Industrial Robots and Green Productivity: Evidence from Global Panel Data on High-Quality Economic Development
Abstract
1. Introduction
2. Conventional Facts, Theoretical Framework, and Hypotheses
2.1. Total Factor Productivity and Its Green Transformation
2.2. Classification of Countries Based on Economic Development
2.3. Heterogeneous Impact of IRAs on HQED in Developing and Developed Countries
2.4. Theoretical Examination and Hypothesis Development for IRAs in the Context of HQED
2.5. Research Gaps and Theoretical Contributions
3. Methodology
3.1. Model Selection
3.1.1. GTFP Measurement
3.1.2. Fixed Effects and the System Generalized Method of Moments Model
3.1.3. Panel Threshold Model
3.1.4. Mediation Effect Model
3.2. Descriptive Statistics and Data Source
3.2.1. Descriptive Statistics
3.2.2. Data Sources
4. Empirical Analysis
4.1. Heterogeneity Analysis Across Groups
4.2. Exploring the Threshold Effect of IRAs on ERs in Relation to GTFP Enhancement
4.3. Robustness Test
4.3.1. Effect of IRAs on GTFP
4.3.2. Threshold Model Robustness
4.4. Analysis of Mechanisms
4.4.1. Mechanism of FDI
4.4.2. Mechanism of TI
4.4.3. R&D Mechanism
5. Conclusions and Implications
5.1. Conclusions
5.2. Implications
5.2.1. In Developing Countries
5.2.2. In Developed Countries
5.2.3. For Developing Nations
5.2.4. For Developed Nations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Solow, R.M. Technical change and the aggregate production function. Rev. Econ. Stat. 1957, 39, 312–320. [Google Scholar] [CrossRef]
- Epping, K.; Zhang, H. A Sustainable Decision-Making Framework for Transitioning to Robotic Welding for Small and Medium Manufacturers. Sustainability 2018, 10, 3651. [Google Scholar] [CrossRef]
- Yu, L.; Wang, Y.; Wei, X.; Zeng, C. Towards Low-Carbon Development: The Role of Industrial Robots in Decarbonization in Chinese Cities. J. Environ. Manag. 2023, 330, 117216. [Google Scholar] [CrossRef] [PubMed]
- Acemoglu, D.; Restrepo, P. Artificial Intelligence, Automation, and Work. In The Economics of Artificial Intelligence: An Agenda; Agrawal, A., Gans, J., Goldfarb, A., Eds.; University of Chicago Press: Chicago, IL, USA, 2018; pp. 197–236. [Google Scholar]
- Liu, B.; Yang, X.; Zhang, J. Nonlinear Effect of Industrial Robot Applications on Carbon Emissions: Evidence from China. Environ. Impact Assess. Rev. 2024, 104, 107297. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, X.; Shao, Q.; Wang, X. The Non-Linear Effect of Environmental Regulation on Haze Pollution: Empirical Evidence for 277 Chinese Cities during 2002–2010. J. Environ. Manag. 2019, 248, 109274. [Google Scholar] [CrossRef] [PubMed]
- Harding, T.; Smarzynska Javorcik, B. A Touch of Sophistication: FDI and Unit Values of Exports. World Bank Policy Research Working Paper. No. 4731. 2009. Available online: https://openknowledge.worldbank.org/handle/10986/4087 (accessed on 5 June 2025).
- Qiu, S.; Wang, Z.; Geng, S. How Do Environmental Regulation and Foreign Investment Behavior Affect Green Productivity Growth in the Industrial Sector? An Empirical Test Based on Chinese Provincial Panel Data. J. Environ. Manag. 2021, 287, 112282. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Nordhaus, W.D. Using Luminosity Data as a Proxy for Economic Statistics. Proc. Natl. Acad. Sci. USA 2011, 108, 8589–8594. [Google Scholar] [CrossRef]
- Lyu, Y.; Wang, W.; Wu, Y.; Zhang, J. How Does Digital Economy Affect Green Total Factor Productivity? Evidence from China. Sci. Total Environ. 2023, 857, 159428. [Google Scholar] [CrossRef]
- International Monetary Fund (IMF). IMF Data Portal. 2025. Available online: https://data.imf.org/ (accessed on 7 June 2025).
- Fang, C.; Cheng, J.; Zhu, Y.; Chen, J.; Peng, X. Green Total Factor Productivity of Extractive Industries in China: An Explanation from Technology Heterogeneity. Resour. Policy 2021, 70, 101933. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, Y.; Yang, H. Digital Economy and Green Total Factor Productivity in China: Empirical Evidence from Provincial Panel Data. PLoS ONE 2024, 19, e0299716. [Google Scholar] [CrossRef]
- Rusiawan, W.; Tjiptoherijanto, P.; Suganda, E.; Darmajanti, L. Assessment of Green Total Factor Productivity Impact on Sustainable Indonesia Productivity Growth. Procedia Environ. Sci. 2015, 28, 493–501. [Google Scholar] [CrossRef]
- Li, H.; Chen, C.; Umair, M. Green Finance, Enterprise Energy Efficiency, and Green Total Factor Productivity: Evidence from China. Sustainability 2023, 15, 11065. [Google Scholar] [CrossRef]
- Akisik, O. The Impact of Financial Development, IFRS, and Rule of Law on Foreign Investments: A Cross-Country Analysis. Int. Rev. Econ. Finance 2020, 69, 815–838. [Google Scholar] [CrossRef]
- Dritsaki, M.; Dritsaki, C. Trade Openness and Economic Growth: A Panel Data Analysis of Baltic Countries. Asian Econ. Financ. Rev. 2020, 10, 313–324. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, G.D.; Radulescu, M.; Balsalobre-Lorente, D.; Bansal, P. Do Natural Resources Impact Economic Growth: An Investigation of P5+1 Countries under Sustainable Management. Geosci. Front. 2024, 15, 101595. [Google Scholar] [CrossRef]
- Huang, G.; He, L.Y.; Lin, X. Robot Adoption and Energy Performance: Evidence from Chinese Industrial Firms. Energy Econ. 2022, 107, 105837. [Google Scholar] [CrossRef]
- Oh, D.H. A Global Malmquist-Luenberger Productivity Index. J. Prod. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Liu, Z.; Xin, L. Has China’s Belt and Road Initiative Promoted Its Green Total Factor Productivity? Evidence from Primary Provinces along the Route. Energy Policy 2019, 129, 360–369. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment. Am. Econ. Rev. 2018, 108, 1488–1542. [Google Scholar] [CrossRef]
- Aklin, M. Re-Exploring the Trade and Environment Nexus through the Diffusion of Pollution. Environ. Resour. Econ. 2016, 64, 663–682. [Google Scholar] [CrossRef]
- Hancevic, P.I. Environmental Regulation and Productivity: The Case of Electricity Generation under the CAAA-1990. Energy Econ. 2016, 60, 131–143. [Google Scholar] [CrossRef]
- Hoque, A.; Baug, T.; Dewangan, L.; Wang, K.; Liu, T.; Mondal, S. Influence of Mid-Infrared Galactic Bubble on Surroundings: A Case Study on IRAS 16489-4431. arXiv 2024, arXiv:2405.17993. Available online: https://arxiv.org/abs/2405.17993 (accessed on 5 June 2025). [CrossRef]
- Bulus, G.C.; Koc, S. The Effects of FDI and Government Expenditures on Environmental Pollution in Korea: The Pollution Haven Hypothesis Revisited. Environ. Sci. Pollut. Res. 2021, 28, 38238–38253. [Google Scholar] [CrossRef] [PubMed]
- Batabyal, A. Environmental Policy in Developing Countries: A Dynamic Analysis. Rev. Dev. Econ. 1998, 2, 293–304. [Google Scholar] [CrossRef]
- Au, C.C.; Henderson, J.V. Are Chinese Cities Too Small? Rev. Econ. Stud. 2006, 73, 549–576. [Google Scholar] [CrossRef]
- Lin, B.; Du, R.; Dong, Z.; Jin, S.; Liu, W. The Impact of Foreign Direct Investment on the Productivity of the Chinese Forest Products Industry. For. Policy Econ. 2020, 111, 102035. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, C.; Wang, X.; Ntim, V.S.; Liu, X. Effect of Information and Communication Technology and Electricity Consumption on Green Total Factor Productivity. Appl. Energy 2023, 347, 121366. [Google Scholar] [CrossRef]
- Song, M.; Du, J.; Tan, K.H. Impact of Fiscal Decentralization on Green Total Factor Productivity. Int. J. Prod. Econ. 2018, 205, 359–367. [Google Scholar] [CrossRef]
- Li, X.; Xiao, L. The Impact of Urban Green Business Environment on FDI Quality and Its Driving Mechanism: Evidence from China. World Dev. 2024, 175, 106494. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic Growth and the Environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef]
- Feng, C.; Huang, J.B.; Wang, M. The Sustainability of China’s Metal Industries: Features, Challenges and Future Focuses. Resour. Policy 2019, 60, 215–224. [Google Scholar] [CrossRef]
- Zheng, X.; Yu, H.; Yang, L. Technology Imports, Independent Innovation, and China’s Green Economic Efficiency: An Analysis Based on Spatial and Mediating Effect. Environ. Sci. Pollut. Res. 2022, 29, 36170–36188. [Google Scholar] [CrossRef]
- Hanson, R. Economic Growth Given Machine Intelligence; Technical Report; University of California: Berkeley, CA, USA, 2001; Available online: http://hanson.gmu.edu/aigrow.pdf (accessed on 5 June 2025).
- Agrawal, A.; Gans, J.; Goldfarb, A. Prediction, Judgment, and Complexity: A Theory of Decision-Making and Artificial Intelligence. In The Economics of Artificial Intelligence: An Agenda; University of Chicago Press: Chicago, IL, USA, 2018; pp. 89–110. [Google Scholar]
- Yang, X.; Jia, Z.; Yang, Z. How Does Technological Progress Impact Transportation Green Total Factor Productivity: A Spatial Econometric Perspective. Energy Rep. 2021, 7, 3935–3950. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, Y.; Quan, T.; Ran, R.; Hua, L. Influence and Effect of Industrial Agglomeration on Urban Green Total Factor Productivity: On the Regulatory Role of Innovation Agglomeration and Institutional Distance. Econ. Anal. Policy 2023, 78, 1158–1173. [Google Scholar] [CrossRef]
- Badinger, H.; Egger, P. Productivity Spillovers across Countries and Industries: New Evidence from OECD Countries. Oxf. Bull. Econ. Stat. 2016, 78, 501–521. [Google Scholar] [CrossRef]
- Bengoa, M.; Martínez-San Román, V.; Pérez, P. Do R&D Activities Matter for Productivity? A Regional Spatial Approach Assessing the Role of Human and Social Capital. Econ. Model. 2017, 60, 448–461. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Yuan, Y.; Goto, M. A Literature Study for DEA Applied to Energy and Environment. Energy Econ. 2017, 62, 104–124. [Google Scholar] [CrossRef]
- Tyteca, D. On the Measurement of the Environmental Performance of Firms: A Literature Review and a Productive Efficiency Perspective. J. Environ. Manag. 1996, 46, 281–308. Available online: https://www.researchgate.net/profile/Daniel-Tyteca/publication/223445514 (accessed on 5 June 2025). [CrossRef]
- Tone, K.; Tsutsui, M. Dynamic DEA: A Slacks-Based Measure Approach. Omega 2010, 38, 145–156. [Google Scholar] [CrossRef]
- Zhong, J.; Li, T. Impact of Financial Development and Its Spatial Spillover Effect on Green Total Factor Productivity: Evidence from 30 Provinces in China. Math. Probl. Eng. 2020, 2020, 5741387. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, K. Regional Differences, Distribution Dynamics, and Convergence of Air Quality in Urban Agglomerations in China. Sustainability 2022, 14, 7330. [Google Scholar] [CrossRef]
- Chambers, R.G.; Chung, Y.; Färe, R. Profit, Directional Distance Functions, and Nerlovian Efficiency. J. Optim. Theory Appl. 1998, 98, 351–364. [Google Scholar] [CrossRef]
- Liu, H.; He, Q. The Effect of Basic Public Service on Urban-Rural Income Inequality: A Sys-GMM Approach. Econ. Res.-Ekon. Istraž. 2019, 32, 3205–3223. [Google Scholar] [CrossRef]
- Arellano, M.; Bover, O. Another Look at the Instrumental Variable Estimation of Error-Components Models. J. Econom. 1995, 68, 29–51. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S. Initial Conditions and Moment Restrictions in Dynamic Panel Data Models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef]
- Daud, S.N.M. Financial Inclusion, Economic Growth and the Role of Digital Technology. Financ. Res. Lett. 2023, 53, 103602. [Google Scholar] [CrossRef]
- Hansen, B.E. Threshold Effects in Non-Dynamic Panels: Estimation, Testing, and Inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Wang, Q. Fixed-Effect Panel Threshold Model Using Stata. Stata J. 2015, 15, 121–134. [Google Scholar] [CrossRef]
- Luo, Y.; Lu, Z.; Wu, C.; Mensah, C.N. Environmental Regulation Effect on Green Total Factor Productivity: Mediating Role of Foreign Direct Investment Quantity and Quality. Int. J. Environ. Res. Public Health 2023, 20, 3150. [Google Scholar] [CrossRef]
- Sajjad, F.; Zakaria, M. Credit Rating as a Mechanism for Capital Structure Optimization: Empirical Evidence from Panel Data Analysis. Int. J. Financ. Stud. 2018, 6, 13. [Google Scholar] [CrossRef]
- Shao, M.; Fan, J.; Huang, Z.; Chen, M. The Impact of Information and Communication Technologies (ICTs) on Health Outcomes: A Mediating Effect Analysis Based on Cross-National Panel Data. J. Environ. Public Health 2022, 2022, 2225723. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The Moderator–Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- MacKinnon, D.P.; Lockwood, C.M.; Hoffman, J.M.; West, S.G.; Sheets, V. A Comparison of Methods to Test Mediation and Other Intervening Variable Effects. Psychol. Methods 2002, 7, 83–104. [Google Scholar] [CrossRef] [PubMed]
- MaxDEA. MaxDEA Official Website. 2023. Available online: https://maxdea.com/Index_En.htm (accessed on 2 June 2025).
- Smith, K.R. Allocating Responsibility for Global Warming: The Natural Debt Index. Ambio 1991, 20, 95–96. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19911962207 (accessed on 5 June 2025).
- You, J.; Xiao, H. Can FDI Facilitate Green Total Factor Productivity in China? Evidence from Regional Diversity. Environ. Sci. Pollut. Res. Int. 2022, 29, 49309–49321. [Google Scholar] [CrossRef]
- Ishikawa, A. Why Does Production Function Take the Cobb–Douglas Form? In Statistical Properties in Firms’ Large-Scale Data; Springer: Singapore, 2021; pp. 113–135. [Google Scholar]
- Li, X.; Hui, E.C.M.; Lang, W.; Zheng, S.; Qin, X. Transition from Factor-Driven to Innovation-Driven Urbanization in China: A Study of Manufacturing Industry Automation in Dongguan City. China Econ. Rev. 2020, 59, 101382. [Google Scholar] [CrossRef]
- Wu, H.; Hao, Y.; Ren, S. How Do Environmental Regulation and Environmental Decentralization Affect Green Total Factor Energy Efficiency: Evidence from China. Energy Econ. 2020, 91, 104880. [Google Scholar] [CrossRef]
- Yang, W.; Wang, D. Can Industrial Robot Applications Help Cross the Middle-Income Trap? Empirical Evidence Based on Cross-Country Panel Data. Technol. Forecast. Soc. Change 2023, 192, 122583. [Google Scholar] [CrossRef]
- Wang, M.; Pang, S.; Hmani, I.; Li, C.; He, Z. Towards Sustainable Development: How Does Technological Innovation Drive the Increase in Green Total Factor Productivity? Sustain. Dev. 2021, 29, 217–227. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, F.; Mai, Q. Robot Adoption and Green Productivity: Curse or Boon? Sustain. Prod. Consum. 2022, 34, 1–11. [Google Scholar] [CrossRef]
- Yang, G.; Hou, Y. The Use of Industrial Robots, Technology Upgrade and Economic Growth. China Ind. Econ. 2020, 10, 138–156. [Google Scholar] [CrossRef]
- Zhang, P.; Qin, Y.; Liang, H.; Zhou, L. Robotization and Labour Demand in the Post-Pandemic Era: Microeconomic Evidence from China. Technol. Forecast. Soc. Change 2023, 192, 122523. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Zeng, G.; Qian, Z.; Lu, S. The Differential Impact of the Digital Economy on Urban Energy Efficiency in China: The Mediating Mechanism of FDI. Environ. Dev. Sustain. 2024, 26, 31323–31350. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, F.; Sun, W.; Tao, X. The Relationship between Environmental Regulation and Green Total Factor Productivity in China: An Empirical Study Based on the Panel Data of 177 Cities. Int. J. Environ. Res. Public Health 2020, 17, 5287. [Google Scholar] [CrossRef]
- Pugliese, S. Toward a Multilevel System of Investment Control Oriented to Crisis Management: Italian Golden Power in the Framework of the EU FDI Screening Mechanism. In National Security and Investment Controls; Pohl, J.H., Papadopoulos, T., Wiesenthal, J., Eds.; Springer Studies in Law & Geoeconomics, Volume 3; Springer Nature: Cham, Switzerland, 2024; pp. 231–261. [Google Scholar]
- Tang, D.; Shan, Z.; He, J.; Zhao, Z. How Do Environmental Regulations and Outward Foreign Direct Investment Impact the Green Total Factor Productivity in China? A Mediating Effect Test Based on Provincial Panel Data. Int. J. Environ. Res. Public Health 2022, 19, 15717. [Google Scholar] [CrossRef]
- Chen, C.; Lan, Q.; Gao, M.; Sun, Y. Green Total Factor Productivity Growth and Its Determinants in China’s Industrial Economy. Sustainability 2018, 10, 1052. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, L.; Zhang, Y.; Wang, C.; Yu, K. Does FDI Promote or Inhibit the High-Quality Development of Agriculture in China? An Agricultural GTFP Perspective. Sustainability 2019, 11, 4620. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, X.; Choi, B.; Huan, X. Green Finance, International Technology Spillover and Green Technology Innovation: A New Perspective of Regional Innovation Capability. Sustainability 2023, 15, 1112. [Google Scholar] [CrossRef]
- Chen, S.; Golley, J. ‘Green’ Productivity Growth in China’s Industrial Economy. Energy Econ. 2014, 44, 89–98. [Google Scholar] [CrossRef]
- Lee, K.-H.; Min, B. Green R&D for Eco-Innovation and Its Impact on Carbon Emissions and Firm Performance. J. Clean. Prod. 2015, 108, 534–542. [Google Scholar] [CrossRef]
- Akisik, O.; Gal, G.; Mangaliso, M.P. IFRS, FDI, Economic Growth and Human Development: The Experience of Anglophone and Francophone African Countries. Emerg. Mark. Rev. 2020, 45, 100725. [Google Scholar] [CrossRef]
- Fatorachian, H.; Kazemi, H. A Critical Investigation of Industry 4.0 in Manufacturing: Theoretical Operationalisation Framework. Prod. Plan. Control 2018, 29, 633–644. [Google Scholar] [CrossRef]
Developed Countries | Developing Countries |
---|---|
America | Argentina |
Austria | Brazil |
Belgium | Bulgaria |
Canada | China |
Denmark | India |
England | Indonesia |
Finland | Malaysia |
France | Mexico |
Germany | The Philippines |
Italy | Poland |
Japan | Romania |
The Netherlands | Russia |
Norway | South Africa |
South Korea | Turkey |
Sweden | Ukraine |
Switzerland | Vietnam |
Variables | Variable Name | Developing Countries | Developed Countries | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Obs | Mean | SD | Min | Max | Obs | Mean | SD | Min | Max | ||
Explanatory variable | GTFP (SBM-GML) | 496 | 1.421 | 0.272 | 0.988 | 2.232 | 496 | 1.361 | 0.455 | 0.617 | 3.553 |
GTFP (DDF-GML) | 496 | 1.047 | 0.2 | 0.727 | 1.643 | 496 | 1 | 0.334 | 0.454 | 2.616 | |
Core explanatory variables | IRA | 496 | 3.259 | 1.148 | 0.962 | 7.037 | 496 | 1.549 | 0.774 | 0.177 | 6.296 |
lnIRA2 | 496 | 7.339 | 2.78 | 2.292 | 16.76 | 496 | 3.843 | 1.411 | 0.421 | 9.957 | |
Threshold variables | lnER | 496 | 2.97 | 0.155 | 2.5 | 3.318 | 496 | 2.137 | 0.556 | −1.077 | 2.982 |
Mechanism variables | lnTI | 496 | 10.147 | 3.463 | 6.425 | 28.585 | 496 | 8.927 | 2.088 | 4.292 | 23.287 |
lnR&D | 496 | 8.208 | 0.427 | 6.909 | 9.172 | 496 | 5.924 | 1.444 | 0 | 8.242 | |
FDI | 496 | 4.274 | 8.662 | −36.14 | 86.479 | 496 | 3.019 | 2.648 | −2.757 | 31.228 | |
Control variables | InU | 496 | 4.389 | 0.083 | 4.202 | 4.585 | 496 | 3.95 | 0.47 | 1.99 | 4.522 |
LSQ | 496 | 0.601 | 0.134 | 0.363 | 1.031 | 496 | 0.497 | 0.154 | 0.086 | 1.186 | |
InGI | 496 | 3.444 | 0.359 | 2.448 | 3.898 | 496 | 3.019 | 0.406 | 1.957 | 3.866 | |
lnFT | 496 | 4.899 | 1.175 | 2.706 | 9.519 | 496 | 2.713 | 1.695 | 0.341 | 9.558 |
Explanatory Variable | GTFP (SBM-GML) | GTFP (SBM-GML) |
---|---|---|
Developing countries | Developed countries | |
FE | FE | |
(1) | (3) | |
IRA | 0.355 *** (0.0029) | 0.0400 * (0.0213) |
Control variables | YES | YES |
Country FE | YES | YES |
Year FE | YES | YES |
_cons | 0.0582 ** (0.0248) | 0.580 (0.695) |
N | 496 | 496 |
R-squared | 0.997 | 0.994 |
Model | F-Value | p-Value | BS-Times | 1% Threshold | 5% Threshold | 10% Threshold |
---|---|---|---|---|---|---|
Single threshold | 199.30 *** | 0.0000 | 300 | 108.6929 | 70.7116 | 57.9210 |
Double threshold | 96.61 ** | 0.0033 | 300 | 92.9981 | 61.9236 | 53.2354 |
Triple threshold | 41.22 | 0.3633 | 300 | 91.3601 | 76.0178 | 66.7466 |
Parameter Value | Estimated Value | T-Statistics | Confidence Interval |
---|---|---|---|
α1: lnER < 2.7162 | 0.233 *** | 4.35 | (0.1235174, 0.3416558) |
α2: 2.7162 ≤ lnER < 2.7914 | 0.203 *** | 3.97 | (0.0988515, 0.3074735) |
α3: lnER ≥ 2.7914 | 0.173 *** | 3.59 | (0.0748308, 0.2716971) |
_cons | −0.721 ** | ||
Control variables | YES | ||
Country FE | YES | ||
Year FE | YES | ||
N | 992 | ||
R-squared | 0.956 |
Developing Countries | Developed Countries | |||||||
---|---|---|---|---|---|---|---|---|
GTFP | ||||||||
SBM-GML | DDF-GML | SBM-GML | DDF-GML | |||||
FE | SYS-GMM | FE | SYS-GMM | FE | SYS-GMM | FE | SYS-GMM | |
IRA | 0.172 ** (0.0636) | 0.387 *** (0.0183) | 0.0296 * (0.0157) | 0.234 *** (0.0134) | ||||
lnIRA2 | 0.184 *** (0.0232) | 0.335 *** (0.0105) | 0.0165 * (0.0091) | 0.134 *** (0.0074) | ||||
Control variables | YES | YES | YES | YES | YES | YES | YES | YES |
Country FE | YES | YES | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES | YES | YES |
_cons | 0.941 (0.549) | 0.149 *** (0.0568) | 0.637 (0.390) | 0.0039 (0.047) | 0.427 (0.509) | −0.0716 (0.118) | 0.632 (0.685) | −0.0371 (0.159) |
AR(1) | 0.000 | 0.000 | 0.000 | 0.000 | ||||
AR(2) | 0.184 | 0.923 | 0.501 | 0.546 | ||||
Sargan’s statistics | 0.166 | 0.201 | 0.140 | 0.138 | ||||
Wald’s statistics | 0.000 | 0.000 | 0.000 | 0.000 | ||||
N | 496 | 464 | 496 | 464 | 496 | 464 | 496 | 464 |
R-squared | 0.805 | 0.983 | 0.994 | 0.994 |
Parameter Value | GTFP (SBM-GML) | GTFP (DDF-GML) | |||
---|---|---|---|---|---|
Estimated Value | Confidence Interval | Parameter Value | Estimated Value | Confidence Interval | |
α1: lnER < 2.7693 | 0.0979 *** (0.0298) | (0.0371883, 0.1585637) | α1: lnER < 2.4996 | 0.178 *** (0.0492) | (0.0775101, 0.2783952) |
α2: 2.7693 ≤ lnER < 2.8581 | 0.0838 *** (0.0271) | (0.0284779, 0.1392063) | α2: 2.4996 ≤ lnER < 2.8247 | 0.119 ** (0.0466) | (0.0239767, 0.2141756) |
α3: lnER ≥ 2.8581 | 0.0741 *** (0.0254) | (0.0223507, 0.125781) | α3: lnER ≥ 2.8247 | 0.0965 ** (0.0390) | (0.0169305, 0.1761031) |
_cons | −0.606 (0.470) | _cons | 0.129 (0.394) | ||
Control variables | YES | Control variables | YES | ||
Country FE | YES | Country FE | YES | ||
Year FE | YES | Year FE | YES | ||
N | 992 | N | 992 | ||
R-squared | 0.947 | R-squared | 0.932 |
Developing Countries | Developed Countries | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
First-Stage | Second-Stage | First-Stage | Second-Stage | |
IRA | GTFP (SBM-GML) | IRA | GTFP (SBM-GML) | |
IRA | −0.1741 *** (0.0348) | 0.1900 *** (0.0372) | ||
lnWIR | 0.330 *** (0.0161) | 0.0896 *** (0.0158) | ||
Control variables | YES | YES | YES | YES |
Country FE | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
N | 496 | 496 | 496 | 496 |
R-squared | 0.998 | 0.993 | ||
First-stage F | 185.13 | 357.03 | ||
p-Value | [0.000] | [0.000] | ||
K-P-Wald rk F statistic | 26.267 | 27.408 | ||
C-D Wald F statistic | 31.568 | 19.204 | ||
Stock–Yogo weak ID test Critical values:10% maximal IV | 16.38 | 16.38 |
Developing Countries | Developed Countries | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
First-Stage | Second-Stage | First-Stage | Second-Stage | |
IRA | GTFP (SBM-GML) | IRA | GTFP (SBM-GML) | |
IRA | −0.1986 *** (0.0423) | −0.145 *** (0.0319) | ||
post2006 × Revolution year | 0.312 *** (0.0251) | 0.0796 *** (0.0219) | ||
Control variables | YES | YES | YES | YES |
Country FE | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
N | 496 | 496 | 496 | 496 |
R-squared | 0.998 | 0.994 | ||
First-stage F | 237.01 | 281.02 | ||
p-Value | [0.000] | [0.000] | ||
K-P-W rk F statistic | 23.083 | 21.568 | ||
C-D Wald F statistic | 37.147 | 37.960 | ||
Stock–Yogo weak ID test Critical values:10% maximal IV | 16.38 | 16.38 |
Developing Countries | Developed Countries | |||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
GTFP (SBM-GML) | FDI | GTFP (SBM-GML) | GTFP (SBM-GML) | FDI | GTFP (SBM-GML) | |
IRA | 0.355 *** | 1.423 *** | 0.356 *** | 0.040 * | 1.002 ** | 0.040 * |
(0.003) | (0.314) | (0.003) | (0.021) | (0.427) | (0.021) | |
FDI | 0.001 ** | 0.0002 * | ||||
(0.0003) | (0.0001) | |||||
Control variables | YES | YES | YES | YES | YES | YES |
Country FE | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES |
_cons | 0.058 ** | 7.057 | 0.053 ** | 0.580 | −312.631 ** | 0.515 |
(0.025) | (6.748) | (0.023) | (0.695) | (141.033) | (0.696) | |
N | 496 | 496 | 496 | 496 | 496 | 496 |
R-squared | 0.997 | 0.195 | 0.997 | 0.994 | 0.192 | 0.994 |
Developing Countries | Developed Countries | |||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
GTFP (SBM-GML) | lnTI | GTFP (SBM-GML) | GTFP (SBM-GML) | lnTI | GTFP (SBM-GML) | |
IRA | 0.355 *** | 1.486 ** | 0.351 *** | 0.040 * | 5.620 * | 0.060 ** |
(0.003) | (0.667) | (0.002) | (0.021) | (2.901) | (0.024) | |
lnTI | 0.002 * | 0.003 * | ||||
(0.001) | (0.002) | |||||
Control variables | YES | YES | YES | YES | YES | YES |
Country FE | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES |
_cons | 0.058 ** | −4.019 | 0.068 * | 0.580 | 35.284 | 0.703 |
(0.025) | (6.994) | (0.038) | (0.695) | (32.915) | (0.661) | |
N | 496 | 496 | 496 | 496 | 496 | 496 |
R-squared | 0.997 | 0.575 | 0.997 | 0.994 | 0.501 | 0.995 |
Developing Countries | Developed Countries | |||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
GTFP (SBM-GML) | lnR&D | GTFP (SBM-GML) | GTFP (SBM-GML) | lnR&D | GTFP (SBM-GML) | |
IRA | 0.355 *** | −0.082 | 0.355 *** | 0.040 * | 0.182 | 0.036 * |
(0.003) | (0.261) | (0.003) | (0.021) | (0.111) | (0.019) | |
lnR&D | 0.001 | 0.022 | ||||
(0.001) | (0.018) | |||||
Control variables | YES | YES | YES | YES | YES | YES |
Country FE | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES |
_cons | 0.058 ** | 1.229 | 0.057 * | 0.580 | 8.175 ** | 0.400 |
(0.025) | (7.076) | (0.029) | (0.695) | (2.914) | (0.707) | |
N | 496 | 496 | 496 | 496 | 496 | 496 |
R-squared | 0.997 | 0.429 | 0.997 | 0.994 | 0.748 | 0.994 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, B.; Lin, Y.-C.; Park, S.-D. Industrial Robots and Green Productivity: Evidence from Global Panel Data on High-Quality Economic Development. Sustainability 2025, 17, 7257. https://doi.org/10.3390/su17167257
Sung B, Lin Y-C, Park S-D. Industrial Robots and Green Productivity: Evidence from Global Panel Data on High-Quality Economic Development. Sustainability. 2025; 17(16):7257. https://doi.org/10.3390/su17167257
Chicago/Turabian StyleSung, Bongsuk, Yu-Cheng Lin, and Sang-Do Park. 2025. "Industrial Robots and Green Productivity: Evidence from Global Panel Data on High-Quality Economic Development" Sustainability 17, no. 16: 7257. https://doi.org/10.3390/su17167257
APA StyleSung, B., Lin, Y.-C., & Park, S.-D. (2025). Industrial Robots and Green Productivity: Evidence from Global Panel Data on High-Quality Economic Development. Sustainability, 17(16), 7257. https://doi.org/10.3390/su17167257