Bioaccumulation and Tolerance of Metals in Floristic Species of the High Andean Wetlands of the Ichubamba Yasepan Protected Area: Identification of Groups and Discriminant Markers
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Floristic Inventory
2.3. Bioaccumulation of Metals in Wetlands
2.4. Multivariate Statistical Analysis
3. Results
3.1. Composition and Structure of Wetlands
3.2. Concentrations of Metals in Water
3.3. Concentration of Metals in Plant Segments
3.4. Bioaccumulation Index (BAI) and Tolerance of Each Species to Metals
3.5. Principal Component Analysis
3.6. Cluster Analysis
3.7. Discriminant Analysis
4. Discussion
4.1. Implications of Metal Contamination for Wetland Plant Species
4.2. Bioaccumulation
4.3. Group Identification, Discriminant Markers, and Complex Relationships
4.4. Limitations and Future Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bystriakova, N.; Tovar, C.; Monro, A.; Moat, J.; Hendrigo, P.; Carretero, J.; Torres-Morales, G.; Diazgranados, M. Colombia’s bioregions as a source of useful plants. PLoS ONE 2021, 16, e0256457. [Google Scholar] [CrossRef]
- Valencia, E.; Changoluisa, I.; Palma, K.; Cruz, P.; Valencia, D.; Ayala, P.; Hidalgo, V.; Quisi, D.; Jara, N.; Puga, D. Wetland monitoring technification for the ecuadorian andean region based on a multi-agent framework. Heliyon 2022, 8, e09054. [Google Scholar] [CrossRef]
- Capparelli, M.; Cabrera, M.; Rico, A.; Lucas-Solis, O.; Alvear-S, D.; Vasco, S.; Galarza, E.; Shiguango, L.; Pinos-Velez, V.; Pérez-González, A.; et al. An integrative approach to assess the environmental impacts of gold mining contamination in the amazon. Toxics 2021, 9, 149. [Google Scholar] [CrossRef]
- Cano, D.; Pizarro, S.; Cacciuttolo, C.; Peñaloza, R.; Yaranga, R.; Gandini, M. Study of ecosystem degradation dynamics in the peruvian highlands: Landsat time-series trend analysis (1985–2022) with arvi for different vegetation cover types. Sustainability 2023, 15, 15472. [Google Scholar] [CrossRef]
- Yang, Y.; Bai, X.; Lu, J.; Zou, R.; Ding, R.; Hua, X. Assessment of five typical environmental endocrine disruptors and thyroid cancer risk: A meta-analysis. Front. Endocrinol. 2023, 14, 1283087. [Google Scholar] [CrossRef]
- Orellana, E.; Custodio, M.; Bastos, M.; Ascencion, J. Heavy metals in agriculture soils from high andean zones and potential ecological risk assessment in peru’s central andes. J. Ecol. Eng. 2020, 21, 108–119. [Google Scholar] [CrossRef]
- Wingfield, S.; Moscoso, A.; Quiroga, D.; Ochoa-Herrera, V. Challenges to water management in ecuador: Legal authorization, quality parameters, and socio-political responses. Water 2021, 13, 1017. [Google Scholar] [CrossRef]
- Peñaloza, R.; Custodio, M.; Cacciuttolo, C.; Chanamé, F.; Cano, D.; Solorzano, F. Human health risk assessment for exposure to heavy metals via dietary intake of rainbow trout in the influence area of a smelting facility located in peru. Toxics 2023, 11, 764. [Google Scholar] [CrossRef]
- Khazal, S.; Azeez, D. Assessment of ground water pollution by heavy metals in kirkuk governorate. IOP Conf. Ser. Earth Environ. Sci. 2025, 1449, 012092. [Google Scholar] [CrossRef]
- Vassilev, A.; Schwitzguébel, J.; Thewys, T.; Lelie, D.; Vangronsveld, J. The use of plants for remediation of metal-contaminated soils. Sci. World J. 2004, 4, 9–34. [Google Scholar] [CrossRef]
- Satchi, K.; Mafulul, S.; Mélila, M.; Longdet, I. Exposure to trace elements through rauwolfia vomitoria and argemone Mexicana, two medicinal plants at hahotoé-kpogamé, a polluted area in southern togo. Am. J. Biosci. 2024, 12, 53–60. [Google Scholar] [CrossRef]
- Clovis, M.; Machumi, F.; Innocent, E. Assessment of heavy metals in hibiscus sabdariffa calyces and moringa oleifera leaves collected from different areas in tanzania. J. Ecobiotechnology 2020, 12, 17–21. [Google Scholar] [CrossRef]
- Gianì, F.; Masto, R.; Trovato, M.; Franco, A.; Pandini, G.; Vigneri, R. Thyroid stem cells but not differentiated thyrocytes are sensitive to slightly increased concentrations of heavy metals. Front. Endocrinol. 2021, 12, 3–7. [Google Scholar] [CrossRef]
- Paape, T.; Heiniger, B.; Domingo, M.; Clear, M.; Lucas, M.; Pueyo, J. Genome-wide association study reveals complex genetic architecture of cadmium and mercury accumulation and tolerance traits in medicago truncatula. Front. Plant Sci. 2022, 12, 806949. [Google Scholar] [CrossRef]
- Butar, E.; Permatasari, I.; Jasmansyah; Sembiring, T. Phytoremediation of heavy metal contaminated soil by chrysopogon zizanioides L. Iop Conf. Ser. Earth Environ. Sci. 2022, 1017, 012022. [Google Scholar] [CrossRef]
- Badawy, W.; Sarhan, Y.; Duliu, O.; Kim, J.; Yushin, N.; Samman, H.; Hussein, A.; Frontasyeva, M.; Shcheglov, A. Monitoring of air pollutants using plants and co-located soil—Egypt: Characteristics, pollution, and toxicity impact. Environ. Sci. Pollut. Res. 2021, 29, 21049–21066. [Google Scholar] [CrossRef]
- Chamba-Eras, I.; Griffith, D.; Kalinhoff, C.; Ramírez, J.; Gázquez, M. Native hyperaccumulator plants with differential phytoremediation potential in an artisanal gold mine of the ecuadorian amazon. Plants 2022, 11, 1186. [Google Scholar] [CrossRef]
- Atoloye, I.; Adesina, I.; Sharma, H.; Subedi, K.; Liang, C.; Shahbazi, A.; Bhowmik, A. Hemp biochar impacts on selected biological soil health indicators across different soil types and moisture cycles. PLoS ONE 2022, 17, e0264620. [Google Scholar] [CrossRef]
- Kunić, S. The content of heavy metals in honey as indicators of pollutants. Technol. Acta 2024, 17, 3–9. [Google Scholar] [CrossRef]
- Roleček, J.; Chytrý, M.; Hájek, M.; Lvončík, S.; Tichý, L. Sampling design in large-scale vegetation studies: Do not sacrifice ecological thinking to statistical purism! Folia Geobot. 2007, 42, 199–208. [Google Scholar] [CrossRef]
- Shahzad, U.; Hanif, M.; Koyuncu, N. A new estimator for mean under stratified random sampling. Math. Sci. 2018, 12, 163–169. [Google Scholar] [CrossRef]
- Liu, Z.; Pontius, R. The total operating characteristic from stratified random sampling with an application to flood mapping. Remote. Sens. 2021, 13, 3922. [Google Scholar] [CrossRef]
- Diengdoh, I.; Ali, A. Body image and its association with depression, anxiety, and self-esteem among college going students. Indian J. Community Med. 2022, 47, 218–222. [Google Scholar] [CrossRef]
- Naqinezhad, A.; Zare-Maivan, H.; Gholizadeh, H. A floristic survey of the Hyrcanian forests in Northern Iran, using two lowland-mountain transects. J. For. Res. 2015, 26, 187–199. [Google Scholar] [CrossRef]
- Hiby, L.; Krishna, M. Line transect sampling from a curving path. Biometrics 2001, 57, 727–731. [Google Scholar] [CrossRef]
- Williams, M. Assessing diversity of diurnal lepidoptera in habitat fragments: Testing the efficiency of strip transects. Environ. Entomol. 2008, 37, 1313–1322. [Google Scholar] [CrossRef]
- Young, H.; Raab, T.; McCauley, D.; Briggs, A.; Dirzo, R. The coconut palm, cocos nucifera, impacts forest composition and soil characteristics at palmyra atoll, central pacific. J. Veg. Sci. 2010, 21, 1058–1068. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, T.; Hoang, C.; Shi, S.; Jiang, J.; Condit, R.; Hubbell, S. Inferring multispecies distributional aggregation level from limited line transect-derived biodiversity data. Methods Ecol. Evol. 2019, 10, 1015–1023. [Google Scholar] [CrossRef]
- Höing, A.; Quinten, M.; Indrawati, Y.; Cheyne, S.; Waltert, M. Line transect and triangulation surveys provide reliable estimates of the density of kloss’ gibbons (hylobates klossii) on siberut island, indonesia. Int. J. Primatol. 2013, 34, 148–156. [Google Scholar] [CrossRef]
- Kafle, S.; Pathak, H. Diversity of orchids in shiureni forest, aadhikhola rural municipality, syangja, nepal. Himal. Biodivers. 2023, 9, 22–28. [Google Scholar] [CrossRef]
- Sikdar, P.; Sahu, P. Understanding wetland sub-surface hydrology using geologic and isotopic signatures. Hydrol. Earth Syst. Sci. 2009, 13, 1313–1323. [Google Scholar] [CrossRef]
- George, M.; Ngole-Jeme, V. An evaluation of the khubelu wetland and receiving stream water quality for community use. Water 2022, 14, 442. [Google Scholar] [CrossRef]
- Idrees, N.; Tabassum, B.; Abd Allah, E.F.; Hashem, A.; Sarah, R.; Hashim, M. Groundwater contamination with cadmium concentrations in some West U.P. Regions, India. Saudi J. Biol. Sci. 2018, 25, 1365–1368. [Google Scholar] [CrossRef]
- Kendüzler, E.; Türker, A. Determination of trace cadmium in waters by flame atomic absorption spectrophotometry after preconcentration with 1-nitroso-2-naphthol-3,6-disulfonic acid on Ambersorb 572. Ann Chim. 2005, 95, 77–85. [Google Scholar] [CrossRef]
- Behpour, M.; Soltani, N.; Ghoreishi, S. Simultaneous preconcentration of lead and cadmium ions with methyltrioctylammonium chloride supported on microcrystalline naphthalene and determination by flame atomic absorption spectrometry. Eur. J. Chem. 2010, 1, 216–220. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, D.; Guan, B.; Qi, Q.; Tong, S. Optimum water supplement strategy to restore reed wetland in the yellow river delta. PLoS ONE 2017, 12, e0177692. [Google Scholar] [CrossRef]
- Göthberg, A.; Greger, M.; Bengtsson, B. Accumulation of heavy metals in water spinach (ipomoea aquatica) cultivated in the bangkok region, thailand. Environ. Toxicol. Chem. 2002, 21, 1934–1939. [Google Scholar] [CrossRef]
- Tangahu, B.; Abdullah, S.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A review on heavy metals (as, pb, and hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011, 2011, 939161. [Google Scholar] [CrossRef]
- Bansal, S.; Johnson, O.; Meier, J.; Zhu, X. Vegetation affects timing and location of wetland methane emissions. J. Geophys. Res. Biogeosciences 2020, 125, 7–9. [Google Scholar] [CrossRef]
- Obaid, H.; Ma, L.; Nader, S.; Hashimi, M.; Sharifi, S.; Kakar, H.; Ni, J.; Ni, C. Heavy metal contamination status of water, agricultural soil, and plant in the semiarid region of kandahar, afghanistan. Acs Earth Space Chem. 2023, 7, 1446–1458. [Google Scholar] [CrossRef]
- Samuel, P.; Babatunde, B. Risk Assessment of Heavy Metals in Food Crops at Abandoned Lead-Zinc Mining Site at Tse-Faga, Logo, Lga, Benue State, Nigeria. J. Environ. Prot. 2021, 12, 624–638. [Google Scholar] [CrossRef]
- Singh, G.; Patel, N.; Jindal, T.; Ranjan, M. Heavy metal contamination in soils and crops irrigated by kali river in uttar pradesh, india. Bull. Environ. Contam. Toxicol. 2021, 107, 931–937. [Google Scholar] [CrossRef]
- Singh, S.; Dhyani, S.; Janipella, R.; Chakraborty, S.; Pujari, P.; Shinde, V.; Singh, K. Biomonitoring-supported land restoration to reduce land degradation in intensively mined areas of india. Sustainability 2022, 14, 13639. [Google Scholar] [CrossRef]
- Murillo-Avalos, C.L.; Cubilla-Montilla, M.; Celestino Sánchez, M.Á.; Vicente-Galindo, P. What environmental social responsibility practices do large companies manage for sustainable development? Corp. Soc. Responsib. Env. Manag. 2021, 28, 153–168. [Google Scholar] [CrossRef]
- Jolliffe, I.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. WIREs Comp. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Rahmani, M.; Atia, G. Coherence pursuit: Fast, simple, and robust principal component analysis. IEEE Trans. Signal Process. 2017, 65, 6260–6275. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, Y.; Gehan, E.; Clarke, R. Block principal component analysis with application to gene microarray data classification. Stat. Med. 2002, 21, 3465–3474. [Google Scholar] [CrossRef]
- Luo, L.; Bao, S.; Tong, C. Sparse robust principal component analysis with applications to fault detection and diagnosis. Ind. Eng. Chem. Res. 2019, 58, 1300–1309. [Google Scholar] [CrossRef]
- Patil, C.; Baidari, I. Estimating the optimal number of clusters k in a dataset using data depth. Data Sci. Eng. 2019, 4, 132–140. [Google Scholar] [CrossRef]
- Losifidis, A.; Tefas, A.; Pitas, I. Class-specific reference discriminant analysis with application in human behavior analysis. IEEE Trans. Hum.-Mach. Syst. 2015, 45, 315–326. [Google Scholar] [CrossRef]
- Pepler, P.; Uys, D.; Nel, D. Discriminant analysis under the common principal components model. Commun. Stat.-Simul. Comput. 2017, 46, 4812–4827. [Google Scholar] [CrossRef]
- Mitterœcker, P.; Bookstein, F. Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol. Biol. 2011, 38, 100–114. [Google Scholar] [CrossRef]
- INEN 1108; Ecuadorian Technical Standard INEN 1108: Drinking Water—Requirements. Ecuadorian Standards Institute: Quito, Ecuador, 2014.
- NOM-127-SSA1-2021; Mexican Official Standard NOM-127-SSA1-2021, Water for Human Use and Consumption—Permissible Limits for Water Quality. Ministry of Health: Mexico City, Mexico, 2021.
- TULSMA; Unified Text of Secondary Legislation of the Ministry of the Environment: Standard on Environmental Quality and Effluent Discharge into Water Resources. Ministry of the Environment: Quito, Ecuador, 2015.
- Li, Y.; Shi, K.; Yuan, J.; Kuang, Q. Evaluation of Heavy Metal Pollutants From Plateau Mines in Wetland Surface Deposits. Front. Environ. Sci. 2021, 8, 557302. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, J.; Cheng, X.; He, X. Wetland changes and their relation to climate change in the pumqu basin, tibetan plateau. Int. J. Environ. Res. Public Health 2021, 18, 2682. [Google Scholar] [CrossRef]
- Cushquicullma-Colcha, D.F.; Ati-Cutiupala, G.M.; Guilcapi-Pacheco, E.D.; Villacis-Uvidia, J.F.; Brito-Mancero, M.Y.; Vaca-Cárdenas, P.V.; Vasco-Lucio, M.M.; Muñoz-Jácome, E.A.; Vaca-Cárdenas, M.L. Influence of Altitude and Climatic Factors on the Floristic Composition of the Moorlands of the Guamote Canton, Ecuador: Key Revelations for Conservation. Sustainability 2025, 17, 383. [Google Scholar] [CrossRef]
- Mitchell, L.; New, E.; Mahon, C. Macromolecular optical sensor arrays. ACS Appl. Polym. Mater. 2021, 3, 506–530. [Google Scholar] [CrossRef]
- Maharjan, B.; Panday, D.; Blanco-Canqui, H.; Mikha, M. Potential amendments for improving productivity of low carbon semiarid soil. Agrosystems. Geosci. Environ. 2021, 4, e20171. [Google Scholar] [CrossRef]
- Amer, A.S.; Mohamed, W.S. Assessment of Ismailia Canal for irrigation purposes by water quality indices. Env. Monit. Assess. 2022, 194, 862. [Google Scholar] [CrossRef]
- Shorinwa, O.; Chukwuemeka, J. Comparative study of heavy metal content of Manihot esculenta tubers and soil in rivers state, nigeria: Effect on histology of kidney and liver of wistar rats. J. Pharm. Bioresour. 2024, 21, 19–31. [Google Scholar] [CrossRef]
- Hussain, M.; Khan, Z.; Naeem, M.; Ahmad, K.; Awan, M.; Alwahibi, M.; Elshikh, M. Blood, hair and feces as an indicator of environmental exposure of sheep, cow and buffalo to cobalt: A health risk perspectives. Sustainability 2021, 13, 7873. [Google Scholar] [CrossRef]
- Ajala, L.; Ali, E.; Obasi, N.; Fasuan, T.; Odewale, I.; Igidi, J.; Singh, J. Insights into purification of contaminated water with activated charcoal derived from hamburger seed coat. Int. J. Environ. Sci. Technol. 2021, 19, 6541–6554. [Google Scholar] [CrossRef]
- Du, H.; Le, G.; Hou, L.; Mao, X.; Liu, S.; Huang, K. Nontoxic concentration of ochratoxin a aggravates renal fibrosis induced by adriamycin/cyclosporine a nephropathy via tgf-β1/smad2/3. J. Agric. Food Chem. 2022, 70, 14005–14014. [Google Scholar] [CrossRef]
- Gasparatos, D. Soil contamination by heavy metals and metalloids. Environments 2022, 9, 32. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Barbeș, L.; Dumitriu, C. Impact of soil pollution on melliferous plants. Toxics 2022, 10, 239. [Google Scholar] [CrossRef]
- Cakaj, A.; Lisiak, M.; Hańć, A.; Małecka, A.; Borowiak, K.; Drapikowska, M. Common weeds as heavy metal bioindicators: A new approach in biomonitoring. Sci. Rep. 2023, 13, 6926. [Google Scholar] [CrossRef]
- Klym, O.; Stadnytska, O. Heavy metals in the dandelion and apple tree pollen from the different terrestrial ecosystems of the carpathian region. Acta Sci. Pol. Zootech. 2020, 18, 15–20. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.; Sadeghi, M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021, 12, 9–12. [Google Scholar] [CrossRef]
- Yager, K.; Prieto, M.; Meneses, R. Reframing pastoral practices of bofedal management to increase the resilience of andean water towers. Mt. Res. Dev. 2021, 41, A1–A9. [Google Scholar] [CrossRef]
- Onyia, P.; Ozoko, D.; Ifediegwu, S. Phytoremediation of arsenic-contaminated soils by arsenic hyperaccumulating plants in selected areas of enugu state, southeastern, nigeria. Geol. Ecol. Landsc. 2020, 5, 308–319. [Google Scholar] [CrossRef]
- Cantamessa, S.; Massa, N.; Gamalero, E.; Berta, G. Phytoremediation of a highly arsenic polluted site, using pteris vittata l. and arbuscular mycorrhizal fungi. Plants 2020, 9, 1211. [Google Scholar] [CrossRef]
- Zhou, H.; Nian, F.; Chen, B.; Zhu, Y.; Yue, X.; Zhang, N.; Xia, Y. Synergistic reduction of arsenic uptake and alleviation of leaf arsenic toxicity in maize (Zea mays L.) by arbuscular mycorrhizal fungi (AMF) and exogenous iron through antioxidant activity. J. Fungi 2023, 9, 677. [Google Scholar] [CrossRef]
- Liu, S.; Pan, L.; Chen, J.; Wang, Z.; Li, Z.; Gao, C.; Yang, H. Mechanisms and applications of microbial synthesis of metal nanoparticles in agri-sectors. Environ. Sci. Nano 2024, 11, 2803–2830. [Google Scholar] [CrossRef]
- Cruzado-Tafur, E.; Bierła, K.; Torró, L.; Szpunar, J. Accumulation of as, ag, cd, cu, pb, and zn by native plants growing in soils contaminated by mining environmental liabilities in the peruvian andes. Plants 2021, 10, 241. [Google Scholar] [CrossRef]
- Vasile, G.-G.; Tenea, A.-G.; Dinu, C.; Iordache, A.M.M.; Gheorghe, S.; Mureseanu, M.; Pascu, L.F. Bioavailability, Accumulation and Distribution of Toxic Metals (As, Cd, Ni and Pb) and Their Impact on Sinapis alba Plant Nutrient Metabolism. Int. J. Environ. Res. Public Health 2021, 18, 12947. [Google Scholar] [CrossRef]
- Baldi, A.; Cecchi, S.; Grassi, C.; Zanchi, C.; Orlandini, S.; Napoli, M. Lead bioaccumulation and translocation in herbaceous plants grown in urban and peri-urban soil and the potential human health risk. Agronomy 2021, 11, 2444. [Google Scholar] [CrossRef]
- Sandhi, A.; Yu, C.; Rahman, M.; Amin, M. Arsenic in the water and agricultural crop production system: Bangladesh perspectives. Environ. Sci. Pollut. Res. 2022, 29, 51354–51366. [Google Scholar] [CrossRef]
- Ross, A.; Mendoza, M.; Drenkhan, F.; Montoya, N.; Baiker, J.; Mackay, J.; Hannah, D.M.; Buytaert, W. Seasonal water storage and release dynamics of bofedal wetlands in the central andes. Hydrol. Process. 2023, 37, e14940. [Google Scholar] [CrossRef]
- Tshithukhe, G.; Motitsoe, S.; Hill, M. Heavy metals assimilation by native and non-native aquatic macrophyte species: A case study of a river in the eastern cape province of south africa. Plants 2021, 10, 2676. [Google Scholar] [CrossRef]
- Ali, S.; Abbas, Z.; Rizwan, M.; Zaheer, I.; Yavaş, İ.; Ünay, A.; Abdel-Daim, M.M.; Bin-Jumah, M.; Hasanuzzaman, M.; Kalderis, D. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability 2020, 12, 1927. [Google Scholar] [CrossRef]
- Goodson, E.; Aziz, T. Assessing the native plant species for phytoremediation of freshwater bodies in southern ontario, canada. Sci. Lett. 2023, 11, 50–58. [Google Scholar] [CrossRef]
- Morsy, M.; Nossier, M.; Elsebaay, A.; Abd-Elrahman, S. Phytoremediation of pb and cd by alfalfa (Medicago sativa L.): An applied study in the presence of lettuce plants (Lactuca sativa L.). Arab. Univ. J. Agric. Sci. 2022, 30, 163–174. [Google Scholar] [CrossRef]
- Qayoom, I.; Jaies, I. Phytoremediation potential of macrophytes against heavy metals, nitrates and phosphates: A review. Environ. Conserv. J. 2023, 24, 273–280. [Google Scholar] [CrossRef]
- Hassanzadeh, M.; Zarkami, R.; Sadeghi, R. Uptake and accumulation of heavy metals by water body and azolla filiculoides in the anzali wetland. Appl. Water Sci. 2021, 11, 91. [Google Scholar] [CrossRef]
- Osman, N.; Roslan, A.; Ibrahim, M.; Hassan, M. Potential use of pennisetum purpureum for phytoremediation and bioenergy production: A mini review. Asia-Pac. J. Mol. Biol. Biotechnol. 2020, 28, 14–26. [Google Scholar] [CrossRef]
- Jin, M.; You, M.; Lan, Q.; Cai, L.; Lin, M.; Luo, Z. Effect of copper on the photosynthesis and growth of eichhornia crassipes. Plant Biol. 2021, 23, 777–784. [Google Scholar] [CrossRef]
Altitudinal Stratum | Number of Cells | Sample Per Stratum |
---|---|---|
Upper | 42 × 0.66 | 28 |
Lower | 154 × 0.66 | 102 |
Total | 196 | 130 |
Family | Species | %Relative Density | %Relative Frequency | Importance Value Index (IVI) |
---|---|---|---|---|
Apiaceae | Eryngium humile Cav. (1797) | 3.87 | 2.7 | 3.28 |
Apiaceae | Daucus montanus Humb. & Bonpl. ex Schult. (1809) | 2.83 | 2.22 | 2.53 |
Plantaginaceae | P. australis Lam. (1791) | 8.19 | 5.56 | 6.38 |
Asteraceae | Gnaphalium spicatum Lam. (1783) | 1.80 | 2.7 | 2.25 |
Cyperaceae | Eleocharis sp. | 3.64 | 4.44 | 4.04 |
Asteraceae | Diplostephium ericoides Kunth & Wedd. (1857) | 2.99 | 2.2 | 3.16 |
Campanulaceae | Centropogon solisii E.Wimm. (1938) | 2.43 | 1.11 | 1.77 |
Lamiaceae | C. nubigenum Kunth & Kuntze (1891) | 7.31 | 3.33 | 4.82 |
Ericaceae | Vaccinium floribundum Kunth (1819) | 2.99 | 2.1 | 2.61 |
Fabaceae | Trifolium amabile Kunth (1816) | 1.29 | 2.41 | 3.35 |
Fabaceae | Medicago polymorpha L. (1753) | 3.15 | 1.11 | 2.13 |
Geraniaceae | Geranium laxicaule G.Don (1831) | 4.85 | 5.56 | 5.20 |
Polygonaceae | Rumex. acetosella L. (1753) | 4.64 | 6.67 | 5.15 |
Iridaceae | Tigridia pavonia L.f. & DC. (1802) | 1.03 | 2.70 | 1.87 |
Lamiaceae | Stachys elliptica Kunth (1818) | 2.43 | 2.10 | 2.32 |
Cyperaceae | Carex pichinchensis Kunth (1816) | 3.64 | 2.10 | 2.93 |
Orobanchaceae | Lamourouxia virgata Kunth (1818) | 5.50 | 2.33 | 3.42 |
Poaceae | Agrostis perennans Walter & Tuck. (1843) | 1.86 | 5.56 | 3.71 |
Poaceae | C. intermedia J.Pres & Steud. (1840) | 7.76 | 17.78 | 12.74 |
Rosaceae | L. orbiculata Ruiz & Pav. (1798) | 7.19 | 6.67 | 7.93 |
Geraniaceae | Geranium diffudum L. (1753) | 3.15 | 2.22 | 2.69 |
Asteraceae | T. officinale F.H.Wigg. (1780) | 5.61 | 6.67 | 4.90 |
Cyperaceae | Carex bonplandii Kunth (1816) | 6.67 | 6.43 | 6.57 |
Rubiaceae | Galium hypocarpium Endl. ex Griseb. (1879) | 3.64 | 2.22 | 2.93 |
Solanaceae | Solanum nigrescens M.Martens & Galeotti (1845) | 1.54 | 1.11 | 1.32 |
Parameters | Mean ± Standard Deviation (mgL) | Water for Domestic Consumption | Water for Flora and Fauna |
---|---|---|---|
INEN 1108-NOM-127-SSA1 (Permissible Limits) | TULSMA (Permissible Limits) | ||
As | 2.5825 ± 0.1000 | 0.01 | 0.05 |
Cr | 0.1525 ± 0.0200 | 0.05 | 0.05 |
Fe | 0.623 ± 0.0500 | 0.3 | 0.3 |
Pb | 0.0106 ± 0.0020 | 0.01 | 0.01 |
Hg | 0.00381 ± 0.0005 | 0.006 | 0.0002 |
Name | Segment | Mean ± Standard Deviation (mgL) | ||||
---|---|---|---|---|---|---|
Cr | Pb | Hg | As | Fe | ||
L. orbiculata | Root | 0.00 ± 0.01 | 0.03 ± 0.01 | 1.31 ± 0.20 | 1.91 ± 0.15 | 50.00 ± 2.50 |
Stem | 0.00 ± 0.01 | 0.19 ± 0.03 | 0.00 ± 0.01 | 1.84 ± 0.14 | 45.00 ± 2.25 | |
Leaves | 0.00 ± 0.01 | 0.12 ± 0.02 | 0.00 ± 0.01 | 1.93 ± 0.15 | 55.00 ± 2.75 | |
C. bonplandii | Root | 21.88 ± 1.50 | 0.02 ± 0.01 | 0.00 ± 0.01 | 1.99 ± 0.16 | 40.00 ± 2.00 |
Stem | 0.00 ± 0.01 | 0.10 ± 0.02 | 0.00 ± 0.01 | 2.09 ± 0.17 | 48.00 ± 2.40 | |
Leaves | 0.00 ± 0.01 | 0.06 ± 0.01 | 0.00 ± 0.01 | 2.11 ± 0.17 | 30.00 ± 1.50 | |
T. officinale | Root | 0.00 ± 0.01 | 0.44 ± 0.05 | 0.00 ± 0.01 | 2.46 ± 0.20 | 36.00 ± 1.80 |
Stem | 0.00 ± 0.01 | 0.40 ± 0.05 | 0.00 ± 0.01 | 2.48 ± 0.20 | 34.00 ± 1.70 | |
Leaves | 0.00 ± 0.01 | 0.39 ± 0.05 | 0.00 ± 0.01 | 2.57 ± 0.21 | 50.00 ± 2.50 | |
R. acetosella | Root | 0.00 ± 0.01 | 0.01 ± 0.01 | 0.00 ± 0.01 | 2.93 ± 0.23 | 58.24 ± 2.90 |
Stem | 0.00 ± 0.01 | 0.07 ± 0.01 | 0.00 ± 0.01 | 2.90 ± 0.23 | 67.20 ± 3.36 | |
Leaves | 0.00 ± 0.01 | 0.13 ± 0.02 | 0.00 ± 0.01 | 2.99 ± 0.24 | 31.36 ± 1.57 | |
C. intermedia | Root | 0.00 ± 0.01 | 0.10 ± 0.02 | 0.00 ± 0.01 | 3.20 ± 0.25 | 40.32 ± 2.02 |
Stem | 0.00 ± 0.01 | 0.03 ± 0.01 | 0.00 ± 0.01 | 3.04 ± 0.24 | 38.08 ± 1.90 | |
Leaves | 0.00 ± 0.01 | 0.11 ± 0.02 | 0.00 ± 0.01 | 3.04 ± 0.24 | 56.00 ± 2.76 | |
Eleocharis sp. | Root | 0.00 ± 0.01 | 0.16 ± 0.03 | 0.00 ± 0.01 | 3.18 ± 0.25 | 62.72 ± 3.14 |
Stem | 0.00 ± 0.01 | 0.00 ± 0.01 | 0.00 ± 0.01 | 3.19 ± 0.25 | 56.45 ± 2.82 | |
Leaves | 0.00 ± 0.01 | 0.06 ± 0.01 | 0.00 ± 0.01 | 3.13 ± 0.25 | 68.99 ± 3.45 | |
P. australis | Root | 0.00 ± 0.01 | 0.00 ± 0.01 | 0.00 ± 0.01 | 3.18 ± 0.25 | 50.18 ± 2.51 |
Stem | 0.00 ± 0.01 | 0.43 ± 0.05 | 0.00 ± 0.01 | 3.22 ± 0.26 | 60.21 ± 3.01 | |
Leaves | 0.00 ± 0.01 | 0.13 ± 0.02 | 0.00 ± 0.01 | 3.19 ± 0.26 | 37.63 ± 1.88 | |
C. nubigenum | Root | 0.00 ± 0.01 | 0.26 ± 0.02 | 0.00 ± 0.01 | 3.34 ± 0.27 | 65.23 ± 3.26 |
Stem | 0.00 ± 0.01 | 0.19 ± 0.03 | 0.00 ± 0.01 | 3.26 ± 0.26 | 75.26 ± 3.76 | |
Leaves | 0.00 ± 0.01 | 0.11 ± 0.02 | 0.00 ± 0.01 | 3.29 ± 0.26 | 35.12 ± 1.76 |
Species | Cr | Pb | Hg | As | Fe |
---|---|---|---|---|---|
L. orbiculata | 0.0 | 10.6 | 114.6 | 0.7 | 80.3 |
C. bonplandii | 47.8 | 5.6 | 0.0 | 0.8 | 63.1 |
T. officinale | 0.0 | 38.5 | 0.0 | 1.0 | 64.2 |
R. acetosella | 0.0 | 6.7 | 0.0 | 1.1 | 83.9 |
C. intermedia | 0.0 | 7.6 | 0.0 | 1.2 | 71.9 |
Eleocharis sp. | 0.0 | 6.7 | 0.0 | 1.2 | 100.7 |
P. australis | 0.0 | 17.8 | 0.0 | 1.2 | 79.2 |
C. nubigenum | 0.0 | 17.3 | 0.0 | 1.3 | 94.0 |
Elements | Species | |||||||
---|---|---|---|---|---|---|---|---|
L. orbiculata | C. bonplandii | T. officinale | R. acetosella | C. intermedia | Eleocharis sp. | P. australis | C. nubigenum | |
Cr | 4.5 | 5.3 | 5.8 | 6.7 | 7.0 | 7.2 | 7.3 | 7.5 |
Pb | −98.8 | −117.6 | −97.1 | −169.6 | −174.8 | −184.8 | −167.9 | −176.0 |
Hg | −11.4 | −21.1 | −22.2 | −32.3 | −33.9 | −35.1 | −33.7 | −35.0 |
As | 861.0 | 957.6 | 1119.9 | 1339.7 | 1405.2 | 1445.4 | 1447.4 | 1495.8 |
Fe | 1.1 | 1.1 | 1.19 | 1.544 | 1.5 | 1.7 | 1.588 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cushquicullma-Colcha, D.F.; González-Cabrera, M.V.; Tapia-Ramírez, C.S.; Brito-Mancero, M.Y.; Guilcapi-Pacheco, E.D.; Ati-Cutiupala, G.M.; Vaca-Cárdenas, P.V.; Muñoz-Jácome, E.A.; Vaca-Cárdenas, M.L. Bioaccumulation and Tolerance of Metals in Floristic Species of the High Andean Wetlands of the Ichubamba Yasepan Protected Area: Identification of Groups and Discriminant Markers. Sustainability 2025, 17, 6805. https://doi.org/10.3390/su17156805
Cushquicullma-Colcha DF, González-Cabrera MV, Tapia-Ramírez CS, Brito-Mancero MY, Guilcapi-Pacheco ED, Ati-Cutiupala GM, Vaca-Cárdenas PV, Muñoz-Jácome EA, Vaca-Cárdenas ML. Bioaccumulation and Tolerance of Metals in Floristic Species of the High Andean Wetlands of the Ichubamba Yasepan Protected Area: Identification of Groups and Discriminant Markers. Sustainability. 2025; 17(15):6805. https://doi.org/10.3390/su17156805
Chicago/Turabian StyleCushquicullma-Colcha, Diego Francisco, María Verónica González-Cabrera, Cristian Santiago Tapia-Ramírez, Marcela Yolanda Brito-Mancero, Edmundo Danilo Guilcapi-Pacheco, Guicela Margoth Ati-Cutiupala, Pedro Vicente Vaca-Cárdenas, Eduardo Antonio Muñoz-Jácome, and Maritza Lucía Vaca-Cárdenas. 2025. "Bioaccumulation and Tolerance of Metals in Floristic Species of the High Andean Wetlands of the Ichubamba Yasepan Protected Area: Identification of Groups and Discriminant Markers" Sustainability 17, no. 15: 6805. https://doi.org/10.3390/su17156805
APA StyleCushquicullma-Colcha, D. F., González-Cabrera, M. V., Tapia-Ramírez, C. S., Brito-Mancero, M. Y., Guilcapi-Pacheco, E. D., Ati-Cutiupala, G. M., Vaca-Cárdenas, P. V., Muñoz-Jácome, E. A., & Vaca-Cárdenas, M. L. (2025). Bioaccumulation and Tolerance of Metals in Floristic Species of the High Andean Wetlands of the Ichubamba Yasepan Protected Area: Identification of Groups and Discriminant Markers. Sustainability, 17(15), 6805. https://doi.org/10.3390/su17156805