The Impact of Hydrological Streamflow Drought on Pollutant Concentration and Its Implications for Sustainability in a Small River in Poland
Abstract
1. Introduction
2. Materials and Methods
2.1. Catchment Description
2.2. Hydrological Streamflow Drought (HSD) Estimation
2.3. Water Quality Determination Methods
3. Results
3.1. Hydro-Meteorological Conditions During Investigations
3.2. Occurrences of Low Flow During the Investigation Period
3.3. Water Quality Characteristics
3.4. General Parameters
3.5. Nutrients
3.6. Major Element
3.7. Statistical Analysis
3.8. The Relation Between Low Flow and Pollutant Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Liu, L.; Lan, M.; Su, Z.; Wang, K. Climate Change and Economic Policy Uncertainty: Evidence from Major Countries around the World. Econ. Anal. Policy 2024, 81, 1045–1060. [Google Scholar] [CrossRef]
- Masselot, P.; Mistry, M.N.; Rao, S.; Huber, V.; Monteiro, A.; Samoli, E.; Stafoggia, M.; de’Donato, F.; Garcia-Leon, D.; Ciscar, J.-C.; et al. Estimating Future Heat-Related and Cold-Related Mortality under Climate Change, Demographic and Adaptation Scenarios in 854 European Cities. Nat. Med. 2025, 31, 1294–1302. [Google Scholar] [CrossRef]
- Chen, L.; Brun, P.; Buri, P.; Fatichi, S.; Gessler, A.; McCarthy, M.J.; Pellicciotti, F.; Stocker, B.; Karger, D.N. Global Increase in the Occurrence and Impact of Multiyear Droughts. Science 2025, 387, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, B.; Salehi, H.; Przybylak, R.; Pospieszyńska, A. Projection of Climate Change Impact on the Occurrence of Drought Events in Poland. Sci. Rep. 2025, 15, 5609. [Google Scholar] [CrossRef]
- Tate, E.L.; Gustard, A. Drought Definition: A Hydrological Perspective. In Drought and Drought Mitigation in Europe; Vogt, J.V., Somma, F., Eds.; Advances in Natural and Technological Hazards Research; Springe: Dordrecht, The Netherlands, 2000; Volume 14, pp. 23–48. ISBN 978-90-481-5568-2. [Google Scholar]
- Van Loon, A.F. Hydrological Drought Explained. WIREs Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Bogdanowicz, R. Sezonowa zmienność transportu azotanów w rzekach przymorza. Przegląd Geofiz. 2005, Tom Z.3-4, 249–263. [Google Scholar]
- Wang, Q.; Sun, D.; Yu, Y.; Tang, Z.; Lu, Y. Seasonal Variation and Driving Factors of Nitrate in Rivers of Miyun Reservoir Watershed, North China. Water 2022, 14, 3124. [Google Scholar] [CrossRef]
- Cavallini, E.; Viaroli, P.; Naldi, M.; Saccò, M.; Scibona, A.; Barbieri, E.; Franceschini, S.; Nizzoli, D. Seasonal Variability and Hydrological Patterns Influence the Long-Term Trends of Nutrient Loads in the River Po. Water 2024, 16, 2628. [Google Scholar] [CrossRef]
- Banasik, K.; Hejduk, L.; Hejduk, A.; Kaznowska, E.; Banasik, J.; Byczkowski, A. Wieloletnia zmienność odpływu z małej zlewni rzecznej w regionie Puszczy Kozienickiej. Sylwan 2013, 157, 578–586. [Google Scholar] [CrossRef]
- Mosley, L.M. Drought Impacts on the Water Quality of Freshwater Systems; Review and Integration. Earth-Sci. Rev. 2015, 140, 203–214. [Google Scholar] [CrossRef]
- Van Vliet, M.T.H.; Zwolsman, J.J.G. Impact of Summer Droughts on the Water Quality of the Meuse River. J. Hydrol. 2008, 353, 1–17. [Google Scholar] [CrossRef]
- Karimaee Tabarestani, M.; Zarrati, A.R. Sediment Transport during Flood Event: A Review. Int. J. Environ. Sci. Technol. 2015, 12, 775–788. [Google Scholar] [CrossRef]
- Kaznowska, E.; Hejduk, L. Ocena Wybranych Charakterystyk Ilościowych i Jakościowych Okresów Bezwezbraniowych w Rzece Zagożdzonce Evaluation of Selected Characteristics of Quantitative and Qualitative Periods without Fl Oods in the Zagożdżonka River. Sci. Rev.—Eng. Environ. Sci. 2011, 52, 108–118. [Google Scholar]
- Regulation of the Minister of Infrastructure of 4 November 2022 on the Water Management Plan for the Vistula River Basin District, Poland, Dz.U. 2023 Poz. 300. 2023. Available online: https://isap.sejm.gov.pl/ (accessed on 29 July 2025).
- Regulation of the Minister of Infrastructure of 25 June 2021 on the Classification of Ecological Status, Ecological Potential and Chemical Status, as Well as the Method of Classification of the Status of Surface Water Bodies and Environmental Quality Standards for Priority Substances, Poland, Dz.U. 2021 Poz. 1475. 2021. Available online: https://Isap.Sejm.Gov.Pl/Isap.Nsf/DocDetails.Xsp?id=WDU20210001475 (accessed on 29 July 2025).
- Banasik, K.; Rudzka, E.; Śmietanka, A. Eutroficzne wskaźniki zanieczyszczeń w odpływie rzecznym z małej zlewni rolniczej. Nutrients in runoff from a small agricultural watershed. Przegląd Nauk. Wydz. Melior. Inż. Śr. 1996, 23–29. [Google Scholar]
- Hejduk, L.; Kaznowska, E.; Banasik, K. Ocena Zmian Jakości Wód Rzeki Zagożdżonki Pod Względem Wybranych Elementów Ficzno-Chemicznych Assessment of Changes in the Water Quality of the Zagożdżonka River Based on Selected Physico-Chemical Parameters. Monogr. Kom. Gspodarki Wodnej PAN 2014, XX, 371–380. [Google Scholar]
- Zelenhasić, E.; Salvai, A. A Method of Streamflow Drought Analysis. Water Resour. Res. 1987, 23, 156–168. [Google Scholar] [CrossRef]
- Bąk, B.; Łabędzki, L. Prediction of Precipitation Deficit and Excess in Bydgoszcz Region in View of Predicted Climate Change/Prognoza Niedoboru i Nadmiaru Opadu w Rejonie Bydgoszczy w Świetle Przewidywanej Zmiany Klimatu. J. Water Land Dev. 2014, 23, 11–19. [Google Scholar] [CrossRef]
- Bedla, D.; Misztal, A. Zmienność Chemizmu Wód Małych Zbiorników Wodnych o Zróżnicowanej Strukturze Użytkowania Terenów Przyległych. Rocz. Ochr. Śr. 2014, 16, 421–439. [Google Scholar]
- Balerna, J.A.; Melone, J.C.; Knee, K.L. Using Concentration–Discharge Relationships to Identify Influences on Surface and Subsurface Water Chemistry along a Watershed Urbanization Gradient. Water 2021, 13, 662. [Google Scholar] [CrossRef]
- Knapp, J.L.A.; Von Freyberg, J.; Studer, B.; Kiewiet, L.; Kirchner, J.W. Concentration–Discharge Relationships Vary among Hydrological Events, Reflecting Differences in Event Characteristics. Hydrol. Earth Syst. Sci. 2020, 24, 2561–2576. [Google Scholar] [CrossRef]
- Caissie, D. The Thermal Regime of Rivers: A Review. Freshw. Biol. 2006, 51, 1389–1406. [Google Scholar] [CrossRef]
- Walling, D.E. Tracing Suspended Sediment Sources in Catchments and River Systems. Sci. Total Environ. 2005, 344, 159–184. [Google Scholar] [CrossRef] [PubMed]
- Hejduk, L.; Kaznowska, E.; Wasilewicz, M.; Hejduk, A. Dynamics of the Natural Afforestation Process of a Small Lowland Catchment and Its Possible Impact on Runoff Changes. Sustainability 2021, 13, 10339. [Google Scholar] [CrossRef]
- Kamjunke, N.; Sanders, T. Complete Exhaustion of Dissolved Nutrients in a Large Lowland River. Environ. Monit. Assess. 2024, 196, 660. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; Cox, M.S.; Oglesby, C.; Dhillon, J.S. Revisiting the Role of Sulfur in Crop Production: A Narrative Review. J. Agric. Food Res. 2024, 15, 101013. [Google Scholar] [CrossRef]
- Zak, D.; Hupfer, M.; Cabezas, A.; Jurasinski, G.; Audet, J.; Kleeberg, A.; McInnes, R.; Kristiansen, S.M.; Petersen, R.J.; Liu, H.; et al. Sulphate in Freshwater Ecosystems: A Review of Sources, Biogeochemical Cycles, Ecotoxicological Effects and Bioremediation. Earth-Sci. Rev. 2021, 212, 103446. [Google Scholar] [CrossRef]
Parameter | Unit | Analytical Method |
---|---|---|
Temperature | °C | Direct method (WTW) |
pH | potentiometer method (WTW) | |
Chloride | mg/L Cl | Titration method with silver nitrate and potassium chromate as indicator (Mohr method) |
Sulfate | mg/L SO4 | Gravimetric method with barium chloride (scale Sartorius HC-21 OD, Göttingen, Germany) |
Ammonium Nitrogen | mg/L NNH4+ | Spectrophotometer method with Nessler reagent (SHIMADZU UV 1202, Kioto, Japan) |
Nitrates | mg/L NO3− | Spectrophotometer method with subphyla acid (SHIMADZU UV 1202) |
Nitrites | mg/L NO2− | Spectrophotometer method with ammonium molybdate (SHIMADZU UV 1202) |
Phosphates | mg/L PO4 | Spectrophotometer method with ammonium molybdate (SHIMADZU UV 1601pc) |
Total phosphorus | mg/L P | As phosphates after mineralization with |
Suspended sediment | mg/L | Weighting method with glass fiber (scale Sartorius HC-21 OD) |
Dissolved substances | mg/L | Weighting method (scale Sartorius HC-21 OD) |
Total hardness | mg/L CaCO3 | Titration method with EDTA (Ethylenediaminetetraacetic acid) |
Calcium | mg/L Ca | Flame atomic absorption spectrometry (Varian) |
Magnesium | mg/L Mg | Flame atomic absorption spectrometry (Varian) |
Parameter | Year 2011 | Year 2012 | Year 2013 |
---|---|---|---|
Annual sum of Precipitation (mm) | 654.3 | 493.6 | 607.5 |
Sum of Precipitation during low flows (mm) | 59.7 | 195.6 | 73.0 |
Annual outflow (mm) | 153.1 | 61.4 | 103.0 |
Sum of outflow for low-flow periods (mm) | 6.2 | 9.9 | 4.5 |
Year | Max | Min | Average | Median |
---|---|---|---|---|
2011 | 0.087 | 0.061 | 0.075 | 0.076 |
2012 | 0.080 | 0.051 | 0.067 | 0.068 |
2013 | 0.082 | 0.029 | 0.049 | 0.041 |
Parameter | Year 2011 | Year 2012 | Year 2013 |
---|---|---|---|
Temperature | |||
Mean | 15.4 | 16.9 | 16.8 |
Coefficient of Variation (COV) | 17.24 | 23.05 | 14.14 |
Min | 11.8 | 7.9 | 12.9 |
Max | 18.9 | 22.3 | 20.0 |
SD (Standard Deviation) | 2.66 | 3.88 | 2.38 |
pH | |||
Mean | 7.6 | 7.5 | 7.6 |
COV | 1.71 | 5.09 | 6.19 |
Min | 7.4 | 7.1 | 6.7 |
Max | 7.1 | 8.6 | 8.2 |
SD | 0.13 | 0.38 | 0.47 |
Suspended sediments | |||
Mean | 9.3 | 9.7 | 8.86 |
COV | 22.08 | 27.66 | 36.90 |
Min | 6.8 | 6.3 | 5.0 |
Max | 12.0 | 16.0 | 14.0 |
SD | 2.06 | 2.67 | 3.27 |
Dissolved substances | |||
Mean | 254.2 | 239.5 | 240.0 |
COV | 4.12 | 9.27 | 7.06 |
Min | 244.0 | 167.0 | 210.0 |
Max | 269.0 | 260.0 | 262.0 |
SD | 10.47 | 22.19 | 16.95 |
Total hardness | |||
Mean | 180.0 | 185.1 | 189.0 |
COV | 5.37 | 8.98 | 12.63 |
Min | 170.0 | 151.0 | 130.0 |
Max | 196.0 | 212.0 | 210.0 |
SD | 9.66 | 16.63 | 23.87 |
Parameter | Year 2011 | Year 2012 | Year 2013 |
---|---|---|---|
Ammonium nitrogen | No data | ||
Mean | 0.43 | 0.33 | |
COV | 87.22 | 36.98 | |
Min | 0.22 | 0.15 | |
Max | 1.10 | 0.59 | |
SD | 0.38 | 0.12 | |
Nitrates | |||
Mean | 0.96 | 0.71 | 0.67 |
COV | 45.91 | 15.77 | 14.74 |
Min | 0.56 | 0.50 | 0.54 |
Max | 1.70 | 0.85 | 0.84 |
SD | 0.44 | 0.11 | 0.10 |
Nitrites | |||
Mean | 0.040 | 0.032 | 0.028 |
COV | 28.56 | 36.45 | 40.90 |
Min | 0.029 | 0.018 | 0.018 |
Max | 0.059 | 0.061 | 0.054 |
SD | 0.011 | 0.012 | 0.011 |
Phosphates | |||
Mean | 0.29 | 0.28 | 0.13 |
COV | 9.12 | 24.63 | 53.31 |
Min | 0.26 | 0.19 | 0.07 |
Max | 0.33 | 0.43 | 0.30 |
SD | 0.03 | 0.07 | 0.07 |
Total phosphorus | |||
Mean | 0.19 | 0.18 | 0.12 |
COV | 16.2 | 24.55 | 36.39 |
Min | 0.16 | 0.10 | 0.07 |
Max | 0.23 | 0.24 | 0.19 |
SD | 0.03 | 0.04 | 0.04 |
Parameter | Year 2011 | Year 2012 | Year 2013 |
---|---|---|---|
Chloride | |||
Mean | 8.6 | 8.2 | 9.2 |
COV | 17.6 | 21.85 | 24.55 |
Min | 7.0 | 6.0 | 5.0 |
Max | 11.0 | 11.0 | 12.0 |
SD | 1.5 | 1.8 | 2.2 |
Sulfate | |||
Mean | 13.7 | 12.3 | 15.1 |
COV | 13.2 | 12.74 | 19.51 |
Min | 11.7 | 9.1 | 11.2 |
Max | 15.9 | 14.3 | 20.3 |
SD | 1.8 | 1.6 | 2.9 |
Calcium | |||
Mean | 59.3 | 62.4 | 60.8 |
COV | 2.87 | 8.74 | 12.69 |
Min | 57.4 | 52.5 | 42.6 |
Max | 60.9 | 75.1 | 69.0 |
SD | 1.7 | 5.5 | 7.7 |
Magnesium | |||
Mean | 6.7 | 6.4 | 6.3 |
COV | 1.48 | 5.52 | 12.30 |
Min | 6.5 | 5.7 | 4.3 |
Max | 6.7 | 6.9 | 7.0 |
SD | 0.1 | 0.4 | 0.8 |
Parameter | Median | Rang Sum | Value of Statistic | Probability (p) | |||
---|---|---|---|---|---|---|---|
2011 | 2012 | 2011 | 2012 | U | Z | ||
pH | 7.7 | 7.5 | 61.5 | 148.5 | 28.5 | 0.74 | 0.458 |
Temperature | 15.90 | 18.0 | 41.0 | 169.0 | 26.0 | −0.96 | 0.337 |
Chloride | 8.0 | 8.0 | 59.0 | 151.0 | 31.0 | 0.52 | 0.600 |
Sulfate | 13.0 | 12.6 | 66.5 | 143.5 | 23.5 | 1.18 | 0.239 |
Ammonium nitrogen * | 0.25 | 0.29 | 47.0 | 163.0 | 32.0 | −0.44 | 0.663 |
Nitrates | 0.78 | 0.66 | 64.0 | 146.0 | 26.0 | 0.96 | 0.337 |
Nitrites | 0.038 | 0.031 | 70.0 | 140.0 | 20.0 | 1.49 | 0.138 |
Phosphates | 0.30 | 0.27 | 61.5 | 148.5 | 28.5 | 0.74 | 0.458 |
Total phosphorus | 0.19 | 0.18 | 59.5 | 150.5 | 30.5 | 0.57 | 0.570 |
Suspended sediment | 9.70 | 8.9 | 51.0 | 159.0 | 36.0 | −0.087 | 0.930 |
Dissolved solids | 250.0 | 244.0 | 75.5 | 134.5 | 14.5 | 1.96 | 0.0495 |
Total hardness | 177.0 | 187.0 | 38.5 | 171.5 | 23.5 | −1.18 | 0.239 |
Calcium | 60.3 | 61.2 | 38.0 | 172.0 | 23.0 | −1.22 | 0.222 |
Magnesium | 6.72 | 6.42 | 70.5 | 139.5 | 19.5 | 1.53 | 0.127 |
Parameter | Median | Sum Rang | Value of Statistic | Probability (p) | |||
---|---|---|---|---|---|---|---|
2012 | 2013 | 2012 | 2013 | U | Z | ||
pH | 7.5 | 7.7 | 184.5 | 140.5 | 64.5 | −0.55 | 0.579 |
Temperature | 18.0 | 17.0 | 198.0 | 127.0 | 72.0 | 0.14 | 0.889 |
Chloride | 8.0 | 9.5 | 172.5 | 152.5 | 52.5 | −1.22 | 0.222 |
Sulfate | 12.6 | 14.9 | 150.0 | 175.0 | 30.0 | −2.47 | 0.014 |
Nitrates | 0.66 | 0.67 | 209.0 | 116.0 | 61.0 | 0.75 | 0.454 |
Nitrites | 0.031 | 0.024 | 216.0 | 109.0 | 54.0 | 1.14 | 0.255 |
Phosphates | 0.27 | 0.12 | 259.5 | 65.5 | 10.5 | 3.55 | 0.000385 |
Total phosphorus | 0.18 | 0.11 | 246.0 | 79.0 | 24.0 | 2.80 | 0.005091 |
Suspended sediment | 8.9 | 8.2 | 209.5 | 115.5 | 60.5 | 0.78 | 0.437 |
Dissolved solids | 244.0 | 240.5 | 204.5 | 120.5 | 65.5 | 0.49 | 0.617 |
Total hardness | 187.0 | 198.0 | 176.0 | 149.0 | 56.0 | −1.03 | 0.305 |
Calcium | 61.2 | 60.6 | 200.5 | 124.5 | 69.5 | 0.28 | 0.782 |
Magnesium | 6.42 | 6.4 | 199.0 | 126.0 | 71.0 | 0.19 | 0.846 |
Parameter | Median | Sum Rang | Value of Statistic | Probability (p) | |||
---|---|---|---|---|---|---|---|
2011 | 2013 | 2011 | 2013 | U | Z | ||
pH | 7.7 | 7.7 | 37.5 | 82.5 | 22.5 | −0.24 | 0.806 |
Temperature | 15.90 | 17.0 | 31.0 | 89.0 | 16.0 | −1.04 | 0.298 |
Chloride | 8.0 | 9.5 | 32.5 | 87.5 | 17.5 | −0.86 | 0.391 |
Sulfate | 13.0 | 14.9 | 34.5 | 85.5 | 19.5 | −0.61 | 0.540 |
Nitrates | 0.78 | 0.67 | 52.0 | 68.0 | 13.0 | 1.40 | 0.159 |
Nitrites | 0.038 | 0.024 | 55.0 | 65.0 | 10.0 | 1.77 | 0.075 |
Phosphates | 0.30 | 0.12 | 62.5 | 57.5 | 2.5 | 2.69 | 0.007051 |
Total phosphorus | 0.19 | 0.11 | 60.5 | 59.50 | 4.5 | 2.45 | 0.014306 |
Suspended sediment | 9.70 | 8.2 | 43.0 | 77.0 | 22.0 | 0.31 | 0.759 |
Dissolved solids | 250.0 | 240.5 | 53.5 | 66.5 | 11.5 | 1.59 | 0.111 |
Total hardness | 177.0 | 198.0 | 26.5 | 93.5 | 11.5 | −1.59 | 0.111 |
Calcium | 60.3 | 60.6 | 32.0 | 88.0 | 17.0 | −0.92 | 0.358 |
Magnesium | 6.72 | 6.4 | 54.0 | 66.0 | 11.0 | 1.65 | 0.098 |
Parameter | Relation | Determination Coefficient R2 | Statistical Significance of Correlations at α = 0.05 |
---|---|---|---|
Temperature | Temp = 2.93Q + 16.46 | 0.001 | Not significant |
pH | pH = −1.28Q + 7.64 | 0.009 | Not significant |
Suspended sediments | Ss = 116.78Q + 2.37 | 0.37 | significant |
Dissolved substances | Ds = 6.20Q + 242.3 | <0.001 | Not significant |
Total hardness | Th = −374.87Q + 209.43 | 0.23 | significant |
Ammonium nitrogen | Am = 0.76Q + 0.21 | 0.010 | Not significant |
Nitrates | Nitra = 0.83Q + 0.68 | 0.012 | Not significant |
Nitrites | Nitri = 0.25Q + 0.02 | 0.24 | significant |
Phosphates | Phos = 1.72Q + 0.12 | 0.24 | significant |
Total Phosphorus | TP = 1.22Q + 0.082 | 0.34 | significant |
Chloride | Chlo = −4.86Q + 9.08 | 0.04 | Not significant |
Sulfate | Sulp = −55.54Q + 16.34 | 0.23 | significant |
Calcium | Cal = −31.83Q + 63.7 | 0.02 | Not significant |
Magnesium | Mag = −5.81Q + 6.8 | 0.08 | Not significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hejduk, L.; Kaznowska, E.; Wasilewicz, M.; Hejduk, A. The Impact of Hydrological Streamflow Drought on Pollutant Concentration and Its Implications for Sustainability in a Small River in Poland. Sustainability 2025, 17, 6995. https://doi.org/10.3390/su17156995
Hejduk L, Kaznowska E, Wasilewicz M, Hejduk A. The Impact of Hydrological Streamflow Drought on Pollutant Concentration and Its Implications for Sustainability in a Small River in Poland. Sustainability. 2025; 17(15):6995. https://doi.org/10.3390/su17156995
Chicago/Turabian StyleHejduk, Leszek, Ewa Kaznowska, Michał Wasilewicz, and Agnieszka Hejduk. 2025. "The Impact of Hydrological Streamflow Drought on Pollutant Concentration and Its Implications for Sustainability in a Small River in Poland" Sustainability 17, no. 15: 6995. https://doi.org/10.3390/su17156995
APA StyleHejduk, L., Kaznowska, E., Wasilewicz, M., & Hejduk, A. (2025). The Impact of Hydrological Streamflow Drought on Pollutant Concentration and Its Implications for Sustainability in a Small River in Poland. Sustainability, 17(15), 6995. https://doi.org/10.3390/su17156995