Regenerative Agriculture: Insights and Challenges in Farmer Adoption
Abstract
1. Introduction
2. Stabilization of the Concept and Practices of Regenerative Agriculture
3. Most Relevant Practices of Regenerative Agriculture
3.1. No-Tillage
3.2. Crop Rotation
3.3. Winter Cover Crops
3.4. Green Manures
3.5. Intercropping
3.6. Cover Cropping in Perennial Woody Crops
3.7. Integrated Crop–Livestock Systems
4. Effect of Key Regenerative Agriculture Practices on Agroecosystems
4.1. Effect on Soil
4.2. Effect on Functional Biodiversity and Trophic Chain Enrichment
4.3. Crop Productivity
4.4. Quality of Agricultural Products
5. Constraints and Challenges
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UN DESA. World Population Prospects 2024. Prepared by the Population Division of the United Nations Department of Economic and Social Affairs. Available online: https://population.un.org/wpp/assets/Files/WPP2024_Key-Messages.pdf (accessed on 7 April 2025).
- Baker, C.J.; Saxton, K.E. The ‘What’ and ‘Why’ of No-Tillage Farming. In No-Tillage Seeding in Conservation Agriculture, 2nd ed.; Baker, C.J., Saxton, K.E., Eds.; FAO and CAB International: Rome, Italy, 2007; pp. 1–10. [Google Scholar] [CrossRef]
- Zabel, F.; Delzeit, R.; Schneider, J.M.; Seppelt, R.; Mauser, W.; Václavík, T. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 2019, 10, 2844. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.Z.; Robertson, P.; Basso, B.; Hamilton, S. Leaching losses of dissolved organic carbon and nitrogen from agricultural soils in the upper US Midwest. Sci. Total Environ. 2020, 734, 139379. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils; Pearson Education Limited: Edinburgh, UK, 2017. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2023. Urbanization. In Agrifood Systems Transformation and Healthy Diets Across the Rural–Urban Continuum; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Sarker, A.; Ahmmed, R.; Ahsan, S.M.; Rana, J.; Ghosh, M.K.; Nandi, R. A comprehensive review of food waste valorization for the sustainable management of global food waste. Sustain. Food Technol. 2024, 2, 48–69. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef]
- Anderson, M.D.; Rivera-Ferre, M. Food system narratives to end hunger: Extractive versus regenerative. Curr. Opin. Environ. Sustain. 2021, 49, 18–25. [Google Scholar] [CrossRef]
- Romanelli, A.; Soto, D.X.; Matiatos, I.; Martínez, D.E.; Esquius, S. A biological and nitrate isotopic assessment framework to understand eutrophication in aquatic ecosystems. Sci. Total Environ. 2020, 715, 136909. [Google Scholar] [CrossRef]
- Camargo, J.A.; Alonso, Á. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 2006, 32, 831–849. [Google Scholar] [CrossRef]
- Hua, K.; Zhu, B. Phosphorus loss through surface runoff and leaching in response to the long-term application of different organic amendments on sloping croplands. J. Soils Sediments 2020, 20, 3459–3471. [Google Scholar] [CrossRef]
- Balmford, A.; Amano, T.; Bartlett, H.; Chadwick, D.; Collins, A.; Edwards, D.; Field, R.; Garnsworthy, P.; Green, R.; Smith, P.; et al. The environmental costs and benefits of high-yield farming. Nat. Sustain. 2018, 1, 477–485. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Abdalla, A.L.; Alvarez, C.; Arndt, C.; Becquet, P.; Benchaar, C.; Berndt, A.; Mauricio, R.M.; McAllister, T.A.; et al. Invited review: Current enteric methane mitigation options. J. Dairy Sci. 2022, 105, 9297–9326. [Google Scholar] [CrossRef] [PubMed]
- Truong, A.H.; Kim, M.T.; Nguyen, T.T.; Nguyen, N.T.; Nguyen, Q.T. Methane, nitrous oxide and ammonia emissions from livestock farming in the Red River Delta, Vietnam: An Inventory and Projection for 2000–2030. Sustainability 2018, 10, 3826. [Google Scholar] [CrossRef]
- Torres, M.A.; Ordóñez-Fernández, R.; Giráldez, J.V.; Márquez-García, J.; Laguna, A.; Carbonell-Bojollo, R. Efficiency of four different seeded plants and native vegetation as cover crops in the control of soil and carbon losses by water erosion in olive orchards. Land Degrad. Dev. 2018, 29, 2278–2290. [Google Scholar] [CrossRef]
- Abad, J.; Hermoso de Mendoza, I.; Marín, D.; Orcaray, L.; Santesteban, L.G. Cover crops in viticulture. A systematic review (1): Implications on soil characteristics and biodiversity in vineyard. OENO One 2021, 55, 1. [Google Scholar] [CrossRef]
- Singh, A.K. Soil salinization management for sustainable development: A review. J. Environ. Manag. 2020, 277, 111383. [Google Scholar] [CrossRef]
- Duan, L.; Huang, Y.; Hao, J.; Xie, S.; Hou, M. Vegetation uptake of nitrogen and base cations in China and its role in soil acidification. Sci. Total Environ. 2004, 330, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Wu, L.; Wang, D.; Fu, J.; Shen, C.; Li, X.; Zhang, L.; Zhang, L.; Fan, L.; Wenyan, H. Soil acidification in Chinese tea plantations. Sci. Total Environ. 2020, 715, 136963. [Google Scholar] [CrossRef]
- Woldeyohannis, Y.S. Negative effect of soil compaction and investigation of its relation with soil physiochemical properties in mechanization farming system. Appl. Environ. Soil Sci. 2024, 2024, 5654283. [Google Scholar] [CrossRef]
- Jackson, P.; Cameron, D.; Rolfe, S.; Dicks, L.V.; Leake, J.; Caton, S.; Dye, L.; Young, W.; Choudhary, S.; Evans, D.; et al. Healthy soil, healthy food, healthy people: An outline of the H3 project. Nutr. Bull. 2021, 46, 497–505. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Biklé, A.; Archuleta, R.; Brown, P.; Jordan, J. Soil health and nutrient density: Preliminary comparison of regenerative and conventional farming. PeerJ 2022, 10, e12848. [Google Scholar] [CrossRef]
- Kenny, D.C.; Castilla-Rho, J. What prevents the adoption of regenerative agriculture and what can we do about it? Lessons and narratives from a participatory modelling exercise in Australia. Land 2022, 11, 1383. [Google Scholar] [CrossRef]
- Frankel-Goldwater, L.; Wojtynia, N.; Dueñas-Ocampo, S. Healthy people, soils, and ecosystems: Uncovering primary drivers in the adoption of regenerative agriculture by US farmers and ranchers. Front. Sustain. Food Syst. 2024, 7, 1070518. [Google Scholar] [CrossRef]
- Despotović, A.; Joksimović, M.; Kašćelan, L.; Jovanović, M. Causes for depopulation of rural areas in the municipality of Pljevlja. Agric. For. 2015, 61, 393–407. [Google Scholar] [CrossRef]
- Pawlewicz, A.; Pawlewicz, K. The risk of agricultural land abandonment as a socioeconomic challenge for the development of agriculture in the European Union. Sustainability 2023, 15, 3233. [Google Scholar] [CrossRef]
- Schreefel, L.; Schulte, R.; de Boer, I.D.; Schrijver, A.; van Zanten, H. Regenerative agriculture—The soil is the base. Glob. Food Secur. 2020, 24, 100404. [Google Scholar] [CrossRef]
- Giller, K.E.; Hijbeek, R.; Andersson, J.A.; Sumberg, J. Regenerative agriculture: An agronomic perspective. Outlook Agric. 2021, 50, 13–25. [Google Scholar] [CrossRef]
- O’Donoghue, T.; Minasny, B.; McBratney, A. Regenerative agriculture and its potential to improve farmscape function. Sustainability 2022, 14, 5815. [Google Scholar] [CrossRef]
- Berthon, K.; Jaworski, C.C.; Beacham, J.D.; Jackson, P.; Leake, J.; McHugh, N.M.; Capstick, L.; Daniell, T.; Krzywoszynska, A.; Cameron, D.; et al. Measuring the transition to regenerative agriculture in the UK with a co-designed experiment: Design, methods and expected outcomes. Environ. Res. Food Syst. 2024, 1, 025007. [Google Scholar] [CrossRef]
- Bilibio, C.; Weber, T.K.D.; Hammer-Weis, M.; Junge, S.M.; Leisch-Waskoenig, S.; Wack, J.; Niether, W.; Gattinger, A.; Finckh, M.R.; Peth, S. Changes in soil mechanical and hydraulic properties through regenerative cultivation measures in long-term and farm experiments in Germany. Soil Tillage Res. 2025, 246, 106345. [Google Scholar] [CrossRef]
- Francis, C.A.; Harwood, R.R.; Parr, J.F. The potential for regenerative agriculture in the developing world. Am. J. Altern. Agric. 1986, 1, 65–74. [Google Scholar] [CrossRef]
- Bless, A.; Davila, F.; Plant, R. A genealogy of sustainable agriculture narratives: Implications for the transformative potential of regenerative agriculture. Agric. Hum. Values 2023, 40, 1379–1397. [Google Scholar] [CrossRef]
- ROA (Regenerative Agriculture Alliance). Why Regenerative Organic? Regenerative Agriculture Alliance: 2025. Available online: https://regenorganic.org/why-regenerative-organic/#regen-organic-certified (accessed on 7 April 2025).
- Daverkosen, L.; Holzknecht, A.; Friedel, J.K.; Keller, T.; Strobel, B.W.; Wendeberg, A.; Jordan, S. The potential of regenerative agriculture to improve soil health on Gotland, Sweden. J. Plant Nutr. Soil Sci. 2022, 185, 901–914. [Google Scholar] [CrossRef]
- Khangura, R.; Ferris, D.; Wagg, C.; Bowyer, J. Regenerative agriculture—A literature review on the practices and mechanisms used to improve soil health. Sustainability 2023, 15, 2338. [Google Scholar] [CrossRef]
- ROA (Regenerative Agriculture Alliance). Farm like the World Depends on It. Annual Report 2024. Regenerative Agriculture Alliance: 2024. Available online: www.regenorganic.org (accessed on 7 April 2025).
- Kiss the Ground. Regenerative Certifications and Verifications. 2025. Available online: https://kisstheground.com/education/resources/regenerative-certifications/ (accessed on 7 April 2025).
- Newton, A.C.; Creissen, H.E.; Erreguerena, I.A.; Havis, N.D. Disease management in regenerative cropping in the context of climate change and regulatory restrictions. Annu. Rev. Phytopathol. 2024, 62, 337–356. [Google Scholar] [CrossRef] [PubMed]
- Hungria, M.; Nogueira, M.A. Nitrogen fixation. In Marschner’s Mineral Nutrition of Plants, 4th ed.; Rengel, Z., Cakmak, I., White, P.J., Eds.; Elsevier: Chennai, India, 2023; pp. 615–650. [Google Scholar] [CrossRef]
- Guest, E.J.; Palfreeman, L.J.; Holden, J.; Chapman, P.J.; Firbank, L.G.; Lappage, M.G.; Helgason, T.; Leake, J.R. Soil macroaggregation drives sequestration of organic carbon and nitrogen with three-year grass-clover leys in arable rotations. Sci. Total Environ. 2022, 852, 158358. [Google Scholar] [CrossRef]
- Ramkumar, D.; Marty, A.; Ramkumar, J.; Rosencranz, H.; Vedantham, R.; Goldman, M.; Meyer, E.; Steinmetz, J.; Weckle, A.; Bloedorn, K.; et al. Food for thought: Making the case for food produced via regenerative agriculture in the battle against non-communicable chronic diseases (NCDs). One Health 2024, 18, 100734. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Llanillo, R.; Telles, T.S.; Soares Junior, D.; de Melo, T.R.; Friedrich, T.; Kassam, A. Expansion of no-tillage practice in conservation agriculture in Brazil. Soil Tillage Res. 2020, 208, 104877. [Google Scholar] [CrossRef]
- Reicosky, D.C.; Saxton, K.E. The Benefits of No-Tillage. In No-Tillage Seeding in Conservation Agriculture, 2nd ed.; Baker, C.J., Saxton, K.E., Eds.; FAO and CAB International: Rome, Italy, 2007; pp. 11–20. [Google Scholar] [CrossRef]
- Nath, A.J.; Lal, R. Effects of tillage practices and land use management on soil aggregates and soil organic carbon in the North Appalachian region, USA. Pedosphere 2017, 27, 172–176. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; van Groenigen, K.J.; Lee, J.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crops Res. 2015, 183, 156–168. [Google Scholar] [CrossRef]
- Villat, J.; Nicholas, K.A. Quantifying soil carbon sequestration from regenerative agricultural practices in crops and vineyards. Front. Sustain. Food Syst. 2024, 7, 1234108. [Google Scholar] [CrossRef]
- Bond, W.; Grundy, A. Non-chemical weed management in organic farming systems. Weed Res. 2001, 41, 383–405. [Google Scholar] [CrossRef]
- Pantović, J.; Sečanski, M. Weed control in organic farming. Contemp. Agric. 2022, 72, 43–56. [Google Scholar] [CrossRef]
- Tanveer, A.; Ikram, R.; Ali, H. Crop rotation: Principles and practices. In Agronomic Crops; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Borase, D.; Nath, C.; Hazra, K.K.; Senthilkumar, M.; Singh, S.S.; Praharaj, C.S.; Singh, U.; Kumar, N. Long-term impact of diversified crop rotations and nutrient management practices on soil microbial functions and soil enzymes activity. Ecol. Indic. 2020, 114, 106322. [Google Scholar] [CrossRef]
- Molnar, I. Cropping systems in Eastern Europe: Past, present, and future. J. Crop Prod. 2003, 9, 623–647. [Google Scholar] [CrossRef]
- Liu, M.; Xue, R.; Yang, C.; Han, N.; Hu, Y.; Gu, K.; Zhao, J.; Guan, S.; Su, J.; Jiang, Y. Rotation with other crops slows down the fungal process in tobacco-growing soil. Sci. Rep. 2024, 14, 14160. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Liu, Z.; Chen, Y.; Wang, Y.; Feng, S. Crop rotation and diversification in China: Enhancing sustainable agriculture and resilience. Agriculture 2024, 14, 1465. [Google Scholar] [CrossRef]
- McDaniel, M.D.; Tiemann, L.K.; Grandy, A.S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 2014, 24, 560–570. [Google Scholar] [CrossRef]
- Tiemann, L.K.; Grandy, A.S.; Atkinson, E.E.; Marin-Spiotta, E.; McDaniel, M.D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 2015, 18, 761–771. [Google Scholar] [CrossRef]
- Buoso, S.; Zamboni, A.; Franco, A.; Commisso, M.; Guzzo, F.; Varanini, Z.; Pinton, R.; Tomasi, N.; Zanin, L. Nodulating white lupins take advantage of the reciprocal interplay between N and P nutritional responses. Physiol. Plant. 2022, 174, 13607. [Google Scholar] [CrossRef]
- Lambers, H. Phosphorus acquisition and utilization in plants. Annu. Rev. Plant Biol. 2022, 73, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Cesco, S.; Neumann, G.; Tomasi, N.; Pinton, R.; Weisskopf, L. Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 2010, 329, 1–25. [Google Scholar] [CrossRef]
- Kalimov, N.; Bodryy, K.; ShıLo, E.; Kaldybaev, D.; Bodraya, M. Impact of tillage and crop rotations on soil organic matter content in Northern Kazakhstan’s chernozem soils: A 10-year study (2011–2021). Eurasian J. Soil Sci. 2024, 13, 35–42. [Google Scholar] [CrossRef]
- Skinulienė, L.; Marcinkevičienė, A.; Dorelis, M.; Bogužas, V. The effect of long-term crop rotations on the soil carbon sequestration rate potential and cereal yield. Agriculture 2024, 14, 483. [Google Scholar] [CrossRef]
- Auzins, A.; Leimane, I.; Krievina, A.; Morozova, I.; Miglavs, A.; Lakovskis, P. Evaluation of environmental and economic performance of crop production in relation to crop rotation, catch crops, and tillage. Agriculture 2023, 13, 1539. [Google Scholar] [CrossRef]
- Darguza, M.; Gaile, Z. The productivity of crop rotation depending on the included plants and soil tillage. Agriculture 2023, 13, 1730. [Google Scholar] [CrossRef]
- De Baets, S.; Poesen, J.; Meersmans, J.; Serlet, L. Cover crops and their erosion-reducing effects during concentrated flow erosion. Catena 2011, 85, 237–244. [Google Scholar] [CrossRef]
- Gongora, V.R.M.; Secco, D.; Bassegio, D.; de Marins, A.C.; Chang, P.; Savioli, M.R. Impact of cover crops on soil physical properties, soil loss, and runoff in compacted Oxisol of southern Brazil. Geoderma Reg. 2022, 31, e00577. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. Cover crop impacts on soil physical properties: A review. Soil Sci. Soc. Am. J. 2020, 84, 1527–1576. [Google Scholar] [CrossRef]
- Gajewski, P.; Majchrzak, L.; Bocianowski, J.; Kaczmarek, Z. Effects of cover crops and tillage methods on selected physical and water retention properties of Luvisol. Int. Agrophys. 2025, 39, 73–86. [Google Scholar] [CrossRef]
- Böldt, M.; Taube, F.; Vogeler, I.; Reinsch, T.; Kluß, C.; Loges, R. Evaluating different catch crop strategies for closing the nitrogen cycle in cropping systems—Field experiments and modelling. Sustainability 2021, 13, 394. [Google Scholar] [CrossRef]
- El-Remaly, E.; Osman, A.; El-Gawad, H.A.; Althobaiti, F.; Albogami, S.M.; Dessoky, E.; El-Mogy, M. Bio-management of root-knot nematodes on cucumber using biocidal effects of some Brassicaceae crops. Horticulturae 2022, 8, 699. [Google Scholar] [CrossRef]
- Parajuli, M.; Panth, M.; Gonzalez, A.; Addesso, K.M.; Witcher, A.; Simmons, T.; Baysal-Gurel, F. Cover crop usage for the sustainable management of soilborne diseases in woody ornamental nursery production system. Can. J. Plant Pathol. 2022, 44, 432–452. [Google Scholar] [CrossRef]
- Dong, F.; Zeng, W. Effects of fall and winter cover crops on weed suppression in the United States: A meta-analysis. Sustainability 2024, 16, 3192. [Google Scholar] [CrossRef]
- White, C. Why regenerative agriculture? Am. J. Econ. Sociol. 2020, 79, 799–812. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, H.; Fu, L.; Yin, M.; Wang, Z.; Li, Y.; Cao, W. Green manuring enhances soil multifunctionality in tobacco field in Southwest China. Microorganisms 2024, 12, 949. [Google Scholar] [CrossRef]
- Kucerik, J.; Brtnicky, M.; Mustafa, A.; Hammerschmiedt, T.; Kintl, A.; Sobotkova, J.; Alamri, S.; Baltazar, T.; Latal, O.; Naveed, M.; et al. Utilization of diversified cover crops as green manure-enhanced soil organic carbon, nutrient transformation, microbial activity, and maize growth. Agronomy 2024, 14, 2001. [Google Scholar] [CrossRef]
- Aguiar, P.; Arrobas, M.; Nharreluga, E.A.; Rodrigues, M.Â. Different species and cultivars of broad beans, lupins, and clovers demonstrated varying environmental adaptability and nitrogen fixation potential when cultivated as green manures in Northeastern Portugal. Sustainability 2024, 16, 10725. [Google Scholar] [CrossRef]
- Xie, Y.; Jing, Y.; Wang, Y.; Zheng, R.; Xu, Q.; Sun, Z.; Duan, T. Leguminous green manure intercropping promotes soil health in a citrus (Citrus reticulata) orchard. Agriculture 2024, 14, 1897. [Google Scholar] [CrossRef]
- Mesfin, S.; Gebresamuel, G.; Haile, M.; Zenebe, A. Potentials of legumes rotation on yield and nitrogen uptake of subsequent wheat crop in northern Ethiopia. Heliyon 2023, 9, e16126. [Google Scholar] [CrossRef]
- Vincent-Caboud, L.; Casagrande, M.; David, C.; Ryan, M.; Silva, E.M.; Peigné, J. Using mulch from cover crops to facilitate organic no-till soybean and maize production. A review. Agron. Sustain. Dev. 2019, 39, 59. [Google Scholar] [CrossRef]
- Ferreira, I.Q.; Rodrigues, M.A.; Claro, A.M.; Arrobas, M. Management of nitrogen-rich legume cover crops as a mulching in traditional olive orchards. Commun. Soil Sci. Plant Anal. 2015, 46, 1881–1894. [Google Scholar] [CrossRef]
- Justes, E.; Bedoussac, L.; Dordas, C.; Frak, E.; Louarn, G.; Boudsocq, S.; Journet, E.-P.; Lithourgidis, A.; Pankou, C.; Zhang, C.; et al. The 4C approach as a way to understand species interactions determining intercropping productivity. Front. Agric. Sci. Eng. 2021, 8, 414. [Google Scholar] [CrossRef]
- Madembo, C.; Mhlanga, B.; Thierfelder, C. Productivity or stability? Exploring maize-legume intercropping strategies for smallholder Conservation Agriculture farmers in Zimbabwe. Agric. Syst. 2020, 185, 102921. [Google Scholar] [CrossRef]
- Ngwira, A.R.; Kabambe, V.; Simwaka, P.; Makoko, K.; Kamoyo, K. Productivity and profitability of maize-legume cropping systems under conservation agriculture among smallholder farmers in Malawi. Acta Agric. Scand. B Soil Plant Sci. 2020, 70, 241–251. [Google Scholar] [CrossRef]
- Dimande, P.; Arrobas, M.; Rodrigues, M.Á. Intercropped maize and cowpea increased the land equivalent ratio and enhanced crop access to more nitrogen and phosphorus compared to cultivation as sole crops. Sustainability 2024, 16, 1440. [Google Scholar] [CrossRef]
- Crusciol, C.; Momesso, L.; Portugal, J.; Costa, C.; Bossolani, J.W.; Costa, N.R.; Pariz, C.M.; Castilhos, A.M.; Rodrigues, V.A.; Costa, C.; et al. Upland rice intercropped with forage grasses in an integrated crop-livestock system: Optimizing nitrogen management and food production. Field Crops Res. 2021, 261, 108008. [Google Scholar] [CrossRef]
- Prado, L.G.; Costa, K.; Silva, L.M.; Costa, A.C.; Severiano, E.; Costa, J.V.C.P.; Habermann, E.; Silva, J.A.G. Silages of sorghum, Tamani guinea grass, and Stylosanthes in an integrated system: Production and quality. Front. Sustain. Food Syst. 2023, 7, 1208319. [Google Scholar] [CrossRef]
- Frąc, M.; Panek, J.; Gryta, A.; Oszust, K.; Pertile, G.; Siegieda, D.; Mącik, M.; Pylak, M.; Pathan, S.I.; Pietramellara, G. Legume-cereal intercropping as a strategy of regenerative agriculture supporting reversal of biodiversity loss—Relevance of microbiome-based research. ARPHA Conf. Abstr. 2023, 6, e108886. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Arrobas, M. Cover Cropping for Increasing Fruit Production and Farming Sustainability. In Fruit Crops: Diagnosis and Management of Nutrient Constraints; Srivastava, A.K., Hu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 279–295. [Google Scholar]
- Jiménez-González, M.A.; López-Romano, H.; Carral, P.; Álvarez-González, A.M.; Herranz-Luque, J.-E.; Sastre-Rodríguez, B.E.; García-Díaz, A.; Muñoz-Organero, G.; Marques, M.J. Ten-year impact of cover crops on soil organic matter quantity and quality in semi-arid vineyards. Land 2023, 12, 2143. [Google Scholar] [CrossRef]
- Launay, C.; Constantin, J.; Chlebowski, F.; Houot, S.; Graux, A.-I.; Klumpp, K.; Martin, R.; Mary, B.; Pellerin, S.; Therond, O. Estimating the carbon storage potential and greenhouse gas emissions of French arable cropland using high-resolution modeling. Glob. Change Biol. 2021, 27, 1645–1661. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, X.; Xie, H.; He, H.; Zhang, X.; Shao, P.; Zhu, X.; Jiang, Y.; Liang, C. Frequent stover mulching builds healthy soil and sustainable agriculture in Mollisols. Agric. Ecosyst. Environ. 2022, 326, 107815. [Google Scholar] [CrossRef]
- Crézé, C.M.; Horwath, W.R. Cover cropping: A malleable solution for sustainable agriculture? Meta-analysis of ecosystem service frameworks in perennial systems. Agronomy 2021, 11, 862. [Google Scholar] [CrossRef]
- Aguilera, G.; Roslin, T.; Miller, K.; Tamburini, G.; Birkhofer, K.; Caballero-Lopez, B.; Lindström, S.A.-M.; Öckinger, E.; Rundlöf, M.; Rusch, A.; et al. Crop diversity benefits carabid and pollinator communities in landscapes with semi-natural habitats. J. Appl. Ecol. 2020, 57, 2170–2179. [Google Scholar] [CrossRef]
- Rivas-Salvador, J.; Štrobl, M.; Kadlec, T.; Saska, P.; Reif, J. A non-native woody plant compromises conservation benefits of mid-field woodlots for birds in farmland. Glob. Ecol. Conserv. 2021, 26, e01458. [Google Scholar] [CrossRef]
- Fortuna-Antoszkiewicz, B.; Łukaszkiewicz, J.; Wisniewski, P. Mid-field woodlots as a substitute for forests in agricultural areas—The impact on environment and tourism. In Proceedings of the Public Recreation and Landscape Protection—With Environment Hand in Hand? Warsaw, Poland, 9–11 May 2023; Public Recreation and Landscape Protection: Brno, Czech Republic, 2023. [Google Scholar] [CrossRef]
- Wolz, K.J.; DeLucia, E.H. Alley cropping: Global patterns of species composition and function. Agric. Ecosyst. Environ. 2018, 252, 61–68. [Google Scholar] [CrossRef]
- Alcántara, C.; Soriano, M.A.; Saavedra, M.; Gómez, J.A. Sistemas De Manejo Del Suelo. In El Cultivo Del Olivo, 7th ed.; Barranco, D., Fernández-Escobar, R., Rallo, L., Eds.; Mundi-Prensa: Madrid, Spain, 2017; pp. 335–417. [Google Scholar]
- Gucci, R.; Caruso, G.; Bertolla, C.; Urbani, S.; Tatichi, A.; Esposto, S.; Servili, M.; Sifola, M.I.; Pellegrini, S.; Pagliai, M.; et al. Changes of soil properties and tree performances induced by soil management in a high-density olive orchard. Eur. J. Agron. 2012, 41, 18–27. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Ferreira, I.Q.; Freitas, S.; Pires, J.; Arrobas, M. Self-reseeding annual legumes for cover cropping in rainfed managed olive orchards. Span. J. Agric. Res. 2015, 13, e0302. [Google Scholar] [CrossRef]
- Liao, Y.; Cao, H.-X.; Liu, X.; Li, H.-T.; Hu, Q.-Y.; Xue, W.-K. By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas. Agric. Water Manag. 2021, 253, 106936. [Google Scholar] [CrossRef]
- Sandström, V.; Kastner, T.; Schwarzmueller, F.; Kummu, M. The potential to increase food system resilience by replacing feed imports with domestic food system byproducts. Environ. Res. Lett. 2024, 19, 044001. [Google Scholar] [CrossRef]
- Delandmeter, M.; de Faccio Carvalho, P.C.; Bremm, C.; dos Santos Cargnelutti, C.; Bindelle, J.; Dumont, B. Integrated crop and livestock systems increase both climate change adaptation and mitigation capacities. Sci. Total Environ. 2024, 912, 169061. [Google Scholar] [CrossRef]
- Fenster, T.L.D.; LaCanne, C.E.; Pecenka, J.R.; Schmid, R.B.; Bredeson, M.M.; Busenitz, K.M.; Michels, A.M.; Welch, K.D.; Lundgren, J.G. Defining and validating regenerative farm systems using a composite of ranked agricultural practices. F1000Research 2021, 10, 115. [Google Scholar] [CrossRef]
- Sekaran, U.; Kumar, S.; Gonzalez-Hernandez, J.L. Integration of crop and livestock enhanced soil biochemical properties and microbial community structure. Geoderma 2021, 381, 114686. [Google Scholar] [CrossRef]
- Soares, S.; Souza, W.; Homem, B.; Ramalho, I.; Borré, J.; Pereira, M.; Pinheiro, É.; Marchao, R.; Alves, B.; Boddey, R.; et al. The use of integrated crop–livestock systems as a strategy to improve soil organic matter in the Brazilian Cerrado. Agronomy 2024, 14, 2547. [Google Scholar] [CrossRef]
- Lowder, S.K.; Sánchez, M.V.; Bertini, R. Which farms feed the world and has farmland become more concentrated? World Dev. 2021, 142, 105455. [Google Scholar] [CrossRef]
- Munton, R.; Whatmore, S.; Marsden, T. Part-time farming and its implications for the rural landscape: A preliminary analysis. Environ. Plan. A 1989, 21, 523–536. [Google Scholar] [CrossRef]
- Poffenbarger, H.; Artz, G.; Dahlke, G.; Edwards, W.; Hanna, M.; Russell, J.; Sellers, H.; Liebman, M. An economic analysis of integrated crop-livestock systems in Iowa, U.S.A. Agric. Syst. 2017, 157, 51–69. [Google Scholar] [CrossRef]
- Godbold, D.L.; Hoosbeek, M.R.; Lukac, M.; Cotrufo, M.F.; Janssens, I.A.; Ceulemans, R.; Polle, A.; Velthorst, E.J.; Scarascia-Mugnozza, G.; Angelis, P.; et al. Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 2006, 281, 15–24. [Google Scholar] [CrossRef]
- Hijbeek, R.; Pronk, A.; Ittersum, M.K.; Verhagen, A.; Ruysschaert, G.; Bijttebier, J.; Zavattaro, L.; Bechini, L.; Schlatter, N.; Berge, H. Use of organic inputs by arable farmers in six agro-ecological zones across Europe: Drivers and barriers. Agric. Ecosyst. Environ. 2019, 275, 87–98. [Google Scholar] [CrossRef]
- Afonso, S.; Pereira, E.L.; Arrobas, M.; Rodrigues, M.Á.; Choupina, A. Composts obtained by mixing hop leaves with wheat straw or farmyard manure improved soil properties and increased microbial communities. Horticulturae 2023, 9, 1304. [Google Scholar] [CrossRef]
- Yadav, R.; Purakayastha, T.; Das, R.; Khan, A. Impact of long-term manuring and cropping system on stability of humus associated with clay-organic complex. Arch. Agron. Soil Sci. 2022, 69, 2356–2369. [Google Scholar] [CrossRef]
- Murphy, B. Impact of soil organic matter on soil properties—A review with emphasis on Australian soils. Soil Res. 2015, 53, 605–635. [Google Scholar] [CrossRef]
- Krey, K.; Nabity, P.; Blubaugh, C.; Fu, Z.; Leuven, J.T.V.; Reganold, J.; Berim, A.; Gang, D.; Jensen, A.; Snyder, W.E. Organic farming sharpens plant defenses in the field. Front. Sustain. Food Syst. 2020, 4, 97. [Google Scholar] [CrossRef]
- Sapkota, T.; Askegaard, M.; Lægdsmand, M.; Olesen, J. Effects of catch crop type and root depth on nitrogen leaching and yield of spring barley. Field Crops Res. 2012, 125, 129–138. [Google Scholar] [CrossRef]
- Ding, Y.; Huang, X.; Li, Y.; Liu, H.; Zhang, Q.; Liu, X.; Xu, J.; Di, H. Nitrate leaching losses mitigated with intercropping of deep-rooted and shallow-rooted plants. J. Soils Sediments 2020, 20, 2219–2232. [Google Scholar] [CrossRef]
- Gou, X.; Reich, P.; Qiu, L.; Shao, M.; Wei, G.; Wang, J.; Wei, X. Leguminous plants significantly increase soil nitrogen cycling across global climates and ecosystem types. Glob. Change Biol. 2023, 29, 4028–4043. [Google Scholar] [CrossRef]
- Dainese, M.; Martin, E.A.; Aizen, M.; Albrecht, M.; Bartomeus, I.; Bommarco, R.; Carvalheiro, L.; Chaplin-Kramer, R.; Gagic, V.; Garibaldi, L.; et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 2019, 5, eaax0121. [Google Scholar] [CrossRef] [PubMed]
- Beillouin, D.; Ben-Ari, T.; Malézieux, É.; Seufert, V.; Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Change Biol. 2021, 27, 4697–4710. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Neher, D.; Fu, S.; Li, Z.; Wang, K. Non-target effects of herbicides on soil nematode assemblages. Pest Manag. Sci. 2013, 69, 679–684. [Google Scholar] [CrossRef]
- Mendes, K.F. Pesticides in Agriculture and Environment; Book Publisher International: Tarkeshwar, India, 2021. [Google Scholar] [CrossRef]
- Sim, J.X.; Drigo, B.; Doolette, C.; Vasileiadis, S.; Karpouzas, D.; Lombi, E. Impact of twenty pesticides on soil carbon microbial functions and community composition. Chemosphere 2022, 307, 136014. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, C.C.; Thomine, E.; Rusch, A.; Lavoir, A.-V.; Wang, S.; Desneux, N. Crop diversification to promote arthropod pest management: A review. Agric. Commun. 2023, 1, 100004. [Google Scholar] [CrossRef]
- Ferreira, I.Q.; Arrobas, M.; Claro, A.M.; Rodrigues, M.A. Soil management in rainfed olive orchards may result in conflicting effects on olive production and soil fertility. Span. J. Agric. Res. 2013, 11, 472–480. [Google Scholar] [CrossRef]
- Riccioli, F.; Moruzzo, R.; Zhang, Z.; Zhao, J.; Tang, Y.; Tinacci, L.; Boncinelli, F.; Martino, D.; Guidi, A. Willingness to pay in main cities of Zhejiang province (China) for quality and safety in food market. Food Control 2020, 108, 106831. [Google Scholar] [CrossRef]
- Alsubhi, M.; Blake, M.R.; Nguyen, T.; Majmudar, I.; Moodie, M.; Ananthapavan, J. Consumer willingness to pay for healthier food products: A systematic review. Obes. Rev. 2022, 24, e13525. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, M.; Kuiry, R.; Pal, P.K. Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. J. Appl. Res. Med. Aromat. Plants 2020, 18, 100255. [Google Scholar] [CrossRef]
- Yeshi, K.; Crayn, D.; Ritmejerytė, E.; Wangchuk, P. Plant secondary metabolites produced in response to abiotic stresses have potential application in pharmaceutical product development. Molecules 2022, 27, 1313. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Mittler, R. Plant responses to multifactorial stress combination. New Phytol. 2022, 234, 1161–1177. [Google Scholar] [CrossRef] [PubMed]
- European Union. Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007. Off. J. Eur. Union 2018, L150, 1–92. Available online: http://data.europa.eu/eli/reg/2018/848/oj (accessed on 24 July 2025).
Agricultural Practices | Key Benefits | Environmental Issues | Economic/Social Constraints | Technical Constraints | Applicability |
---|---|---|---|---|---|
No-tillage | Soil conservation; Carbon sequestration; Soil health; Energy saving | Non-selective herbicide reliance | Reduced costs | High-cost equipment | Large farms |
Crop rotation | Soil health; Biodiversity; Less nutrient mining | No | No equivalent income crops | Diverse specialized equipment | All farm sizes |
Winter cover crops | Soil conservation; Lower nitrate leaching | No | Seeding cost | No | All farm sizes |
Green manures | Soil fertility; More N available if legumes | Nitrate leaching risk if legumes | Seeding cost | No | All farm sizes |
Intercropping | Biodiversity; Higher income | No | Labor availability | Mechanization difficult | Small family farms |
Cover cropping in perennials | Soil conservation; Carbon sequestration; Soil health; Biodiversity | No | Water competition and yield loss | High costs: Seeds, seeding and cover crop management | All farm sizes |
Crop-livestock systems | Soil conservation; Carbon sequestration; Soil health; Biodiversity | No | Extra income from animal products | Labor, fencing, crop damage, supplemental feed | Mid and large farms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moisés, C.; Arrobas, M.; Tsitos, D.; Pinho, D.; Rezende, R.F.; Rodrigues, M.Â. Regenerative Agriculture: Insights and Challenges in Farmer Adoption. Sustainability 2025, 17, 7235. https://doi.org/10.3390/su17167235
Moisés C, Arrobas M, Tsitos D, Pinho D, Rezende RF, Rodrigues MÂ. Regenerative Agriculture: Insights and Challenges in Farmer Adoption. Sustainability. 2025; 17(16):7235. https://doi.org/10.3390/su17167235
Chicago/Turabian StyleMoisés, Cristiano, Margarida Arrobas, Dimitrios Tsitos, Diogo Pinho, Raiza Figueiredo Rezende, and Manuel Ângelo Rodrigues. 2025. "Regenerative Agriculture: Insights and Challenges in Farmer Adoption" Sustainability 17, no. 16: 7235. https://doi.org/10.3390/su17167235
APA StyleMoisés, C., Arrobas, M., Tsitos, D., Pinho, D., Rezende, R. F., & Rodrigues, M. Â. (2025). Regenerative Agriculture: Insights and Challenges in Farmer Adoption. Sustainability, 17(16), 7235. https://doi.org/10.3390/su17167235