Landslide Prediction in Mountainous Terrain Using Weighted Overlay Analysis Method: A Case Study of Al Figrah Road, Al-Madinah Al-Munawarah, Western Saudi Arabia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
3. Results and Discussion
3.1. Drainage Density
3.2. Topography
3.3. Slope
3.4. Annual Precipitation
3.5. Lithology and Soil
3.6. Aspect
3.7. Landslide Susceptible Zones and Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Lacroix, P.; Handwerger, A.L.; Bièvre, G. Life and death of slow-moving landslides. Nat. Rev. Earth Environ. 2020, 1, 404–419. [Google Scholar] [CrossRef]
- Haque, U.; Da Silva, P.F.; Devoli, G.; Pilz, J.; Zhao, B.; Khaloua, A.; Glass, G.E. The human cost of global warming: Deadly landslides and their triggers (1995–2014). Sci. Total Environ. 2019, 682, 673–684. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, B.; Li, J. Mechanism of the catastrophic June 2017 landslide at Xinmo village, Songping river, Sichuan province, China. Landslides 2018, 15, 333–345. [Google Scholar] [CrossRef]
- Zhang, S.; Li, R.; Wang, F.; Iio, A. Characteristics of landslides triggered by the 2018 Hokkaido Eastern Iburi earthquake, Northern Japan. Landslides 2019, 16, 1691–1708. [Google Scholar] [CrossRef]
- Jain, N.; Martha, T.R.; Khanna, K.; Roy, P.; Kumar, K.V. Major landslides in Kerala, India, during 2018–2020 period: An analysis using rainfall data and debris flow model. Landslides 2021, 18, 3629–3645. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pradhan, B.; Dikshit, A.; Al-Katheri, M.M.; Matar, S.S.; Mahdi, A.M. Landslide susceptibility mapping using CNN-1D and 2D deep learning algorithms: Comparison of their performance at Asir Region, KSA. Bull. Eng. Geol. Environ. 2022, 81, 165. [Google Scholar] [CrossRef]
- Alharbi, T.; Sultan, M.; Sefry, S.; ElKadiri, R.; Ahmed, M.; Chase, R. An assessment of landslide susceptibility in the Faifa area, Saudi Arabia, using remote sensing and GIS techniques. Nat. Hazards Earth Syst. Sci. 2014, 14, 1553–1564. [Google Scholar] [CrossRef]
- Sadagah, B. A vigorous debris-flow incident at Al-Hada descent and remedial measures. In Landslide Science for a Safer Geoenvironment; Sassa, K., Canuti, P., Yin, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 715–718. [Google Scholar]
- Alharbi, T.; El-Sorogy, A.S. Landslide prediction in mountainous terrain using remote sensing and GIS: A case study of Al-Hada Road, Makkah Province, Saudi Arabia. Water 2023, 15, 3771. [Google Scholar] [CrossRef]
- Youssef, A.M.; Mahdi, A.M.; Al-Katheri, M.M.; Pouyan, S.; Pourghasemi, H.R. Multi-hazards (landslides, floods, and gully erosion) modeling and mapping using machine learning algorithms. J. Afr. Earth Sci. 2023, 197, 104788. [Google Scholar] [CrossRef]
- Casagli, N.; Intrieri, E.; Tofani, V.; Gigli, G.; Raspini, F. Landslide detection, monitoring, and prediction with remote-sensing techniques. Nat. Rev. Earth Environ. 2023, 4, 51–64. [Google Scholar] [CrossRef]
- Chauhan, S.; Sharma, M.; Arora, M.K. Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model. Landslides 2010, 7, 411–423. [Google Scholar] [CrossRef]
- Jimenez-Peralvarez, J.D.; Irigaray, C.; El Hamdouni, R.; Chacón, J. Building models for automatic landslide-susceptibility analysis, mapping and validation in ArcGIS. Nat. Hazards 2009, 50, 571–590. [Google Scholar] [CrossRef]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Peng, J.; Wang, S.; Wang, Q.; Zhuang, J.; Huang, W.; Zhu, X.; Leng, Y.; Ma, P. Distribution and genetic types of loess landslides in China. J. Asian Earth Sci. 2019, 170, 329–350. [Google Scholar] [CrossRef]
- Almazroui, M.; Islam, M.N.; Alkhalaf, A.K.; Saeed, F. Spatiotemporal analysis of the annual rainfall in the Kingdom of Saudi Arabia. Theor. Appl. Climatol. 2021, 144, 1039–1054. [Google Scholar]
- Stüwe, K.; Robl, J.; Turab, S.A.; Sternai, P.; Stuart, F.M. Feedbacks between sea-floor spreading, trade winds, and precipitation in the Southern Red Sea. Nat. Commun. 2022, 13, 5405. [Google Scholar] [CrossRef] [PubMed]
- Hürlimann, M.; Coviello, V.; Bel, C.; Guo, X.; Berti, M.; Graf, C.; Hübl, J.; Miyata, S.; Smith, J.B.; Yin, H.Y. Debris-flow monitoring and warning: Review and examples. Earth-Sci. Rev. 2019, 199, 102981. [Google Scholar] [CrossRef]
- Ma, S.; Qiu, H.; Zhu, Y.; Yang, D.; Tang, B.; Wang, D.; Wang, L.; Cao, M. Topographic changes, surface deformation, and movement process before, during, and after a rotational landslide. Remote Sens. 2023, 15, 662. [Google Scholar] [CrossRef]
- Amin, A.A.; Mesaed, A.A. The role of geologic and geomorphologic factors in the formation of some geotourism sites of Saudi Arabia. In Geotourism in the Middle East; Springer International Publishing: Cham, Germany, 2023; pp. 193–234. [Google Scholar]
- Aldrees, A. Climatic impact on rainfall analysis in Al-Madinah Munawwara Region. IOP Conf. Ser. Earth Environ. Sci. 2022, 1026, 012032. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, S.; Yan, F.; Ren, B. Application of RS & GIS in regional landslides susceptibility mapping and spatiotemporal characteristics analysis. IOP Conf. Ser. Earth Environ. Sci. 2020, 428, 012093. [Google Scholar]
- Tavana, M.; Soltanifar, M.; Santos-Arteaga, F.J. Analytical hierarchy process: Revolution and evolution. Ann. Oper. Res. 2023, 326, 879–907. [Google Scholar] [CrossRef]
- Yousefi, H.; Moradi, S.; Zahedi, R.; Ranjbar, Z. Developed analytic hierarchy process and multi-criteria decision support system for wind farm site selection using GIS: A regional-scale application with environmental responsibility. Energy Convers. Manag. X 2024, 22, 100594. [Google Scholar] [CrossRef]
- Alharbi, T. Mapping of groundwater, flood, and drought potential zones in Neom, Saudi Arabia, using GIS and remote sensing techniques. Water 2023, 15, 966. [Google Scholar] [CrossRef]
- Lin, P.; Pan, M.; Wood, E.F.; Yamazaki, D.; Allen, G.H. A new vector-based global river network dataset accounting for variable drainage density. Sci. Data 2021, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-Y.; Chang, C.-H.; Hsu, C.-T.; Wu, S.-J. Variation of uncertainty of drainage density in flood hazard mapping assessment with coupled 1D–2D hydrodynamics model. Nat. Hazards 2022, 111, 2297–2315. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Li, Z. A new method for estimating the potential energy of debris flows based on a two-phase flow model. Landslides 2019, 16, 1–14. [Google Scholar] [CrossRef]
- Hengl, T.; Reuter, H.I. (Eds.) Chapter 2: Digital Elevation Model Terminology. In Geomorphometry: Concepts, Software, Applications; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Zhou, Q.; Liu, X. Analysis of errors of derived slope and aspect related to DEM data properties. Comput. Geosci. 2004, 30, 369–378. [Google Scholar] [CrossRef]
- Gabet, E.J.; Mudd, S.M. Bedrock erosion by root fracture and tree throw: A coupled biogeomorphic model to explore the humped soil production function and the persistence of hillslope soils. J. Geophys. Res. Earth Surf. 2010, 115, 1–14. [Google Scholar] [CrossRef]
- Larsen, I.J.; Montgomery, D.R. Landslide erosion coupled to tectonics and river incision. Nat. Geosci. 2012, 5, 468–473. [Google Scholar] [CrossRef]
- Panchal, S.; Shrivastava, A.K. Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India. Ain Shams Eng. J. 2022, 13, 101626. [Google Scholar] [CrossRef]
- Yalcin, A. The effects of clay on landslides: A case study. Appl. Clay Sci. 2007, 38, 77–85. [Google Scholar] [CrossRef]
- Temme, A.J.A.M. Relations between soil development and landslides. In Hydrogeology, Chemical Weathering, and Soil Formation; Hunt, A., Egli, M., Faybishenko, B., Eds.; American Geophysical Union: Washington, DC, USA, 2021. [Google Scholar]
- Xiong, H.; Ma, C.; Li, M.; Tan, J.; Wang, Y. Landslide susceptibility prediction considering land use change and human activity: A case study under rapid urban expansion and afforestation in China. Sci. Total Environ. 2023, 866, 161430. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.R.; Kattan, F.H. Lithostratigraphic revision in the Arabian Shield: The impacts of geochronology and tectonic analy-sis. Arab. J. Sci. Eng. 2008, 33, 3–16. [Google Scholar]
- Stern, R.J.; Johnson, P.R. Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis. Earth-Sci. Rev. 2010, 101, 29–67. [Google Scholar] [CrossRef]
- Twiss, R.J.; Moores, E.M. Structural Geology; W.H. Freeman and Company: New York, NY, USA, 2007. [Google Scholar]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Water (MAW). General Soil Map of the Kingdom of Saudi Arabia; Land Management Department: Riyadh, Saudi Arabia, 1985. [Google Scholar]
- Sheta, A.S. Soil Quality: Standards of Soil Quality Under the Conditions of Saudi Arabia, 7th ed.; Saudi Society for Agricultural Sciences, King Saud University: Riyadh, Saudi Arabia, 2004. [Google Scholar]
- Sur, U.; Singh, P.; Meena, S.R. Landslide susceptibility assessment in a lesser Himalayan road corridor (India) applying fuzzy AHP technique and earth-observation data. Geomat. Nat. Hazards Risk 2020, 11, 2176–2209. [Google Scholar] [CrossRef]
- Chawla, A.; Chawla, S.; Pasupuleti, S.; Rao, A.C.S.; Sarkar, K.; Dwivedi, R. Landslide susceptibility mapping in Darjeeling Himalayas, India. Adv. Civ. Eng. 2018, 2018, 6416492. [Google Scholar] [CrossRef]
- Thomas, A.V.; Saha, S.; Danumah, J.H.; Raveendran, S.; Prasad, M.K.; Ajin, R.S.; Kuriakose, S.L. Landslide susceptibility zonation of Idukki district using GIS in the aftermath of 2018 Kerala floods and landslides: A comparison of AHP and frequency ratio methods. J. Geovis. Spat. Anal. 2021, 5, 21. [Google Scholar] [CrossRef]
- Saravanan, S.; Thirumalaivasan, D. Assessment of morphometric parameters as the basis for hydrological analysis of a river basin using GIS and remote sensing techniques. ISPRS Int. J. Geo-Inf. 2020, 11, 459. [Google Scholar] [CrossRef]
- Liu, X.; Shao, S.; Shao, S. Landslide susceptibility zonation using the analytical hierarchy process (AHP) in the Great Xi’an Region, China. Sci. Rep. 2024, 14, 2941. [Google Scholar] [CrossRef]
- Dikshit, A.; Sarkar, R.; Pradhan, B.; Segoni, S.; Alamri, A.M. Rainfall-induced landslide studies in the Indian Himalayan region: A critical review. Appl. Sci. 2020, 10, 2466. [Google Scholar] [CrossRef]
- Luo, H.Y.; Zhang, L.M.; Zhang, L.L.; He, J.; Yin, K.S. Vulnerability of buildings to landslides: The state of the art and future needs. Earth-Sci. Rev. 2023, 238, 104329. [Google Scholar] [CrossRef]
- Meten, M.; Prakash Bhandary, N.; Yatabe, R. Effect of landslide factor combinations on the prediction accuracy of landslide susceptibility maps in the Blue Nile Gorge of Central Ethiopia. Geoenviron. Disasters 2015, 2, 9. [Google Scholar] [CrossRef]
- Qiu, H.; Zhu, Y.; Zhou, W.; Sun, H.; He, J.; Liu, Z. Influence of DEM resolution on landslide simulation performance based on the SCOOPS3D model. Geomat. Nat. Hazards Risk 2022, 13, 1663–1681. [Google Scholar] [CrossRef]
- Shu, H.; Guo, Z.; Qi, S.; Song, D.; Pourghasemi, H.R.; Ma, J. Integrating landslide typology with weighted frequency ratio model for landslide susceptibility mapping: A case study from Lanzhou city of northwestern China. Remote Sens. 2021, 13, 3623. [Google Scholar] [CrossRef]
- Sharma, S.; Mahajan, A.K. Comparative evaluation of GIS-based landslide susceptibility mapping using statistical and heuristic approach for Dharamshala region of Kangra Valley, India. Geoenviron. Disasters 2018, 5, 4. [Google Scholar] [CrossRef]
- Singh, K.; Sharma, A. Road cut slope stability analysis at Kotropi landslide zone along NH-154 in Himachal Pradesh, India. J. Geol. Soc. India 2022, 98, 379–386. [Google Scholar] [CrossRef]
- Singh, S.; Dhote, P.R.; Thakur, P.K.; Chouksey, A.; Aggarwal, S.P. Identification of flash-flood-prone river reaches in Beas river basin using GIS-based multi-criteria technique: Validation using field and satellite observations. Nat. Hazards 2021, 105, 2431–2453. [Google Scholar] [CrossRef]
- Zhou, J.; Tan, S.; Li, J.; Xu, J.; Wang, C.; Ye, H. Landslide susceptibility assessment using the analytic hierarchy process (AHP): A case study of a construction site for photovoltaic power generation in Yunxian County, Southwest China. Sustainability 2023, 15, 5281. [Google Scholar] [CrossRef]
Parameter | Weight (%) | Classes | Rank |
---|---|---|---|
Slope (Degree) | 32 | 0–9 | 1 |
10–18 | 2 | ||
19–26 | 3 | ||
27–34 | 4 | ||
35–73 | 5 | ||
Precipitation (mm) | 5 | 45.6–47.3 | 1 |
47.4–48.7 | 2 | ||
48.8–50.0 | 3 | ||
50.1–51.4 | 4 | ||
51.5–52.9 | 5 | ||
Elevation (m) | 10 | 795–980 | 1 |
981–1153 | 2 | ||
1154–1335 | 3 | ||
1336–1524 | 4 | ||
1525–1866 | 5 | ||
Lithology | 5 | Rhyolite, Andesite, and Clastic Sediments | 4 |
Granite | 3 | ||
Granite and Granodiorite | 3 | ||
Quaternary Deposits | 1 | ||
Rhyolite | 3 | ||
Drainage density (km/km2) | 38 | 0.0–0.9 | 1 |
1.0–1.5 | 2 | ||
1.6–2.1 | 3 | ||
2.2–2.8 | 4 | ||
2.9–4.5 | 5 | ||
Soil | 5 | Calciorthids | 1 |
Torriorthents | 2 | ||
Aspect | 5 | 0–67° (NE) | 1 |
68–139° (NE–SE) | 2 | ||
140–208° (SE–SW) | 3 | ||
209–283° (SW–NW) | 4 | ||
284–360° (NW) | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, T.; El-Sorogy, A.S.; Rikan, N. Landslide Prediction in Mountainous Terrain Using Weighted Overlay Analysis Method: A Case Study of Al Figrah Road, Al-Madinah Al-Munawarah, Western Saudi Arabia. Sustainability 2025, 17, 6914. https://doi.org/10.3390/su17156914
Alharbi T, El-Sorogy AS, Rikan N. Landslide Prediction in Mountainous Terrain Using Weighted Overlay Analysis Method: A Case Study of Al Figrah Road, Al-Madinah Al-Munawarah, Western Saudi Arabia. Sustainability. 2025; 17(15):6914. https://doi.org/10.3390/su17156914
Chicago/Turabian StyleAlharbi, Talal, Abdelbaset S. El-Sorogy, and Naji Rikan. 2025. "Landslide Prediction in Mountainous Terrain Using Weighted Overlay Analysis Method: A Case Study of Al Figrah Road, Al-Madinah Al-Munawarah, Western Saudi Arabia" Sustainability 17, no. 15: 6914. https://doi.org/10.3390/su17156914
APA StyleAlharbi, T., El-Sorogy, A. S., & Rikan, N. (2025). Landslide Prediction in Mountainous Terrain Using Weighted Overlay Analysis Method: A Case Study of Al Figrah Road, Al-Madinah Al-Munawarah, Western Saudi Arabia. Sustainability, 17(15), 6914. https://doi.org/10.3390/su17156914