
- —dry mass, in grams;
- —sintered mass, in grams.
- —average specific gravity, in g/cm3;
- —sintered mass, in grams;
- —saturated mass, in grams;
- —immersed mass, in grams;
- —density of water (g/cm3) at the test temperature (°C).
- —average water absorption, in percentage (%);
- —saturated mass, in grams;
- —sintered mass, in grams.
2.4. Application Catalog and Statistical Modeling
3. Results and Discussion
3.1. Technological Tests
3.2. Applications
3.3. Statistical Analyses
3.3.1. Taguchi Method
3.3.2. Analysis of Variance
3.3.3. Surface Charts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Y.; Zhao, F. Impact of Energy Depletion, Human Development, and Income Distribution on Natural Resource Sustainability. Resour. Policy 2023, 83, 103531. [Google Scholar] [CrossRef] [PubMed]
- Kępniak, M.; Łukowski, P. Multicriteria Analysis of Cement Mortar with Recycled Sand. Sustainability 2024, 16, 1773. [Google Scholar] [CrossRef]
- United Nations Environment Programme. 2021 Global Status Report for Buildings and Construction. 2021. Available online: https://globalabc.org/sites/default/files/2021-10/GABC_Buildings-GSR-2021_BOOK.pdf (accessed on 17 August 2024).
- López-Acevedo, F.J.; Herrero, M.J.; Escavy Fernández, J.I.; González Bravo, J. Potential Reduction in Carbon Emissions in the Transport of Aggregates by Switching from Road-Only Transport to an Intermodal Rail/Road System. Sustainability 2024, 16, 9871. [Google Scholar] [CrossRef]
- Mañosa, J.; Formosa, J.; Giro-Paloma, J.; Maldonado-Alameda, A.; Quina, M.J.; Chimenos, J.M. Valorisation of Water Treatment Sludge for Lightweight Aggregate Production. Constr. Build. Mater. 2021, 269, 121335. [Google Scholar] [CrossRef]
- Tang, C.W.; Cheng, C.K. Sustainable Use of Sludge from Industrial Park Wastewater Treatment Plants in Manufacturing Lightweight Aggregates. Materials 2022, 15, 1785. [Google Scholar] [CrossRef] [PubMed]
- Thukkaram, S.; Arun Kumar, A. Behaviour of Sewage Sludge Based Lightweight Aggregate in Geopolymer Concrete. Mater. Res. Express 2024, 11, 055501. [Google Scholar] [CrossRef]
- Lu, N.; Chen, H.; Chen, J.; Cao, Y.F. Ceramic Aggregate Material Formulated with MSWI Fly Ash and Fuel Ash for Use as Filter Media. Minerals 2023, 13, 845. [Google Scholar] [CrossRef]
- Alqenai, Y.; Balapour, M.; Zooyousefin, M.; Shresthal, N.; Hsuan, Y.G.; Farnam, Y. Investigating Effects of Sintering Mean Residence Time on Engineering Properties of Coal Ash-Based Lightweight Aggregate. Int. J. Appl. Ceram. Technol. 2025, 22, e14854. [Google Scholar] [CrossRef]
- de Souza, N.S.L.; dos Anjos, M.A.S.; Sá, M.d.V.V.A.d.; de Farias, E.C.; de Souza, M.M.; Branco, F.G.; Pereira, A. Evaluation of Sugarcane Bagasse Ash for Lightweight Aggregates Production. Constr. Build. Mater. 2021, 271, 121604. [Google Scholar] [CrossRef]
- Din, N.A.M.; Muthusamy, K.; Embong, R.; Krishnaraj, L. Recycling of Oil Palm Shell as Aggregate in Concrete: A Review. Construction 2024, 4, 28–36. [Google Scholar] [CrossRef]
- Dondi, M.; Cappelletti, P.; D’Amore, M.; de Gennaro, R.; Graziano, S.F.; Langella, A.; Raimondo, M.; Zanelli, C. Lightweight Aggregates from Waste Materials: Reappraisal of Expansion Behavior and Prediction Schemes for Bloating. Constr. Build. Mater. 2016, 127, 394–409. [Google Scholar] [CrossRef]
- Soltan, A.M.M.; Kahl, W.A.; El-Raoof, F.A.; El-Kaliouby, B.A.H.; Serry, M.A.K.; Abdel-Kader, N.A. Lightweight Aggregates from Mixtures of Granite Wastes with Clay. J. Clean. Prod. 2016, 117, 139–149. [Google Scholar] [CrossRef]
- Moreno-Maroto, J.M.; González-Corrochano, B.; Alonso-Azcárate, J.; Rodríguez, L.; Acosta, A. Manufacturing of Lightweight Aggregates with Carbon Fiber and Mineral Wastes. Cem. Concr. Compos. 2017, 83, 335–348. [Google Scholar] [CrossRef]
- Mendonça de Souza, M.; Barbosa, N.P.; dos Anjos, M.A.S.; Aguiar, J.G.C.; da Silva Neto, J.A.; Pederneiras, C.M. Recycling Red Ceramic Waste as a Raw Material for Lightweight Aggregates. Appl. Sci. 2025, 15, 5729. [Google Scholar] [CrossRef]
- da Silva Neto, J.A.; dos Anjos, M.A.S.; Dutra, R.P.S.; Mendonça de Souza, M.; Pederneiras, C.M. Development of Sustainable Artificial Lightweight Aggregates with Binary Mixtures of Waste Rich in Aluminosilicate and Carbonate in Kaolinitic Clay. Sustainability 2025, 17, 2017. [Google Scholar] [CrossRef]
- da Silva Neto, J.A.; dos Anjos, M.A.S.; Dutra, R.P.S.; Mendonça de Souza, M.; Pederneiras, C.M. Optimization via Taguchi of Artificial Lightweight Aggregates Obtained from Kaolinite Clay and Ceramic Waste: Development and Industrial Applications. Buildings 2025, 15, 2003. [Google Scholar] [CrossRef]
- de Sousa, J.T.F.; dos Anjos, M.A.S.; Neto, J.A.d.S.; de Farias, E.C.; Branco, F.G.; Pederneiras, C.M. Self-Compacting Concrete with Artificial Lightweight Aggregates from Sugarcane Ash and Calcined Scheelite Mining Waste. Appl. Sci. 2025, 15, 452. [Google Scholar] [CrossRef]
- Wichmann, I.; Firdous, R.; Stephan, D. Upcycling of Demolition Material from Concrete and Brick for the Production of Cold-Bound, Alkali-Activated Lightweight Aggregates. Mater. Struct. 2023, 56, 135. [Google Scholar] [CrossRef]
- Resende, D.M.; de Carvalho, J.M.F.; Paiva, B.O.; Gonçalves, G.d.R.; Costa, L.C.B.; Peixoto, R.A.F. Sustainable Structural Lightweight Concrete with Recycled Polyethylene Terephthalate Waste Aggregate. Buildings 2024, 14, 609. [Google Scholar] [CrossRef]
- Han, S.; Ju, T.; Meng, F.; Lin, L.; Li, J.; Chen, K.; Jiang, J. Comprehensive Study of Recycling Municipal Solid Waste Incineration Fly Ash in Lightweight Aggregate with Bloating Agent: Effects of Water Washing and Bloating Mechanism. Sci. Total Environ. 2023, 881, 163267. [Google Scholar] [CrossRef] [PubMed]
- Pontes, I.C.; Neto, J.A.S.; Campos, L.F.A.; Anjos, M.A.S.; Dutra, R.P.S. Avaliação Mecânica de Agregados Leves Obtidos Com Diferentes Argilas e Percentuais de Resíduo Do Polimento Do Porcelanato. In Proceedings of the 5th Luso-Brazilian Congress of Sustainable Construction Materials, Lisbon, Portugal, 6–8 November 2024. [Google Scholar]
- Almeida, M.I.; Dias, A.C.; Demertzi, M.; Arroja, L. Environmental Profile of Ceramic Tiles and Their Potential for Improvement. J. Clean. Prod. 2016, 131, 583–593. [Google Scholar] [CrossRef]
- Soares Filho, J.E.; Aurich, J.C.; Sousa, F.J.P.; Nascimento, R.M.; Paskocimas, C.A.; Silva, A.H.A. Polishing Performance of Eco-Friendly Porcelain Stoneware Tiles Reusing Bricks and Roof Tiles Wastes. J. Clean. Prod. 2020, 256, 120362. [Google Scholar] [CrossRef]
- Ramos, G.A.; de Matos, P.R.; Pelisser, F.; Gleize, P.J.P. Effect of Porcelain Tile Polishing Residue on Eco-Efficient Geopolymer: Rheological Performance of Pastes and Mortars. J. Build. Eng. 2020, 32, 101699. [Google Scholar] [CrossRef]
- Santos, H.M.M.; Jochem, L.F.; de Matos, P.R.; Casagrande, C.A.; Marinho, É.P.; Szeląg, M.; de Nóbrega, A.C.V. Porcelain Tile Polishing Residue in Concrete as an Additive or Replacement for Portland Cement. Appl. Sci. 2023, 13, 2824. [Google Scholar] [CrossRef]
- De Souza, N.S.L.; Dos Anjos, M.A.S.; De Sá, M.d.V.V.A.; De Farias, E.C.; Mello, L.C.D.A. Development of Lightweight Aggregates from Crushing of Ornamental Stones (Granites and Marbles) and Clay. Rev. Mater. 2020, 25, e-12559. [Google Scholar] [CrossRef]
- Riley, C.M. Relation of Chemical Properties to the Bloating of Clays. J. Am. Ceram. Soc. 1951, 34, 121–128. [Google Scholar] [CrossRef]
- Ayati, B.; Ferrándiz-Mas, V.; Newport, D.; Cheeseman, C. Use of Clay in the Manufacture of Lightweight Aggregate. Constr. Build. Mater. 2018, 162, 124–131. [Google Scholar] [CrossRef]
- Fenner, J.; Zeller, A.; Liebezeit, S.; Knorr, M.; Schnell, A.; Mettke, L.; Goldmann, D. Investigation of Industrial Residues and Waste Materials to Expand the Raw Material Base for the Production of Lightweight Aggregates. Mater. Proc. 2023, 15, 71. [Google Scholar]
- Chen, H.J.; Chang, S.N.; Tang, C.W. Application of the Taguchi Method for Optimizing the Process Parameters of Producing Lightweight Aggregates by Incorporating Tile Grinding Sludge with Reservoir Sediments. Materials 2017, 10, 1294. [Google Scholar] [CrossRef]
- Bamshad, O.; Mahdikhani, M.; Ramezanianpour, A.M.; Maleki, Z.; Majlesi, A.; Habibi, A.; Delavar, M.A. Prediction and Multi-Objective Optimization of Workability and Compressive Strength of Recycled Self-Consolidating Mortar Using Taguchi Design Method. Heliyon 2023, 9, e16381. [Google Scholar] [CrossRef]
- Vignesh, R.; Abdul-Rahim, A. New Insights into the Production of Sustainable Synthetic Aggregates and Their Microstructural Evaluation. Mater. Constr. 2023, 73, e324. [Google Scholar] [CrossRef]
- Nunes, J.J.B.d.C.; Teixeira, A.M.A.J.; Saraiva, R.M.D.d.C. Caracterização Morfológica Do Agregado Leve de Argila Expandida Brasileira Com Utilização Do AIMS. Ambiente Construído 2021, 21, 213–227. [Google Scholar] [CrossRef]
- NBR 6502:1995; Rocks and Soils–Terminology. Brazilian Association of Technical Standards (ABNT): Rio de Janeiro, Brazil, 1995.
- Izadifar, M.; Thissen, P.; Steudel, A.; Kleeberg, R.; Kaufhold, S.; Kaltenbach, J.; Schuhmann, R.; Dehn, F.; Emmerich, K. Comprehensive Examination of Dehydroxylation of Kaolinite, Disordered Kaolinite, and Dickite: Experimental Studies and Density Functional Theory. Clays Clay Min. 2020, 68, 319–333. [Google Scholar] [CrossRef]
- Daou, I.; Lecomte-Nana, G.L.; Tessier-Doyen, N.; Peyratout, C.; Gonon, M.F.; Guinebretiere, R. Probing the Dehydroxylation of Kaolinite and Halloysite by in Situ High Temperature X-ray Diffraction. Minerals 2020, 10, 480. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Atmaca, N. Cold Bonded and Low Temperature Sintered Artificial Aggregate Production by Using Waste Materials. Period. Polytech. Civ. Eng. 2023, 67, 112–122. [Google Scholar] [CrossRef]
- Balapour, M.; Thway, T.; Rao, R.; Moser, N.; Garboczi, E.J.; Hsuan, Y.G.; Farnam, Y. A Thermodynamics-Guided Framework to Design Lightweight Aggregate from Waste Coal Combustion Fly Ash. Resour. Conserv. Recycl. 2022, 178, 106050. [Google Scholar] [CrossRef]
- Cuevas, K.; Lopez, M. The Effect of Expansive Agent and Cooling Rate in the Performance of Expanded Glass Lightweight Aggregate as an Internal Curing Agent. Constr. Build. Mater. 2021, 271, 121505. [Google Scholar] [CrossRef]
- NBR 6458; Soils—Determination of the Specific Mass of Solids, the Apparent Specific Mass and the Water Absorption of the Fraction Retained in the Sieve with an Opening of 2.0 mm. Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2025.
- EN 13055:2016; Lightweight Aggregates–Part 1: Lightweight Aggregates for Concrete, Mortar and Grout. European Committee for Standardization (CEN): Brussels, Belgium, 2016.
- CINEXPAN, Expanded Clay. Technical Data Sheet Type1506.Pdf. Available online: https://www.Cinexpan.Com.Br/Pdf/Ficha-Tecnica-Tipo-1506.Pdf (accessed on 15 July 2024).
- CINEXPAN, Expanded Clay. Technical Data Sheet Type 2215.Pdf. Available online: https://www.Cinexpan.Com.Br/Pdf/Ficha-Tecnica-Tipo-2215.Pdf (accessed on 15 July 2024).
- De Santis, B.C.; Rossignolo, J.A. Influence of Calcined Clay Lightweight Aggregates on the Mechanical Properties of Structural Concretes. Rev. Mater. 2015, 20, 399–406. [Google Scholar] [CrossRef]
- Lyra, G.P.; dos Santos, V.; De Santis, B.C.; Rivaben, R.R.; Fischer, C.; Pallone, E.M.d.J.A.; Rossignolo, J.A. Reuse of Sugarcane Bagasse Ash to Produce a Lightweight Aggregate Using Microwave Oven Sintering. Constr. Build. Mater. 2019, 222, 222–228. [Google Scholar] [CrossRef]
- Moreno-Maroto, J.M.; Uceda-Rodríguez, M.; Cobo-Ceacero, C.J.; Cotes-Palomino, T.; Martínez-García, C.; Alonso-Azcárate, J. Studying the Feasibility of a Selection of Southern European Ceramic Clays for the Production of Lightweight Aggregates. Constr. Build. Mater. 2020, 237, 117583. [Google Scholar] [CrossRef]
- La Russa, M.F.; Ruffolo, S.A.; Belfiore, C.M.; Aloise, P.; Randazzo, L.; Rovella, N.; Pezzino, A.; Montana, G. Study of the Effects of Salt Crystallization on Degradation of Limestone Rocks. Period. Mineral. 2013, 82, 113–127. [Google Scholar] [CrossRef]
- Souza, M.M.; Barbosa, N.P.; Anjos, M.A.S.; Farias, E.C.; Aguiar, J.G.C.; Silva Neto, J.A. Sustainable Lightweight Aggregates from Diatomite Residue. Sustaibanility 2025, 17, 6508. [Google Scholar] [CrossRef]
Precursors | Oxides Present (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | MgO | K2O | CaO | Other | ΣOF | SiO2/ΣOF | |
Ferruginous Clay | 55.58 | 28.87 | 5.71 | 5.06 | 2.16 | 1.40 | 1.22 | 14.34 | 3.88 |
Kaolinitic Clay | 46.22 | 50.75 | 0.24 | 1.92 | 0.71 | - | 0.17 | 2.86 | 16.14 |
PPR | 64.46 | 25.19 | 0.48 | 5.85 | 2.06 | 1.64 | 0.32 | 10.03 | 6.43 |
Experiment No. | Heating Rate (°C/min) | Sintering Temperature (°C) | Sintering Time (min) | Clay Type |
---|---|---|---|---|
1 | 10 | 1180 | 10 | Kaolinitic |
2 | 10 | 1200 | 15 | Kaolinitic |
3 | 10 | 1220 | 20 | Ferruginous |
4 | 10 | 1240 | 25 | Ferruginous |
5 | 20 | 1180 | 15 | Ferruginous |
6 | 20 | 1200 | 10 | Ferruginous |
7 | 20 | 1220 | 25 | Kaolinitic |
8 | 20 | 1240 | 20 | Kaolinitic |
9 | 30 | 1180 | 20 | Kaolinitic |
10 | 30 | 1200 | 25 | Kaolinitic |
11 | 30 | 1220 | 10 | Ferruginous |
12 | 30 | 1240 | 15 | Ferruginous |
13 | 40 | 1180 | 25 | Ferruginous |
14 | 40 | 1200 | 20 | Ferruginous |
15 | 40 | 1220 | 15 | Kaolinitic |
16 | 40 | 1240 | 10 | Kaolinitic |
Density (g/cm3) | Water Absorption (%) | Crushing Strength (MPa) | Application |
---|---|---|---|
<2.00 | 0–20 | >5.00 | High-strength concrete |
0–20 | >2.30 | Structural lightweight concrete | |
0–34 | >1.80 | Non-structural lightweight concrete, lightweight mortars | |
10–38 | >1.80 | Geotechnical applications | |
10–38 | >1.00 | Gardening and landscaping, thermal and acoustic insulation |
Experiment | Applications | ||||
---|---|---|---|---|---|
High-Strength Concrete | Structural Lightweight Concrete | Non-Structural Lightweight Concrete and Lightweight Mortars | Geotechnical Applications | Gardening and Landscaping, Thermal and Acoustic Insulation | |
1 | - | - | - | - | - |
2 | - | - | - | - | - |
3 | ✓ | ✓ | ✓ | - | - |
4 | - | ✓ | ✓ | - | - |
5 | ✓ | ✓ | ✓ | - | - |
6 | ✓ | ✓ | ✓ | - | - |
7 | - | - | - | - | - |
8 | ✓ | ✓ | ✓ | - | - |
9 | - | - | - | - | - |
10 | - | - | - | - | - |
11 | ✓ | ✓ | ✓ | - | - |
12 | ✓ | ✓ | ✓ | - | - |
13 | ✓ | ✓ | ✓ | - | - |
14 | ✓ | ✓ | ✓ | - | - |
15 | - | - | - | - | - |
16 | - | - | - | - | - |
Parameter | Sum of Squares | Degree of Freedom | Variance | Contribution |
---|---|---|---|---|
Heating Rate (°C/min) | 2062.10 | 3 | 687.37 | 17.27% |
Sintering Temperature (°C) | 2543.10 | 3 | 847.70 | 21.30% |
Sintering Time (min) | 553.00 | 3 | 184.33 | 4.63% |
Clay Type | 6091.10 | 1 | 6091.10 | 51.03% |
Error | 687.70 | 5 | 137.54 | 5.76% |
Total | 11937.10 | 15 | 3979.03 | 100.00% |
Parameter | Sum of Squares | Degree of Freedom | Variance | Contribution |
---|---|---|---|---|
Heating Rate (°C/min) | 2.1498 | 3 | 0.72 | 9.01% |
Sintering Temperature (°C) | 0.1731 | 3 | 0.06 | 0.73% |
Sintering Time (min) | 0.7625 | 3 | 0.25 | 3.20% |
Clay Type | 20.0910 | 1 | 20.09 | 84.22% |
Error | 0.6791 | 5 | 0.14 | 2.85% |
Total | 23.8556 | 15 | 7.95 | 100.00% |
Parameter | Sum of Squares | Degree of Freedom | Variance | Contribution |
---|---|---|---|---|
Heating Rate (°C/min) | 0.01023 | 3 | 0.00 | 0.23% |
Sintering Temperature (°C) | 0.32499 | 3 | 0.11 | 7.37% |
Sintering Time (min) | 0.06013 | 3 | 0.02 | 1.36% |
Clay Type | 3.97652 | 1 | 3.98 | 90.21% |
Error | 0.03628 | 5 | 0.01 | 0.82% |
Total | 4.40815 | 15 | 1.47 | 100.00% |
Parameter | Sum of Squares | Degree of Freedom | Variance | Contribution |
---|---|---|---|---|
Heating Rate (°C/min) | 1.8975 | 3 | 0.63 | 21.08% |
Sintering Temperature (°C) | 2.6178 | 3 | 0.87 | 29.07% |
Sintering Time (min) | 1.7261 | 3 | 0.58 | 19.17% |
Clay Type | 0.3949 | 1 | 0.39 | 4.39% |
Error | 2.3672 | 5 | 0.47 | 26.29% |
Total | 9.0035 | 15 | 3.00 | 100.00% |
Parameter | Sum of Squares | Degree of Freedom | Variance | Contribution |
---|---|---|---|---|
Heating Rate (°C/min) | 53.05 | 3 | 17.68 | 2.52% |
Sintering Temperature (°C) | 101.89 | 3 | 33.96 | 4.83% |
Sintering Time (min) | 131.99 | 3 | 44.00 | 6.26% |
Clay Type | 1807.16 | 1 | 1807.16 | 85.72% |
Error | 14.09 | 5 | 2.82 | 0.67% |
Total | 2108.18 | 15 | 702.73 | 100.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins de Oliveira, V.S.; Neto, J.A.d.S.; Nascimento, G.L.d.; Anjos, M.A.S.d.; Dutra, R.P.S.; Pederneiras, C.M. Evaluating Porcelain Polishing Waste as a Pyro-Expansive Agent in Clay Formulations for Sustainable Lightweight Aggregates. Sustainability 2025, 17, 7385. https://doi.org/10.3390/su17167385
Martins de Oliveira VS, Neto JAdS, Nascimento GLd, Anjos MASd, Dutra RPS, Pederneiras CM. Evaluating Porcelain Polishing Waste as a Pyro-Expansive Agent in Clay Formulations for Sustainable Lightweight Aggregates. Sustainability. 2025; 17(16):7385. https://doi.org/10.3390/su17167385
Chicago/Turabian StyleMartins de Oliveira, Vitória Silva, José Anselmo da Silva Neto, Gustavo Lira do Nascimento, Marcos Alyssandro Soares dos Anjos, Ricardo Peixoto Suassuna Dutra, and Cinthia Maia Pederneiras. 2025. "Evaluating Porcelain Polishing Waste as a Pyro-Expansive Agent in Clay Formulations for Sustainable Lightweight Aggregates" Sustainability 17, no. 16: 7385. https://doi.org/10.3390/su17167385
APA StyleMartins de Oliveira, V. S., Neto, J. A. d. S., Nascimento, G. L. d., Anjos, M. A. S. d., Dutra, R. P. S., & Pederneiras, C. M. (2025). Evaluating Porcelain Polishing Waste as a Pyro-Expansive Agent in Clay Formulations for Sustainable Lightweight Aggregates. Sustainability, 17(16), 7385. https://doi.org/10.3390/su17167385