The Delamination Behaviour of Basalt Fibre-Reinforced In Situ-Polymerisable Acrylic and Epoxy Composites: A Sustainable Solution for Marine Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Manufacturing Process
2.2. Testing Procedures
2.2.1. Testing of Density, Voids, and Fibre Volume Fraction
2.2.2. Testing of Moisture Absorption
2.2.3. Testing of DCB Samples
2.2.4. Testing of ENF Samples
3. Results
3.1. Physical and Moisture Absorption Performance
3.2. Mode I-IFT Performance
3.3. Mechanisms of Mode I-IFT
3.4. Mode II-IFT Performance
3.5. Mechanisms of Mode II-IFT
4. Conclusions
- The ρc, Vv, and Vf values for the BF/Elium composite were 1.96 g/cm3, 1.3%, and 53.5%, while those of the BF/Epoxy composite were 1.84 g/cm3, 3.5%, and 47.8%, respectively. Hydrothermal ageing resulted in a slight increase in the thickness and density of both composites due to moisture absorption and matrix swelling.
- All the samples reached saturation after approximately 84 days (2016 h) of immersion in the seawater at 45 °C.
- The BF/Epoxy composite displayed a comparatively higher weight gain of 19% and 31% than the BF/Elium composites after reaching seawater saturation at RT and 45 °C, respectively.
- The diffusion coefficients of BF/Elium exhibited an increase of 9.1% at 45 °C, while that of the BF/Epoxy exhibited an increment of 6.3%, compared to its values at RT.
- The load–COD curves and the R-curves behaviour of DCB test specimens were different between the two composites. Hence, the crack propagation for BF/Elium was more unstable (zigzag) and greater than for BF/Epoxy. As a result, the average GIC value of the BF/Elium composite was 1242 J/m2 higher than that of the BF/Epoxy composite, representing a 15% increase.
- The hydrothermal ageing weakens the matrix interface through matrix swelling and debonding of BF/Elium after 90 days of seawater saturation, resulting in a reduction of GIc of approximately 33.1%. Interestingly, the BF/Epoxy composite demonstrated increments in the GIc values by 9.5% and 36.3% higher than those of the unaged BF/Epoxy composite.
- The OM and SEM images showed that deterioration signs were seen in the interlayer surface of the BF/Elium sample after 90-day ageing, while there was a dense pull-out of fibres bridging the crack in the interlayer surface of the BF/Epoxy sample.
- The load–displacement curves of the ENF test showed a two-stage behaviour. The GIIC value of the BF/Elium composite was 2110 J/m2, higher than that of the BF/Epoxy composite, by 56%, due to the high shear loading resistance of the BF/Elium composite.
- The GIIc values of BF/Elium and BF/Epoxy composites were reduced by 44.3% and 32.4% after 90 days of seawater ageing, compared to their unaged composites.
- The OM and SEM images of both composites show fibre pull-out, fibre breakage, and matrix hackles formed during the ENF test, generating resistance to shear loading.
- The GIC and GIIC values for both composites were normalised with respect to the density of each aged and unaged composite. Even after normalising, the strength, stiffness, mode I-IFT, and mode II-IFT values of the BF/Elium composite were higher than those of the BF/Epoxy composite.
- Despite the reduction in the mode I-IFT and mode II-IFT values of the BF/Elium composite, which were higher than those of the BF/Epoxy composite after both composites reached seawater saturation, these values of the BF/Elium composite were still higher than those of the BF/Epoxy composite.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khalifa, A.A.; Ibrahim, A.-J.; Amhamed, A.I.; El-Naas, M.H. Accelerating the Transition to a Circular Economy for Net-Zero Emissions by 2050: A Systematic Review. Sustainability 2022, 14, 11656. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, T.; Ding, L. Effect of Seawater Environment on the Structure and Performance of Basalt Continuous Fiber. Materials 2021, 14, 1862. [Google Scholar] [CrossRef] [PubMed]
- Taheri, F.; Llanos, J.R.J.G. Comparative Performance of Kevlar, Glass and Basalt Epoxy- and Elium-Based Composites under Static-, Low- and High-Velocity Loading Scenarios—Introduction to an Effective Recyclable and Eco-Friendly Composite. Polymers 2024, 16, 1494. [Google Scholar] [CrossRef]
- Arhant, M.; Davies, P. Thermoplastic Matrix Composites for Marine Applications. In Marine Composites; Elsevier: Amsterdam, The Netherlands, 2019; pp. 31–53. [Google Scholar]
- Chowdhury, I.R.; Pemberton, R.; Summerscales, J. Developments and Industrial Applications of Basalt Fibre Reinforced Composite Materials. J. Compos. Sci. 2022, 6, 367. [Google Scholar] [CrossRef]
- Miranda Campos, B.; Bourbigot, S.; Fontaine, G.; Bonnet, F. Thermoplastic Matrix-based Composites Produced by Resin Transfer Molding: A Review. Polym. Compos. 2022, 43, 2485–2506. [Google Scholar] [CrossRef]
- Bodaghi, M.; Park, C.H.; Krawczak, P. Reactive Processing of Acrylic-Based Thermoplastic Composites: A Mini-Review. Front. Mater. 2022, 9, 931338. [Google Scholar] [CrossRef]
- Kazemi, M.E.; Shanmugam, L.; Lu, D.; Wang, X.; Wang, B.; Yang, J. Mechanical Properties and Failure Modes of Hybrid Fiber Reinforced Polymer Composites with a Novel Liquid Thermoplastic Resin, Elium®. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105523. [Google Scholar] [CrossRef]
- Smith, I.L.M.; McCarthy, E.D.; Thies, P.R.; Oterkus, S.; Obande, W. Experimental Investigation of Thickness Effects in the Manufacture of Thick-Section Composite Structures Using Liquid Thermoplastic Resin. Adv. Manuf. Polym. Compos. Sci. 2025, 11, 2521570. [Google Scholar] [CrossRef]
- Arkema. Elium® Resin for Composite Hydrogen Tanks. Available online: https://www.arkema.com/global/en/products/product-finder/product/incubator/elium/elium-resin-forcomposite-hydrogen-tanks/ (accessed on 29 March 2025).
- Meyer zu Reckendorf, I.; Bergeret, A.; Perrin, D.; Lacoste, C.; Morand, K. Valorization of Basalt and Glass Fibres from Vacuum Infused Acrylate-Based Composites by Coupling Mechanical and Dissolution Recycling Pathways. Sustain. Mater. Technol. 2024, 41, e01113. [Google Scholar] [CrossRef]
- Arkema. Liquid Thermoplastic Resin for Tougher Composites. Available online: https://www.arkema.com/global/en/resources/post/elium-resin-breakthrough-innovation/ (accessed on 21 April 2025).
- Carallo, G.A.; Casa, M.; Kelly, C.; Alsaadi, M. Comparative Life Cycle Assessment (LCA) of Traditional and New Sustainable Wind Blade Construction. Sustainability 2025, 17, 2026. [Google Scholar] [CrossRef]
- Basaltex. Basalt Fibre: A Mineral Fibre Made from Natural Volcanic Rock. Available online: https://www.basaltex.com (accessed on 6 April 2025).
- Chowdhury, I.R.; O’Dowd, N.P.; Comer, A.J. Experimental Study of Hygrothermal Ageing Effects on Failure Modes of Non-Crimp Basalt Fibre-Reinforced Epoxy Composite. Compos. Struct. 2021, 275, 114415. [Google Scholar] [CrossRef]
- Tavadi, A.R.; Naik, Y.; Kumaresan, K.; Jamadar, N.I.; Rajaravi, C. Basalt Fiber and Its Composite Manufacturing and Applications: An Overview. Int. J. Eng. Sci. Technol. 2022, 13, 50–56. [Google Scholar] [CrossRef]
- Selcuk, S.; Ahmetoglu, U.; Gokce, E.C. Basalt Fiber Reinforced Polymer Composites (BFRP) Other than Rebars: A Review. Mater. Today Commun. 2023, 37, 107359. [Google Scholar] [CrossRef]
- Mittal, G.; Rhee, K.Y.; Mišković-Stanković, V.; Hui, D. Reinforcements in Multi-Scale Polymer Composites: Processing, Properties, and Applications. Compos. Part B Eng. 2018, 138, 122–139. [Google Scholar] [CrossRef]
- Chowdhury, I.R.; O’Dowd, N.P.; Comer, A.J. Failure Prediction in a Non-Crimp Basalt Fibre Reinforced Epoxy Composite. Compos. Struct. 2023, 322, 117413. [Google Scholar] [CrossRef]
- Alsaadi, M.; Flanagan, T.; Devine, D.M. Seawater Ageing Effects on the Mechanical Performance of Basalt Fibre-Reinforced Thermoplastic and Epoxy Composites. J. Compos. Sci. 2025, 9, 368. [Google Scholar] [CrossRef]
- Han, N.; Yuksel, O.; Zanjani, J.S.M.; An, L.; Akkerman, R.; Baran, I. Experimental Investigation of the Interlaminar Failure of Glass/Elium® Thermoplastic Composites Manufactured With Different Processing Temperatures. Appl. Compos. Mater. 2022, 29, 1061–1082. [Google Scholar] [CrossRef]
- Obande, W.; Mamalis, D.; Ray, D.; Yang, L.; Ó Brádaigh, C.M. Mechanical and Thermomechanical Characterisation of Vacuum-Infused Thermoplastic- and Thermoset-Based Composites. Mater. Des. 2019, 175, 107828. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Gohel, G.; Vasudevan, D.; Leong, K.F.; Gerard, P. On the Mode I and Mode II Delamination Characteristics and Surface Morphological Aspects of Composites with Carbon-Thermoplastic Hybrid Fabrics and Innovative Liquid Thermoplastic Resin. Polymers 2022, 14, 4155. [Google Scholar] [CrossRef]
- Bandaru, A.K.; Hickey, S.; Singh, D.; Gujjala, R.; Pichandi, S. Influence of Hygrothermal Ageing on the Novel Infusible Thermoplastic Resin Reinforced with Quadriaxial Non-Crimp Glass Fabrics. J. Thermoplast. Compos. Mater. 2023, 36, 3813–3836. [Google Scholar] [CrossRef]
- Yaghoobi, H.; Taheri, F. Mechanical Performance of a Novel Environmentally Friendly Basalt-Elium® Thermoplastic Composite and Its Stainless Steel-Based Fiber Metal Laminate. Polym. Compos. 2021, 42, 4660–4672. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.; Wang, H.; Song, Y.; Wang, J. Study of Hygrothermal Aging for Basalt Fiber/Epoxy Resin Composites Modified with CeCl3. Polymers 2024, 16, 819. [Google Scholar] [CrossRef]
- Mahdi, E.; Ochoa, D.R.H.; Vaziri, A.; Bandaru, A.K.; Kumar, P.K.A.V.; Dean, A. Effects of Water Absorption on the Mechanical and Morphological Properties of Date Palm Leaf Fiber-Reinforced Polymer Composites. Compos. Struct. 2025, 368, 119286. [Google Scholar] [CrossRef]
- Li, C.; Feng, C.; Zhang, L.; Shan, J.; Shi, M. A Review of the Effect of Hydrothermal Aging on the Mechanical Properties of Fiber-reinforced Resin Matrix Composites. Polym. Adv. Technol. 2024, 35, e6239. [Google Scholar] [CrossRef]
- Ghabezi, P.; Harrison, N.M. Hygrothermal Deterioration in Carbon/Epoxy and Glass/Epoxy Composite Laminates Aged in Marine-Based Environment (Degradation Mechanism, Mechanical and Physicochemical Properties). J. Mater. Sci. 2022, 57, 4239–4254. [Google Scholar] [CrossRef]
- Rodríguez-González, J.A.; Rubio-González, C. Seawater Effects on Interlaminar Fracture Toughness of Glass Fiber/Epoxy Laminates Modified with Multiwall Carbon Nanotubes. J. Compos. Mater. 2021, 55, 387–400. [Google Scholar] [CrossRef]
- Almansour, F.A.; Dhakal, H.N.; Zhang, Z.Y. Effect of Water Absorption on Mode I Interlaminar Fracture Toughness of Flax/Basalt Reinforced Vinyl Ester Hybrid Composites. Compos. Struct. 2017, 168, 813–825. [Google Scholar] [CrossRef]
- ASTM D792-20; Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/d792-20.html (accessed on 15 July 2025).
- Antunes, M.B.; Almeida, J.H.S., Jr.; Amico, S.C. Curing and Seawater Aging Effects on Mechanical and Physical Properties of Glass/Epoxy Filament Wound Cylinders. Compos. Commun. 2020, 22, 100517. [Google Scholar] [CrossRef]
- ASTM D3171-22; Standard Test Methods for Constituent Content of Composite Materials. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D5229/D5229M-20; Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/d5229-d5229m-20.html (accessed on 15 July 2025).
- ASTM D5528/D5528M-21; Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- Alsaadi, M.; Erkliğ, A. Effect of Perlite Particle Contents on Delamination Toughness of S-Glass Fiber Reinforced Epoxy Matrix Composites. Compos. Part B Eng. 2018, 141, 182–190. [Google Scholar] [CrossRef]
- Bulut, M.; Alsaadi, M.; Erkliğ, A. Effect of Olive Pomace Particles Content on Mode I and Mode II Delamination Fracture of S-glass Fiber Reinforced Composites. Polym. Compos. 2022, 43, 1157–1167. [Google Scholar] [CrossRef]
- ASTM D7905/D7905M-19; Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International: West Conshohocken, PA, USA, 2019. [CrossRef]
- Alsaadi, M.; Erkliğ, A. A Comparative Study on Mode I and Mode II Interlaminar Behavior of Borax and SiC Particles Toughened S-Glass Fabric/Epoxy Composite. Arab. J. Sci. Eng. 2017, 42, 4759–4769. [Google Scholar] [CrossRef]
- Bulut, M.; Alsaadi, M.; Erkliğ, A. The Effects of Nanosilica and Nanoclay Particles Inclusions on Mode II Delamination, Thermal and Water Absorption of Intraply Woven Carbon/Aramid Hybrid Composites. Int. Polym. Process. 2020, 35, 367–375. [Google Scholar] [CrossRef]
- Chowdhury, I.R.; Rao, P.S.; O’Dowd, N.P.; Comer, A.J. Hygrothermal Ageing Effects on Failure Behaviour of Fibre-Reinforced Polymer Composite Materials under in-Situ SEM Testing. Compos. Part B Eng. 2025, 294, 112148. [Google Scholar] [CrossRef]
- Nash, N.H.; Portela, A.; Bachour-Sirerol, C.I.; Manolakis, I.; Comer, A.J. Effect of Environmental Conditioning on the Properties of Thermosetting- and Thermoplastic-Matrix Composite Materials by Resin Infusion for Marine Applications. Compos. Part B Eng. 2019, 177, 107271. [Google Scholar] [CrossRef]
- Devine, M.; Bajpai, A.; Obande, W.; Ó Brádaigh, C.M.; Ray, D. Seawater Ageing of Thermoplastic Acrylic Hybrid Matrix Composites for Marine Applications. Compos. Part B Eng. 2023, 263, 110879. [Google Scholar] [CrossRef]
- Davies, P.; Le Gac, P.-Y.; Le Gall, M. Influence of Sea Water Aging on the Mechanical Behaviour of Acrylic Matrix Composites. Appl. Compos. Mater. 2017, 24, 97–111. [Google Scholar] [CrossRef]
- Alsaadi, M.; Erkliğ, A. Mode-I Interlaminar Fracture of Aramid and Carbon Fibers Reinforced Epoxy Matrix Composites at Various SiC Particle Contents. Mater. Test. 2021, 63, 913–918. [Google Scholar] [CrossRef]
- Stevanovic, D.; Jar, P.-Y.B.; Kalyanasundaram, S.; Lowe, A. On Crack-Initiation Conditions for Mode I and Mode II Delamination Testing of Composite Materials. Compos. Sci. Technol. 2000, 60, 1879–1887. [Google Scholar] [CrossRef]
- Pollet, A.; Almeida, J.H.S., Jr.; Stamopoulοs, A.G.; Amico, S.C. Mode-I Fracture Toughness of Hygrothermally Aged Curved Filament-Wound Carbon and Glass Fibre Composites. Eng. Fail. Anal. 2024, 160, 108172. [Google Scholar] [CrossRef]
- Hojo, M.; Ando, T.; Tanaka, M.; Adachi, T.; Ochiai, S.; Endo, Y. Modes I and II Interlaminar Fracture Toughness and Fatigue Delamination of CF/Epoxy Laminates with Self-Same Epoxy Interleaf. Int. J. Fatigue 2006, 28, 1154–1165. [Google Scholar] [CrossRef]
- Liu, X.; Sun, T.; Wu, Z.; He, H. Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites with Synthetic Boehmite Nanosheets at Room Temperature and Low Temperature. J. Compos. Mater. 2018, 52, 945–952. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Gohel, G.; Vasudevan, D.; Leong, K.F.; Gerard, P. On the Mode II Fracture Toughness, Failure, and Toughening Mechanisms of Wholly Thermoplastic Composites with Ultra-Lightweight Thermoplastic Fabrics and Innovative Elium® Resin. Compos. Part A Appl. Sci. Manuf. 2022, 161, 107115. [Google Scholar] [CrossRef]
Composition | SiO2 | Al2O3 | Fe2O3 | MgO | Na2O | TiO2 | K2O | B2O3 | F |
---|---|---|---|---|---|---|---|---|---|
BF Weight (%) | 57.5 | 16.9 | 9.5 | 3.7 | 2.5 | 1.1 | 0.8 | - | - |
GF Weight (%) | 55 | 15 | 0.3 | 3 | 0.8 | - | 0.2 | 7 | 0.3 |
Property | E-GF | S2-GF | AF * | CF | BF |
---|---|---|---|---|---|
Density (gr/cm3) | 2.55–2.58 | 2.45 | 1.45 | 1.74–1.80 | 2.67 |
Modulus (GPa) | 78–80 | 91 | 70–140 | 200–250 | 85–89 |
Strength (MPa) | 2000–2500 | 2000–2200 | 2900–3600 | 2700–3750 | 2900–3100 |
Moisture (%) | 0.1 | 0.1 | 3.5 | 0.1 | 0.008 |
Property | Elium® 191 XO/SA | Epoxy PrimeTM 37 |
---|---|---|
Viscosity (cP) at 25 °C | 100 | 181 |
Density (g/cm3) at RT | 1.01 | 1.10 |
Gel time (min) (MEKP) at 25 °C | 210–260 | 240 |
Curing Process at RT | 24 h infusion and cure | 24 h infusion and cure |
Post-curing | 2 h at 80 °C | 16 h at 50 °C |
Tensile Strength (MPa) (ISO527) | 47.10 | 72.50 |
Tensile Modulus (GPa) (ISO527) | 2.68 | 3.21 |
Flexural Strength (MPa) (ISO178) | 80.51 | 113 |
Flexural Modulus (GPa) (ISO178) | 2.77 | 3.01 |
Composite | Basalt Fibre Structure | Polymer Matrix |
---|---|---|
BF/Elium | BAS-UNI 550: - 0° 520 g/m2 - 90° 50 g/m2 - Stitching 8 g/m2 | Elium® 191 XO/SA, three parts: 191 XO acrylic resin (50 wt%), 191 SA accelerator (50 wt%), and methyl ethyl ketone peroxide (MEKP) initiator (2 wt%) |
BF/Epoxy | BAS-UNI 350: - 0° 357 g/m2 - 90° 50 g/m2 - Stitching 9 g/m2 | Epoxy PrimeTM 37, Two parts: Epoxy resin (100 wt%) and slow hardener Ampreg 3X (29%w) |
Composite | Vf (%) | Vv (%) | ρc (g/cm3) | Tg °C |
---|---|---|---|---|
BF/Elium | 53.5 | 1.3 | 1.96 | 106 |
BF/Epoxy | 47.8 | 3.5 | 1.84 | 71 |
Composite | Vf (%) | h (mm) | Increment (%) | ρc (g/cm3) | Increment (%) |
---|---|---|---|---|---|
BF/Elium-0D | 53.5 ± 0.01 | 3.39 ± 0.04 | - | 1.96 ± 0.02 | - |
BF/Elium-45D | - | 3.41 ± 0.01 | 0.51 | 1.99 ± 0.03 | 1.6 |
BF/Elium-90D | - | 3.43 ± 0.03 | 1.03 | 2.01 ± 0.02 | 2.4 |
BF/Epoxy-0D | 47.8 ± 0.01 | 3.33 ± 0.02 | - | 1.89 ± 0.01 | - |
BF/Epoxy-45D | - | 3.37 ± 0.03 | 1.12 | 1.87 ± 0.03 | 1.75 |
BF/Epoxy-90D | - | 3.38 ± 0.04 | 1.65 | 1.90 ± 0.04 | 3.2 |
Composite | Mc (%) | Increment (%) | Dz (mm2/s) | Increment (%) | Source |
---|---|---|---|---|---|
BF/Elium-RT | 0.91 ± 0.02 | - | 0.19 × 10−6 | - | Current study |
BF/Elium-45 °C | 1.12 ± 0.05 | 22.9 | 0.20 × 10−6 | 9.1 | Current study |
BF/Epoxy-RT | 1.09 ± 0.03 | - | 0.18 × 10−6 | - | Current study |
BF/Epoxy-45 °C | 1.48 ± 0.07 | 35.9 | 0.19 × 10−6 | 6.3 | Current study |
BF/Epoxy-35 °C | 1.97 | - | 0.07 × 10−6 | - | [42] |
BF/Epoxy-40 °C | 1.5 | - | 19 × 10−6 | - | |
GF–Elium-50 °C | 0.81 | - | 1.81× 10−6 | - | [44] |
GF–Epoxy-50 °C | 0.63 | - | 0.15 × 10−6 | - | [44] |
Bulk Elium-60 °C | 1.90 | - | 4.23 × 10−6 | - | [45] |
Composite | Pmax (N) | COD (mm) | GICO (J/m2) | R* (%) | GIC (J/m2) | R* (%) |
---|---|---|---|---|---|---|
BF/Elium-0D | 39.2 ± 2.3 | 13.1 ± 1.2 | 816 | - | 1242 | - |
BF/Elium-45D | 41.1 ± 1.6 | 14.3 ± 2.1 | 862 | 5.6 | 1060 | 14.7 |
BF/Elium-90D | 32.7 ± 3.4 | 11.9 ± 1.8 | 611 | −25.1 | 831 | −33.1 |
BF/Epoxy-0D | 33.3 ± 3.8 | 14.5 ± 1.5 | 773 | - | 1079 | - |
BF/Epoxy-45D | 47.9 ± 4.7 | 25.4 ± 2.4 | 1026 | 32.7 | 1182 | 9.5 |
BF/Epoxy-90D | 55.1 ± 1.9 | 31.1 ± 2.7 | 1154 | 49.3 | 1471 | 36.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaadi, M.; Flanagan, T.; Fitzpatrick, D.P.; Devine, D.M. The Delamination Behaviour of Basalt Fibre-Reinforced In Situ-Polymerisable Acrylic and Epoxy Composites: A Sustainable Solution for Marine Applications. Sustainability 2025, 17, 6967. https://doi.org/10.3390/su17156967
Alsaadi M, Flanagan T, Fitzpatrick DP, Devine DM. The Delamination Behaviour of Basalt Fibre-Reinforced In Situ-Polymerisable Acrylic and Epoxy Composites: A Sustainable Solution for Marine Applications. Sustainability. 2025; 17(15):6967. https://doi.org/10.3390/su17156967
Chicago/Turabian StyleAlsaadi, Mohamad, Tomas Flanagan, Daniel P. Fitzpatrick, and Declan M. Devine. 2025. "The Delamination Behaviour of Basalt Fibre-Reinforced In Situ-Polymerisable Acrylic and Epoxy Composites: A Sustainable Solution for Marine Applications" Sustainability 17, no. 15: 6967. https://doi.org/10.3390/su17156967
APA StyleAlsaadi, M., Flanagan, T., Fitzpatrick, D. P., & Devine, D. M. (2025). The Delamination Behaviour of Basalt Fibre-Reinforced In Situ-Polymerisable Acrylic and Epoxy Composites: A Sustainable Solution for Marine Applications. Sustainability, 17(15), 6967. https://doi.org/10.3390/su17156967