Land Use Change and Its Climatic and Vegetation Impacts in the Brazilian Amazon
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Use and Land Cover Change (LULCC)
2.3. Vegetation Analysis Using the Normalized Difference Vegetation Index (NDVI)
2.4. Space Climate Monitoring: Precipitation and Land Surface Temperature (LST) from 2001 to 2023
2.5. Estimating Evapotranspiration (ET) with the MOD16 Product
2.6. Quantifying Deforestation and Fires Using Remote Sensing Data
2.7. Mann–Kendall Test and Correlation Test
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albert, J.S.; Carnaval, A.C.; Flantua, S.G.A.; Lohmann, L.G.; Ribas, C.C.; Riff, D.; Carrillo, J.D.; Fan, Y.; Figueiredo, J.J.P.; Guayasamin, J.M.; et al. Human Impacts Outpace Natural Processes in the Amazon. Science 2023, 379, eabo5003. [Google Scholar] [CrossRef]
- Heinrich, V.H.A.; Dalagnol, R.; Cassol, H.L.G.; Rosan, T.M.; de Almeida, C.T.; Silva Junior, C.H.L.; Campanharo, W.A.; House, J.I.; Sitch, S.; Hales, T.C.; et al. Large Carbon Sink Potential of Secondary Forests in the Brazilian Amazon to Mitigate Climate Change. Nat. Commun. 2021, 12, 1785. [Google Scholar] [CrossRef]
- Barlow, J.; Lennox, G.D.; Ferreira, J.; Berenguer, E.; Lees, A.C.; Nally, R.M.; Thomson, J.R.; Ferraz, S.F.d.B.; Louzada, J.; Oliveira, V.H.F.; et al. Anthropogenic Disturbance in Tropical Forests Can Double Biodiversity Loss from Deforestation. Nature 2016, 535, 144–147. [Google Scholar] [CrossRef]
- Stickler, C.M.; Coe, M.T.; Costa, M.H.; Nepstad, D.C.; McGrath, D.G.; Dias, L.C.P.; Rodrigues, H.O.; Soares-Filho, B.S. Dependence of Hydropower Energy Generation on Forests in the Amazon Basin at Local and Regional Scales. Proc. Natl. Acad. Sci. USA 2013, 110, 9601–9606. [Google Scholar] [CrossRef]
- Cardoso, D.; Särkinen, T.; Alexander, S.; Amorim, A.M.; Bittrich, V.; Celis, M.; Daly, D.C.; Fiaschi, P.; Funk, V.A.; Giacomin, L.L.; et al. Amazon Plant Diversity Revealed by a Taxonomically Verified Species List. Proc. Natl. Acad. Sci. USA 2017, 114, 10695–10700. [Google Scholar] [CrossRef]
- Thde Araújo, L.K.; Sousa, P.; de Miranda Azeiteiro, U.M.; da Maia Soares, A.M.V. Brazilian Amazônia, Deforestation and Environmental Degradation: Analyzing the Process Using Game, Deterrence and Rational Choice Theories. Environ. Sci. Policy 2021, 117, 46–51. [Google Scholar] [CrossRef]
- da Silva, S.D.P.; dos Santos, S.B.; Pereira, P.C.G.; da Silva Melo, M.R.; Eugenio, F.C. Landscape Analysis in a Municipality in the Arc of Deforestation of the Brazilian Amazon Rainforest. Ecol. Eng. 2021, 173, 106417. [Google Scholar] [CrossRef]
- Jahfer, S.; Vinayachandran, P.N.; Nanjundiah, R.S. Long-Term Impact of Amazon River Runoff on Northern Hemispheric Climate. Sci. Rep. 2017, 7, 10989. [Google Scholar] [CrossRef] [PubMed]
- Escobar, H. Deforestation in the Brazilian Amazon Is Still Rising Sharply. Science (1979) 2020, 369, 613. [Google Scholar] [CrossRef] [PubMed]
- Silva Junior, C.H.L.; Pessôa, A.C.M.; Carvalho, N.S.; Reis, J.B.C.; Anderson, L.O.; Aragão, L.E.O.C. The Brazilian Amazon Deforestation Rate in 2020 Is the Greatest of the Decade. Nat. Ecol. Evol. 2020, 5, 144–145. [Google Scholar] [CrossRef]
- Alvarez-Berríos, N.L.; Mitchell Aide, T. Global Demand for Gold Is Another Threat for Tropical Forests. Environ. Res. Lett. 2015, 10, 014006. [Google Scholar] [CrossRef]
- Sonter, L.J.; Herrera, D.; Barrett, D.J.; Galford, G.L.; Moran, C.J.; Soares-Filho, B.S. Mining Drives Extensive Deforestation in the Brazilian Amazon. Nat. Commun. 2017, 8, 1013. [Google Scholar] [CrossRef]
- Crooks, K.R.; Burdett, C.L.; Theobald, D.M.; Rondinini, C.; Boitani, L. Global Patterns of Fragmentation and Connectivity of Mammalian Carnivore Habitat. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 2642–2651. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, A.; Zeller, K.A. A Range-Wide Model of Landscape Connectivity and Conservation for the Jaguar, Panthera Onca. Biol. Conserv. 2010, 143, 939–945. [Google Scholar] [CrossRef]
- Dutra, D.J.; Silveira, M.V.F.; Mataveli, G.; Ferro, P.D.; Magalhães, D.d.S.; de Medeiros, T.P.; Anderson, L.O.; Aragão, L.E.O.e.C.d. Challenges for Reducing Carbon Emissions from Land-Use and Land Cover Change in Brazil. Perspect. Ecol. Conserv. 2024, 22, 213–218. [Google Scholar] [CrossRef]
- Gianetti, G.W.; Filho, J.B.d.S.F. Pasture Recovery, Emissions, and the Brazilian Paris Agreement Commitments. Land. Use Policy 2024, 141, 107118. [Google Scholar] [CrossRef]
- Naval, M.L.M.; Bieluczyk, W.; Alvarez, F.; Carvalho, L.C.d.S.; Maracahipes-Santos, L.; de Oliveira, E.A.; da Silva, K.G.; Pereira, M.B.; Brando, P.M.; Marimon Junior, B.H.; et al. Impacts of Repeated Forest Fires and Agriculture on Soil Organic Matter and Health in Southern Amazonia. Catena 2025, 254, 108924. [Google Scholar] [CrossRef]
- Almeida, C.T.; Oliveira-Júnior, J.F.; Delgado, R.C.; Cubo, P.; Ramos, M.C. Spatiotemporal Rainfall and Temperature Trends throughout the Brazilian Legal Amazon, 1973–2013. Int. J. Climatol. 2017, 37, 2013–2026. [Google Scholar] [CrossRef]
- Hughes, L. Biological Consequences of Global Warming: Is the Signal Already Apparent? Trends Ecol. Evol. 2000, 15, 56–61. [Google Scholar] [CrossRef]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.-C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity Redistribution under Climate Change: Impacts on Ecosystems and Human Well-Being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef]
- Couceiro, S.R.M.; Hamada, N.; Luz, S.L.B.; Forsberg, B.R.; Pimentel, T.P. Deforestation and Sewage Effects on Aquatic Macroinvertebrates in Urban Streams in Manaus, Amazonas, Brazil. Hydrobiologia 2007, 575, 271–284. [Google Scholar] [CrossRef]
- D’Acunha, B.; Dalmagro, H.J.; Zanella de Arruda, P.H.; Biudes, M.S.; Lathuillière, M.J.; Uribe, M.; Couto, E.G.; Brando, P.M.; Vourlitis, G.; Johnson, M.S. Changes in Evapotranspiration, Transpiration and Evaporation across Natural and Managed Landscapes in the Amazon, Cerrado and Pantanal Biomes. Agric. For. Meteorol. 2024, 346, 109875. [Google Scholar] [CrossRef]
- de Oliveira, R.G.; Valle Júnior, L.C.G.; da Silva, J.B.; Espíndola, D.A.L.F.; Lopes, R.D.; Nogueira, J.S.; Curado, L.F.A.; Rodrigues, T.R. Temporal Trend Changes in Reference Evapotranspiration Contrasting Different Land Uses in Southern Amazon Basin. Agric. Water Manag. 2021, 250, 106815. [Google Scholar] [CrossRef]
- Longo, M.; Saatchi, S.; Keller, M.; Bowman, K.; Ferraz, A.; Moorcroft, P.R.; Morton, D.C.; Bonal, D.; Brando, P.; Burban, B.; et al. Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests. J. Geophys. Res. Biogeosci. 2020, 125, e2020JG005677. [Google Scholar] [CrossRef]
- Esquivel-Muelbert, A.; Baker, T.R.; Dexter, K.G.; Lewis, S.L.; Brienen, R.J.W.; Feldpausch, T.R.; Lloyd, J.; Monteagudo-Mendoza, A.; Arroyo, L.; Álvarez-Dávila, E.; et al. Compositional Response of Amazon Forests to Climate Change. Glob. Change Biol. 2019, 25, 39–56. [Google Scholar] [CrossRef]
- Polade, S.D.; Pierce, D.W.; Cayan, D.R.; Gershunov, A.; Dettinger, M.D. The Key Role of Dry Days in Changing Regional Climate and Precipitation Regimes. Sci. Rep. 2014, 4, 4364. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Jasechko, S. Transpiration in the Global Water Cycle. Agric. For. Meteorol. 2014, 189–190, 115–117. [Google Scholar] [CrossRef]
- Miralles, D.G.; De Jeu, R.A.M.; Gash, J.H.; Holmes, T.R.H.; Dolman, A.J. Magnitude and Variability of Land Evaporation and Its Components at the Global Scale. Hydrol. Earth Syst. Sci. 2011, 15, 967–981. [Google Scholar] [CrossRef]
- Aragão, L.E.O.C.; Anderson, L.O.; Fonseca, M.G.; Rosan, T.M.; Vedovato, L.B.; Wagner, F.H.; Silva, C.V.J.; Silva Junior, C.H.L.; Arai, E.; Aguiar, A.P.; et al. 21st Century Drought-Related Fires Counteract the Decline of Amazon Deforestation Carbon Emissions. Nat. Commun. 2018, 9, 536. [Google Scholar] [CrossRef]
- Anderson, L.O.; Ribeiro Neto, G.; Cunha, A.P.; Fonseca, M.G.; Mendes de Moura, Y.; Dalagnol, R.; Wagner, F.H.; de Aragão, L.E.O.e.C. Vulnerability of Amazonian Forests to Repeated Droughts. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170411. [Google Scholar] [CrossRef] [PubMed]
- Marcelino do Nascimento, D.; Sales, A.T.; Souza, R.; Alves da Silva, A.S.; Valadares de Sa Barretto Sampaio, E.; Cezar Menezes, R.S. Development of a Methodological Approach to Estimate Vegetation Biomass Using Remote Sensing in the Brazilian Semiarid NE Region. Remote Sens. Appl. 2022, 27, 100771. [Google Scholar] [CrossRef]
- Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.; Rudorff, B.F.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; E Souza-Filho, P.W.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Gašparović, I.; Gašparović, M.; Medak, D. Determining and Analysing Solar Irradiation Based on Freely Available Data: A Case Study from Croatia. Environ. Dev. 2018, 26, 55–67. [Google Scholar] [CrossRef]
- FEARNSIDE, P.M. Deforestation in Brazilian Amazonia: History, Rates, and Consequences. Conserv. Biol. 2005, 19, 680–688. [Google Scholar] [CrossRef]
- Davidson, E.A.; de Araújo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Bustamante, M.M.C.; Coe, M.T.; DeFries, R.S.; Keller, M.; Longo, M.; et al. The Amazon Basin in Transition. Nature 2012, 481, 321–328. [Google Scholar] [CrossRef]
- Brazilian Forest Service. Brazilian Forests at a Glance—2019; Brazilian Forest Service: Brasília, Brazil, 2020. Available online: https://www.gov.br/florestal/pt-br/centrais-de-conteudo/publicacoes/publicacoes-diversas/Brazilian_Forests_2019_Ingles.pdf (accessed on 9 June 2025).
- Bredin, Y.K.; Hawes, J.E.; Peres, C.A.; Haugaasen, T. Structure and Composition of Terra Firme and Seasonally Flooded Várzea Forests in the Western Brazilian Amazon. Forests 2020, 11, 1361. [Google Scholar] [CrossRef]
- Mori, G.B.; Poorter, L.; Schietti, J.; Piedade, M.T.F. Edaphic Characteristics Drive Functional Traits Distribution in Amazonian Floodplain Forests. Plant Ecol. 2021, 222, 349–360. [Google Scholar] [CrossRef]
- Vourlitis, G.L.; de Souza Nogueira, J.; de Almeida Lobo, F.; Sendall, K.M.; de Paulo, S.R.; Antunes Dias, C.A.; Pinto, O.B.; de Andrade, N.L.R. Energy Balance and Canopy Conductance of a Tropical Semi-deciduous Forest of the Southern Amazon Basin. Water Resour. Res. 2008, 44, W03412. [Google Scholar] [CrossRef]
- Quesada, C.A.; Lloyd, J.; Anderson, L.O.; Fyllas, N.M.; Schwarz, M.; Czimczik, C.I. Soils of Amazonia with Particular Reference to the RAINFOR Sites. Biogeosciences 2011, 8, 1415–1440. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- MapBiomas Project. MapBiomas Project Collection 9 of the Annual Land Cover and Land Use Maps of Brazil (1985–2023). Available online: https://plataforma.brasil.mapbiomas.org/cobertura (accessed on 15 April 2025).
- QGIS Association. QGIS Geographic Information System; Version 3.34.14. QGIS Association: Beaverton, OR, USA. Available online: https://qgis.org (accessed on 15 April 2025).
- Didan, K. MODIS/Terra Vegetation Indices 16-Day L3 Global 500m SIN Grid V061 [Data Set]. NASA EOSDIS Land. Process. Distrib. Act. Arch. Cent. (DAAC) Data Set. 2021. Available online: https://www.earthdata.nasa.gov/data/catalog/lpcloud-mod13a1-061 (accessed on 15 April 2025).
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Xing, Z.; Li, Z.-L.; Duan, S.-B.; Liu, X.; Zheng, X.; Leng, P.; Gao, M.; Zhang, X.; Shang, G. Estimation of Daily Mean Land Surface Temperature at Global Scale Using Pairs of Daytime and Nighttime MODIS Instantaneous Observations. ISPRS J. Photogramm. Remote Sens. 2021, 178, 51–67. [Google Scholar] [CrossRef]
- Meng, F.; Qi, L.; Li, H.; Yang, X.; Liu, J. Spatiotemporal Evolution and Influencing Factors of Heat Island Intensity in the Yangtze River Delta Urban Agglomeration Based on GEE. Atmosphere 2024, 15, 1080. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a Global Evapotranspiration Algorithm Based on MODIS and Global Meteorology Data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS Global Terrestrial Evapotranspiration Algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Cleugh, H.A.; Leuning, R.; Mu, Q.; Running, S.W. Regional Evaporation Estimates from Flux Tower and MODIS Satellite Data. Remote Sens. Environ. 2007, 106, 285–304. [Google Scholar] [CrossRef]
- Running, S.W.; Mu, Q.; Zhao, M.; Moreno, A. MOD16A2GF MODIS/Terra Net Evapotranspiration Gap-Filled 8-Day L4 Global 500 m SIN Grid V006; NASA Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2019. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS Burned Area Mapping Algorithm and Product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1948. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; John Wiley & Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Yue, S.; Wang, C. The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- RSayyad, S.; Dakhore, K.K.; Phad, S.V. Analysis of Rainfall Trend of Parbhani, Maharshtra Using Mann– Kendall Test. J. Agrometeorol. 2021, 21, 239–240. [Google Scholar] [CrossRef]
- Franzblau, A.N. A Primer of Statistics for Non-Statisticians; Harcourt, Brace and Company: New York, NY, USA, 1958. [Google Scholar]
- R Development Core Team. R A Language and Environment for Statistical Computing; R Foundation for Computing Statistical: Vienna, Austria, 2022. [Google Scholar]
- Cabral, A.I.R.; Saito, C.; Pereira, H.; Laques, A.E. Deforestation Pattern Dynamics in Protected Areas of the Brazilian Legal Amazon Using Remote Sensing Data. Appl. Geogr. 2018, 100, 101–115. [Google Scholar] [CrossRef]
- Nascimento, N.; West, T.A.P.; Börner, J.; Ometto, J. What Drives Intensification of Land Use at Agricultural Frontiers in the Brazilian Amazon? Evidence from a Decision Game. Forests 2019, 10, 464. [Google Scholar] [CrossRef]
- Gollnow, F.; Lakes, T. Policy Change, Land Use, and Agriculture: The Case of Soy Production and Cattle Ranching in Brazil, 2001–2012. Appl. Geogr. 2014, 55, 203–211. [Google Scholar] [CrossRef]
- Vieira, I.C.G.; Toledo, P.M.; Silva, J.M.C.; Higuchi, H. Deforestation and Threats to the Biodiversity of Amazonia. Braz. J. Biol. 2008, 68, 949–956. [Google Scholar] [CrossRef]
- de Souza, R.A.; Miziara, F.; De Marco Junior, P. Spatial Variation of Deforestation Rates in the Brazilian Amazon: A Complex Theater for Agrarian Technology, Agrarian Structure and Governance by Surveillance. Land. Use Policy 2013, 30, 915–924. [Google Scholar] [CrossRef]
- Vallim, D.; Leichsenring, A. The Effect of the Beef Zero Deforestation Commitment in the Brazilian Amazon: A Spatial Panel Data Analysis. Ecol. Econ. 2025, 230, 108503. [Google Scholar] [CrossRef]
- Brito, B.; Barreto, P.; Brandão, A.; Baima, S.; Gomes, P.H. Stimulus for Land Grabbing and Deforestation in the Brazilian Amazon. Environ. Res. Lett. 2019, 14, 064018. [Google Scholar] [CrossRef]
- Greenpeace. Slaughtering the Amazon; Greenpeace: Amsterdam, The Netherlands, 2024; Available online: https://www.greenpeace.org/static/planet4-usa-stateless/2024/11/966c3a36-slaughtering-the-amazon.pdf (accessed on 9 June 2025).
- Nepstad, D.; McGrath, D.; Stickler, C.; Alencar, A.; Azevedo, A.; Swette, B.; Bezerra, T.; DiGiano, M.; Shimada, J.; Seroa da Motta, R.; et al. Slowing Amazon Deforestation through Public Policy and Interventions in Beef and Soy Supply Chains. Science 2014, 344, 1118–1123. [Google Scholar] [CrossRef]
- Carter, S.; Herold, M.; Avitabile, V.; de Bruin, S.; De Sy, V.; Kooistra, L.; Rufino, M.C. Agriculture-Driven Deforestation in the Tropics from 1990–2015: Emissions, Trends and Uncertainties. Environ. Res. Lett. 2018, 13, 014002. [Google Scholar] [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying Drivers of Global Forest Loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef]
- De Sy, V.; Herold, M.; Achard, F.; Avitabile, V.; Baccini, A.; Carter, S.; Clevers, J.G.P.W.; Lindquist, E.; Pereira, M.; Verchot, L. Tropical Deforestation Drivers and Associated Carbon Emission Factors Derived from Remote Sensing Data. Environ. Res. Lett. 2019, 14, 094022. [Google Scholar] [CrossRef]
- Pendrill, F.; Gardner, T.A.; Meyfroidt, P.; Persson, U.M.; Adams, J.; Azevedo, T.; Bastos Lima, M.G.; Baumann, M.; Curtis, P.G.; De Sy, V.; et al. Disentangling the Numbers behind Agriculture-Driven Tropical Deforestation. Science 2022, 377. [Google Scholar] [CrossRef]
- Silveira, F.; Romero, J.P.; Queiroz, A.; Freitas, E.; Stein, A. Economic Complexity and Deforestation in the Brazilian Amazon. World Dev. 2025, 185, 106804. [Google Scholar] [CrossRef]
- Ferrante, A.; Mouysset, L. Deforestation Fight in the Sight of Brazilian Amazonas Inhabitants. Trees For. People 2024, 16, 100533. [Google Scholar] [CrossRef]
- de Paula Pereira, A.S.A.; Santos, V.J.D.; Alves, S.D.C.; Silva, A.A.E.; da Silva, C.O.; Calijuri, M.L. Contribution of Rural Settlements to the Deforestation Dynamics in the Legal Amazon. Land. Use Policy 2022, 115, 106039. [Google Scholar] [CrossRef]
- Carrero, G.C.; Walker, R.T.; Simmons, C.S.; Fearnside, P.M. Land Grabbing in the Brazilian Amazon: Stealing Public Land with Government Approval. Land. Use Policy 2022, 120, 106133. [Google Scholar] [CrossRef]
- Ferrante, L.; Fearnside, P.M. Brazil’s New President and ‘Ruralists’ Threaten Amazonia’s Environment, Traditional Peoples and the Global Climate. Environ. Conserv. 2019, 46, 261–263. [Google Scholar] [CrossRef]
- Massaro, L.; Calvimontes, J.; Ferreira, L.C.; de Theije, M. Balancing Economic Development and Environmental Responsibility: Perceptions from Communities of Garimpeiros in the Brazilian Amazon. Resour. Policy 2022, 79, 103063. [Google Scholar] [CrossRef]
- Azevedo-Santos, V.M.; Arcifa, M.S.; Brito, M.F.G.; Agostinho, A.A.; Hughes, R.M.; Vitule, J.R.S.; Simberloff, D.; Olden, J.D.; Pelicice, F.M. Negative Impacts of Mining on Neotropical Freshwater Fishes. Neotrop. Ichthyol. 2021, 19, e210001. [Google Scholar] [CrossRef]
- Montalván-Burbano, N.; Velastegui-Montoya, A.; Gurumendi-Noriega, M.; Morante-Carballo, F.; Adami, M. Worldwide Research on Land Use and Land Cover in the Amazon Region. Sustainability 2021, 13, 6039. [Google Scholar] [CrossRef]
- Asner, G.P.; Llactayo, W.; Tupayachi, R.; Luna, E.R. Elevated Rates of Gold Mining in the Amazon Revealed through High-Resolution Monitoring. Proc. Natl. Acad. Sci. USA 2013, 110, 18454–18459. [Google Scholar] [CrossRef] [PubMed]
- Diniz, M.B.; Diniz, M.J.T. Exploração Dos Recursos Da Biodiversidade Da Amazônia Legal: Uma Avaliação Com Base Na Abordagem Do Sistema Nacional/Regional de Inovação. Redes 2018, 23, 210. [Google Scholar] [CrossRef]
- Ometto, J.P.; Aguiar, A.P.D.; Martinelli, L.A. Amazon Deforestation in Brazil: Effects, Drivers and Challenges. Carbon. Manag. 2011, 2, 575–585. [Google Scholar] [CrossRef]
- National Institute for Space Research (INPE). PRODES Project–Monitoring of the Brazilian Amazon Forest by Satellite. INPE. Available online: http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes (accessed on 15 April 2025).
- Fearnside, P. Deforestation of the Brazilian Amazon. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- da Silva, R.M.; Lopes, A.G.; Santos, C.A.G. Deforestation and Fires in the Brazilian Amazon from 2001 to 2020: Impacts on Rainfall Variability and Land Surface Temperature. J. Environ. Manag. 2023, 326, 116664. [Google Scholar] [CrossRef]
- Silvério, D.V.; Brando, P.M.; Macedo, M.N.; Beck, P.S.A.; Bustamante, M.; Coe, M.T. Agricultural Expansion Dominates Climate Changes in Southeastern Amazonia: The Overlooked Non-GHG Forcing. Environ. Res. Lett. 2015, 10, 104015. [Google Scholar] [CrossRef]
- Nobre, C.A.; Sampaio, G.; Borma, L.S.; Castilla-Rubio, J.C.; Silva, J.S.; Cardoso, M. Land-Use and Climate Change Risks in the Amazon and the Need of a Novel Sustainable Development Paradigm. Proc. Natl. Acad. Sci. USA 2016, 113, 10759–10768. [Google Scholar] [CrossRef]
- Lapola, D.M.; Pinho, P.; Barlow, J.; Aragão, L.E.O.C.; Berenguer, E.; Carmenta, R.; Liddy, H.M.; Seixas, H.; Silva, C.V.J.; Silva-Junior, C.H.L.; et al. The Drivers and Impacts of Amazon Forest Degradation. Science 2023, 379, eabp8622. [Google Scholar] [CrossRef]
- Leite-Filho, A.T.; Soares-Filho, B.S.; Davis, J.L.; Abrahão, G.M.; Börner, J. Deforestation Reduces Rainfall and Agricultural Revenues in the Brazilian Amazon. Nat. Commun. 2021, 12, 2591. [Google Scholar] [CrossRef] [PubMed]
- Gash, J.H.C.; Nobre, C.A. Climatic Effects of Amazonian Deforestation: Some Results from ABRACOS. Bull. Am. Meteorol. Soc. 1997, 78, 823–830. [Google Scholar] [CrossRef]
- Ray, D.K.; Nair, U.S.; Lawton, R.O.; Welch, R.M.; Pielke, R.A. Impact of Land Use on Costa Rican Tropical Montane Cloud Forests: Sensitivity of Orographic Cloud Formation to Deforestation in the Plains. J. Geophys. Res. Atmos. 2006, 111, D02108. [Google Scholar] [CrossRef]
- Malhi, Y.; Roberts, J.T.; Betts, R.A.; Killeen, T.J.; Li, W.; Nobre, C.A. Climate Change, Deforestation, and the Fate of the Amazon. Science 2008, 319, 169–172. [Google Scholar] [CrossRef]
- van der Ent, R.J.; Savenije, H.H.G.; Schaefli, B.; Steele-Dunne, S.C. Origin and Fate of Atmospheric Moisture over Continents. Water Resour. Res. 2010, 46, W09525. [Google Scholar] [CrossRef]
- Staal, A.; Tuinenburg, O.A.; Bosmans, J.H.C.; Holmgren, M.; van Nes, E.H.; Scheffer, M.; Zemp, D.C.; Dekker, S.C. Forest-Rainfall Cascades Buffer against Drought across the Amazon. Nat. Clim. Change 2018, 8, 539–543. [Google Scholar] [CrossRef]
- Panisset, J.S.; Libonati, R.; Gouveia, C.M.P. Contrasting Patterns of the Extreme Drought Episodes of 2005. Int. J. Climatol. 2018, 51, 1096–1104. [Google Scholar] [CrossRef]
- Brando, P.M.; Balch, J.K.; Nepstad, D.C.; Morton, D.C.; Putz, F.E.; Coe, M.T.; Silvério, D.; Macedo, M.N.; Davidson, E.A.; Nóbrega, C.C.; et al. Abrupt Increases in Amazonian Tree Mortality Due to Drought–Fire Interactions. Proc. Natl. Acad. Sci. USA 2014, 111, 6347–6352. [Google Scholar] [CrossRef]
- Zemp, D.C.; Schleussner, C.-F.; Barbosa, H.M.J.; Hirota, M.; Montade, V.; Sampaio, G.; Staal, A.; Wang-Erlandsson, L.; Rammig, A. Self-Amplified Amazon Forest Loss Due to Vegetation-Atmosphere Feedbacks. Nat. Commun. 2017, 8, 14681. [Google Scholar] [CrossRef]
- Liu, J.; Hagan, D.F.T.; Holmes, T.R.; Liu, Y. An Analysis of Spatio-Temporal Relationship between Satellite-Based Land Surface Temperature and Station-Based Near-Surface Air Temperature over Brazil. Remote Sens. 2022, 14, 4420. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Mattar, C.; Barichivich, J.; Santamaría-Artigas, A.; Takahashi, K.; Malhi, Y.; Sobrino, J.A.; Schrier, G. van der Record-Breaking Warming and Extreme Drought in the Amazon Rainforest during the Course of El Niño 2015–2016. Sci. Rep. 2016, 6, 33130. [Google Scholar] [CrossRef]
- Querino, C.A.S.; Beneditti, C.A.; Machado, N.G.; da Silva, M.J.G.; da Silva Querino, J.K.A.; dos Santos Neto, L.A.; Biudes, M.S. Spatiotemporal NDVI, LAI, Albedo, and Surface Temperature Dynamics in the Southwest of the Brazilian Amazon Forest. J. Appl. Remote Sens. 2016, 10, 026007. [Google Scholar] [CrossRef]
- Lejeune, Q.; Davin, E.L.; Guillod, B.P.; Seneviratne, S.I. Influence of Amazonian Deforestation on the Future Evolution of Regional Surface Fluxes, Circulation, Surface Temperature and Precipitation. Clim. Dyn. 2015, 44, 2769–2786. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Mattar, C.; Sobrino, J.A.; Malhi, Y. A Database for the Monitoring of Thermal Anomalies over the Amazon Forest and Adjacent Intertropical Oceans. Sci. Data 2015, 2, 150024. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; van Dijk, A.I.J.M.; Miralles, D.G.; McCabe, M.F.; Evans, J.P.; de Jeu, R.A.M.; Gentine, P.; Huete, A.; Parinussa, R.M.; Wang, L.; et al. Enhanced Canopy Growth Precedes Senescence in 2005 and 2010 Amazonian Droughts. Remote Sens. Environ. 2018, 211, 26–37. [Google Scholar] [CrossRef]
- Paca, V.H.d.M.; Espinoza-Dávalos, G.E.; Hessels, T.M.; Moreira, D.M.; Comair, G.F.; Bastiaanssen, W.G.M. The Spatial Variability of Actual Evapotranspiration across the Amazon River Basin Based on Remote Sensing Products Validated with Flux Towers. Ecol. Process 2019, 8, 6. [Google Scholar] [CrossRef]
- ICHII, K.; HASHIMOTO, H.; WHITE, M.A.; POTTER, C.; HUTYRA, L.R.; HUETE, A.R.; MYNENI, R.B.; NEMANI, R.R. Constraining Rooting Depths in Tropical Rainforests Using Satellite Data and Ecosystem Modeling for Accurate Simulation of Gross Primary Production Seasonality. Glob. Change Biol. 2007, 13, 67–77. [Google Scholar] [CrossRef]
- Vourlitis, G.L.; de Souza Nogueira, J.; de Almeida Lobo, F.; Pinto, O.B. Variations in Evapotranspiration and Climate for an Amazonian Semi-Deciduous Forest over Seasonal, Annual, and El Niño Cycles. Int. J. Biometeorol. 2015, 59, 217–230. [Google Scholar] [CrossRef]
- Phillips, O.L.; Aragão, L.E.O.C.; Lewis, S.L.; Fisher, J.B.; Lloyd, J.; López-González, G.; Malhi, Y.; Monteagudo, A.; Peacock, J.; Quesada, C.A.; et al. Drought Sensitivity of the Amazon Rainforest. Science 2009, 323, 1344–1347. [Google Scholar] [CrossRef]
- Saatchi, S.; Asefi-Najafabady, S.; Malhi, Y.; Aragão, L.E.O.C.; Anderson, L.O.; Myneni, R.B.; Nemani, R. Persistent Effects of a Severe Drought on Amazonian Forest Canopy. Proc. Natl. Acad. Sci. USA 2013, 110, 565–570. [Google Scholar] [CrossRef]
- da Rocha, H.R.; Manzi, A.O.; Cabral, O.M.; Miller, S.D.; Goulden, M.L.; Saleska, S.R.; -Coupe, N.R.; Wofsy, S.C.; Borma, L.S.; Artaxo, P.; et al. Patterns of Water and Heat Flux across a Biome Gradient from Tropical Forest to Savanna in Brazil. J. Geophys. Res. Biogeosci 2009, 114, G00B12. [Google Scholar] [CrossRef]
- Hilker, T.; Lyapustin, A.I.; Tucker, C.J.; Hall, F.G.; Myneni, R.B.; Wang, Y.; Bi, J.; Mendes de Moura, Y.; Sellers, P.J. Vegetation Dynamics and Rainfall Sensitivity of the Amazon. Proc. Natl. Acad. Sci. USA 2014, 111, 16041–16046. [Google Scholar] [CrossRef]
- Alkama, R.; Cescatti, A. Biophysical Climate Impacts of Recent Changes in Global Forest Cover. Science 2016, 351, 600–604. [Google Scholar] [CrossRef]
- Marengo, J.A.; Souza, C.M.; Thonicke, K.; Burton, C.; Halladay, K.; Betts, R.A.; Alves, L.M.; Soares, W.R. Changes in Climate and Land Use Over the Amazon Region: Current and Future Variability and Trends. Front. Earth Sci. 2018, 6, 228. [Google Scholar] [CrossRef]
- Gloor, M.; Brienen, R.J.W.; Galbraith, D.; Feldpausch, T.R.; Schöngart, J.; Guyot, J.-L.; Espinoza, J.C.; Lloyd, J.; Phillips, O.L. Intensification of the Amazon Hydrological Cycle over the Last Two Decades. Geophys. Res. Lett. 2013, 40, 1729–1733. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Lathuillière, M.J.; Johnson, M.S.; Donner, S.D. Water Use by Terrestrial Ecosystems: Temporal Variability in Rainforest and Agricultural Contributions to Evapotranspiration in Mato Grosso, Brazil. Environ. Res. Lett. 2012, 7, 024024. [Google Scholar] [CrossRef]
- Beuchle, R.; Grecchi, R.C.; Shimabukuro, Y.E.; Seliger, R.; Eva, H.D.; Sano, E.; Achard, F. Land Cover Changes in the Brazilian Cerrado and Caatinga Biomes from 1990 to 2010 Based on a Systematic Remote Sensing Sampling Approach. Appl. Geogr. 2015, 58, 116–127. [Google Scholar] [CrossRef]
- Marques, J.F.; Alves, M.B.; Silveira, C.F.; Amaral e Silva, A.; Silva, T.A.; dos Santos, V.J.; Calijuri, M.L. Fires Dynamics in the Pantanal: Impacts of Anthropogenic Activities and Climate Change. J. Environ. Manag. 2021, 299, 113586. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.C.A.; Spracklen, D.V. Climate Benefits of Intact Amazon Forests and the Biophysical Consequences of Disturbance. Front. For. Glob. Change 2019, 2, 47. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Motesharrei, S.; Mu, Q.; Kalnay, E.; Li, S. Local Cooling and Warming Effects of Forests Based on Satellite Observations. Nat. Commun. 2015, 6, 6603. [Google Scholar] [CrossRef]
- Prevedello, J.A.; Winck, G.R.; Weber, M.M.; Nichols, E.; Sinervo, B. Impacts of Forestation and Deforestation on Local Temperature across the Globe. PLoS ONE 2019, 14, e0213368. [Google Scholar] [CrossRef]
- Garcia-Carreras, L.; Parker, D.J. How Does Local Tropical Deforestation Affect Rainfall? Geophys. Res. Lett. 2011, 38, L19802. [Google Scholar] [CrossRef]
- Marengo, J.A.; Espinoza, J.C. Extreme Seasonal Droughts and Floods in Amazonia: Causes, Trends and Impacts. Int. J. Climatol. 2016, 36, 1033–1050. [Google Scholar] [CrossRef]
- Justino, S.T.P.; Silva, R.B.; Guerrini, I.A.; da Silva, R.B.G.; Simões, D. Monitoring Environmental Degradation and Spatial Changes in Vegetation and Water Resources in the Brazilian Pantanal. Sustainability 2024, 17, 51. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, L.; Liu, T.; Huang, X.; Sun, G. The Synergistic Effect between Precipitation and Temperature for the NDVI in Northern China from 2000 to 2018. Appl. Sci. 2023, 13, 8425. [Google Scholar] [CrossRef]
- Fearnside, P.M. Brazil’s Amazonian Forest Carbon: The Key to Southern Amazonia’s Significance for Global Climate. Reg. Environ. Change 2018, 18, 47–61. [Google Scholar] [CrossRef]
- dos Santos, D.H.; Rossi, F.S.; Della Silva, J.L.; Pelissari, T.D.; Lima, M.; Teodoro, L.P.R.; Teodoro, P.E.; Silva Junior, C.A.d. Environmental and Climatic Interconnections: Impacts of Forest Fires in the Mato Grosso Region of the Amazon. J. S. Am. Earth Sci. 2024, 146, 105105. [Google Scholar] [CrossRef]
- Spracklen, D.V.; Garcia-Carreras, L. The Impact of Amazonian Deforestation on Amazon Basin Rainfall. Geophys. Res. Lett. 2015, 42, 9546–9552. [Google Scholar] [CrossRef]
Land Use and Land Cover Classes | 2001 | 2023 | Percent Variation Between 2001 and 2023 | ||
---|---|---|---|---|---|
km2 | % | km2 | % | ||
Forest Formation | 3,125,794.39 | 74.15 | 2,858,403.69 | 67.81 | −8.55 |
Savanna Formation | 12,339.88 | 0.29 | 11,596.73 | 0.28 | −6.02 |
Mangrove | 7592.69 | 0.18 | 7587.29 | 0.18 | −0.07 |
Floodable Forest | 400,338.24 | 9.50 | 392,669.02 | 9.32 | −1.92 |
Wetland | 96,444.52 | 2.29 | 89,011.72 | 2.11 | −7.71 |
Grassland | 65,425.23 | 1.55 | 63,439.88 | 1.50 | −3.03 |
Pasture | 380,130.66 | 9.02 | 590,712.43 | 14.01 | 55.40 |
Agriculture | 11,374.69 | 0.27 | 76,819.99 | 1.82 | 575.36 |
Urban | 3407.29 | 0.08 | 4442.65 | 0.11 | 30.39 |
Mining | 1019.77 | 0.02 | 4769.56 | 0.11 | 367.71 |
Rivers and Lakes | 111,555.80 | 2.65 | 115,970.19 | 2.75 | 3.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Justino, S.T.P.; da Silva, R.B.G.; Silva, R.B.; Simões, D. Land Use Change and Its Climatic and Vegetation Impacts in the Brazilian Amazon. Sustainability 2025, 17, 7099. https://doi.org/10.3390/su17157099
Justino STP, da Silva RBG, Silva RB, Simões D. Land Use Change and Its Climatic and Vegetation Impacts in the Brazilian Amazon. Sustainability. 2025; 17(15):7099. https://doi.org/10.3390/su17157099
Chicago/Turabian StyleJustino, Sérvio Túlio Pereira, Richardson Barbosa Gomes da Silva, Rafael Barroca Silva, and Danilo Simões. 2025. "Land Use Change and Its Climatic and Vegetation Impacts in the Brazilian Amazon" Sustainability 17, no. 15: 7099. https://doi.org/10.3390/su17157099
APA StyleJustino, S. T. P., da Silva, R. B. G., Silva, R. B., & Simões, D. (2025). Land Use Change and Its Climatic and Vegetation Impacts in the Brazilian Amazon. Sustainability, 17(15), 7099. https://doi.org/10.3390/su17157099