Modelling the Spatiotemporal Coordination Between Ecosystem Services and Socioeconomic Development to Enhance Their Synergistic Development Based on Water Resource Zoning in the Yellow River Basin, China
Abstract
1. Introduction
2. Study Area
3. Methodology
3.1. Data Collection and Processing
3.2. ESV Assessment Model
3.3. Consistent Mode of Ecosystem Services and Socioeconomic Development
4. Results
4.1. Dynamic Changes in Ecosystem Service Value
4.2. Changes in Socioeconomic Factors in the Yellow River Basin
4.2.1. Population
- Spatial distribution pattern
- 2.
- Temporal variation trends
4.2.2. GDP
- Spatial distribution pattern
- 2.
- Temporal variation trends
4.2.3. NTL
- Spatial distribution pattern
- 2.
- Temporal variation trends
4.2.4. HDI
4.3. Spatiotemporal Coordination Between Ecosystem Services and Socioeconomic Development
5. Discussion
5.1. Potential Impact of Changes in Water Body and Sandy Land Area on the Relationship Between ESVs and Socio-Economic Development
5.2. Policy Recommendations
5.3. Limitations and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
YRB | Yellow River Basin |
ESV | Ecosystem service value |
POP | Population |
GDP | Gross Domestic Product |
NTL | Nighttime lighting index |
HDI | Human Development Index |
References
- Johnson, J.A.; Baldos, U.L.; Corong, E.; Hertel, T.; Polasky, S.; Cervigni, R.; Roxburgh, T.; Ruta, G.; Salemi, C.; Thakrar, S. Investing in Nature Can Improve Equity and Economic Returns. Proc. Natl. Acad. Sci. USA 2023, 120, e2220401120. [Google Scholar] [CrossRef] [PubMed]
- Best, J.; Darby, S.E. The Pace of Human-Induced Change in Large Rivers: Stresses, Resilience, and Vulnerability to Extreme Events. One Earth 2020, 2, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Dethier, E.N.; Renshaw, C.E.; Magilligan, F.J. Rapid Changes to Global River Suspended Sediment Flux by Humans. Science 2022, 376, 1447–1452. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, L.; Zheng, Y.; Yang, D.; Wu, F.; Tian, Y.; Han, F.; Gao, B.; Li, H.; Zhang, Y.; et al. Novel Hybrid Coupling of Ecohydrology and Socioeconomy at River Basin Scale: A Watershed System Model for the Heihe River Basin. Environ. Model. Softw. 2021, 141, 105058. [Google Scholar] [CrossRef]
- Palazzo, A.; Kahil, T.; Willaarts, B.A.; Burek, P.; van Dijk, M.; Tang, T.; Magnuszewski, P.; Havlík, P.; Langan, S.; Wada, Y. Assessing Sustainable Development Pathways for Water, Food, and Energy Security in a Transboundary River Basin. Environ. Dev. 2024, 51, 101030. [Google Scholar] [CrossRef]
- Han, Z.; Wei, Y.; Meng, J.; Zou, Y.; Wu, Q. Integrated Water Security and Coupling of Social-Ecological System to Improve River Basin Sustainability. Sci. Total Environ. 2023, 905, 167182. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gong, J.; Zhu, Y. Integrating Social-Ecological System into Watershed Ecosystem Services Management: A Case Study of the Jialing River Basin, China. Ecol. Indic. 2024, 160, 111781. [Google Scholar] [CrossRef]
- Bastien-Olvera, B.A.; Conte, M.N.; Dong, X.; Briceno, T.; Batker, D.; Emmerling, J.; Tavoni, M.; Granella, F.; Moore, F.C. Unequal Climate Impacts on Global Values of Natural Capital. Nature 2024, 625, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Moallemi, E.A.; Malekpour, S.; Hadjikakou, M.; Raven, R.; Szetey, K.; Ningrum, D.; Dhiaulhaq, A.; Bryan, B.A. Achieving the Sustainable Development Goals Requires Transdisciplinary Innovation at the Local Scale. One Earth 2020, 3, 300–313. [Google Scholar] [CrossRef]
- Meng, J.; Han, Z.; Zhu, L.; Zhu, L.; Dai, X. Untangling the Coupling Relationships between Socio-Economy and Eco-Environment in Arid Inland River Basin. Environ. Dev. Sustain. 2024, 26, 19833–19853. [Google Scholar] [CrossRef]
- Shifaw, E.; Sha, J.; Li, X.; Bao, Z.; Ji, J.; Ji, Z.; Kassaye, A.Y.; Lai, S.; Yang, Y. Ecosystem Services Dynamics and Their Influencing Factors: Synergies/Tradeoffs Interactions and Implications, the Case of Upper Blue Nile Basin, Ethiopia. Sci. Total Environ. 2024, 938, 173524. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Z.; Wang, D.; Chen, J.; Liu, Y.; Nie, X.; Zhang, Y.; Ning, K.; Hu, X. Unbalanced Social-Ecological Development within the Dongting Lake Basin: Inspiration from Evaluation of Ecological Restoration Projects. J. Clean. Prod. 2021, 315, 128161. [Google Scholar] [CrossRef]
- Zhang, L.; Lei, J.; Chen, Z.; Zhou, P.; Wu, T.; Chen, X.; Li, Y.; Pan, X. Spatiotemporal Differentiation and Trade-Offs and Synergies of Ecosystem Services in Tropical Island Basins: A Case Study of Three Major Basins of Hainan Island. J. Clean. Prod. 2025, 490, 144798. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, J.; Wan, J.; Xu, J.; Zheng, C.; Borthwick, A.G.L. Global River Economic Belts Can Become More Sustainable by Considering Economic and Ecological Processes. Commun. Earth Environ. 2024, 5, 18. [Google Scholar] [CrossRef]
- Wang, Y.; Borthwick, A.G.L.; Ni, J. Human Affinity for Rivers. River 2022, 1, 4–14. [Google Scholar] [CrossRef]
- Li, W.; Jiao, J.; Qi, J.; Ma, Y. The Spatial and Temporal Differentiation Characteristics of Cultural Heritage in the Yellow River Basin. PLoS ONE 2022, 17, e0268921. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qu, B.; Jiang, E.; Hao, L.; Li, J. Multi-Element Compensation Based on Water, Food and Ecology Supply and Demand in the Yellow River Basin, China. J. Hydrol. Reg. Stud. 2025, 58, 102208. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, M.; Penny, G.; Hu, H.; Zhang, X.; Tian, S. Impact of Revegetation and Agricultural Intensification on Water Storage Variation in the Yellow River Basin. J. Hydrol. 2024, 635, 131218. [Google Scholar] [CrossRef]
- Dang, L.; Zhao, F.; Teng, Y.; Teng, J.; Zhan, J.; Zhang, F.; Liu, W.; Wang, L. Scale Dependency of Trade-Offs/Synergies Analysis of Ecosystem Services Based on Bayesian Belief Networks: A Case of the Yellow River Basin. J. Environ. Manag. 2025, 375, 124410. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.; Feng, X.; Sun, S.; Zhang, J.; Li, S.; Fu, B. Cross-Scale Coupling of Ecosystem Service Flows and Socio-Ecological Interactions in the Yellow River Basin. J. Environ. Manag. 2024, 367, 122071. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Liu, Y.; Li, Y.; Yuan, X. Regional ecosystem services relationships and their potential driving factors in the Yellow River Basin, China. J. Geogr. Sci. 2023, 33, 863–884. [Google Scholar] [CrossRef]
- Shen, J.; Zhao, M.; Tan, Z.; Zhu, L.; Guo, Y.; Li, Y.; Wu, C. Ecosystem Service Trade-Offs and Synergies Relationships and Their Driving Factor Analysis Based on the Bayesian Belief Network: A Case Study of the Yellow River Basin. Ecol. Indic. 2024, 163, 112070. [Google Scholar] [CrossRef]
- Yang, M.; Gao, X.; Siddique, K.H.M.; Wu, P.; Zhao, X. Spatiotemporal Exploration of Ecosystem Service, Urbanization, and Their Interactive Coercing Relationship in the Yellow River Basin over the Past 40 Years. Sci. Total Environ. 2023, 858, 159757. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Deng, C.; Kang, R.; Yin, H.; Xu, T.; Kaufmann, H.J. Assessing the Responses of Ecosystem Patterns, Structures and Functions to Drought under Climate Change in the Yellow River Basin, China. Sci. Total Environ. 2024, 929, 172603. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Qiao, J.; Li, M.; Huang, M. Spatiotemporal Heterogeneity of Ecosystem Service Interactions and Their Drivers at Different Spatial Scales in the Yellow River Basin. Sci. Total Environ. 2024, 908, 168486. [Google Scholar] [CrossRef] [PubMed]
- Geng, N.; Tian, G.; Zhang, H. The Spatial–Temporal Evolution Characteristics and Influencing Factors of Coordinated Development in the Yellow River Basin: Based on the Perspective of Flood-Sediment Transport, Eco-Environmental, and Socio-Economic Subsystems. Ecol. Indic. 2025, 176, 113673. [Google Scholar] [CrossRef]
- Wei, L.; Zhou, L.; Sun, D.; Yuan, B.; Hu, F. Evaluating the Impact of Urban Expansion on the Habitat Quality and Constructing Ecological Security Patterns: A Case Study of Jiziwan in the Yellow River Basin, China. Ecol. Indic. 2022, 145, 109544. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, X.; Liu, B.; Wu, D.; Fu, G.; Zhao, Y.; Sun, P. Spatial Relationships between Ecosystem Services and Socioecological Drivers across a Large-Scale Region: A Case Study in the Yellow River Basin. Sci. Total Environ. 2021, 766, 142480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, Y.; Chang, J.; Li, Y. Response of land use change to human activities in the Yellow River Basin based on water resources division. J. Nat. Resour. 2019, 34, 274–287. [Google Scholar] [CrossRef]
- Lv, J.; Liu, C.; Liang, K.; Tian, W.; Bai, P.; Zhang, Y. Spatiotemporal variations of extreme precipitation in the Yellow River Basin based on water resources regionalization. Resour. Sci. 2022, 44, 261–273. [Google Scholar] [CrossRef]
- Wu, X.; Yan, Z.; Yang, H.; Wang, S.; Zhang, H.; Shen, Y.; Song, S.; Liu, Y.; Guo, Y.; Yang, D.; et al. Ecological Restoration in the Yellow River Basin Enhances Hydropower Potential. Nat. Commun. 2025, 16, 2566. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Miao, C.; Gou, J.; Zhang, Q.; Su, T. Sediment Reduction in the Middle Yellow River Basin over the Past Six Decades: Attribution, Sustainability, and Implications. Sci. Total Environ. 2023, 882, 163475. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Zhang, X.; Zhao, Y.; Wei, T.; Yang, Z.; Li, P.; Zhang, Y.; Chen, Y.; Wang, Y. Evolution Patterns and Spatial Sources of Water and Sediment Discharge over the Last 70 Years in the Yellow River, China: A Case Study in the Ningxia Reach. Sci. Total Environ. 2022, 838, 155952. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Gao, G.; Ran, L.; Lu, X.; Fu, B. Spatiotemporal Variations of Sediment Discharge and In-Reach Sediment Budget in the Yellow River from the Headwater to the Delta. Water Resour. Res. 2021, 57, e2021WR030130. [Google Scholar] [CrossRef]
- Yu, B.; Zang, Y.; Wu, C.; Zhao, Z. Spatiotemporal Dynamics of Wetlands and Their Future Multi-Scenario Simulation in the Yellow River Delta, China. J. Environ. Manag. 2024, 353, 120193. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, J. Kilometer Grid Dataset of China’s Historical Population Spatial Distribution (1990–2015). In A Big Earth Data Platform for Three Poles; 2022; Available online: https://www.tpdc.ac.cn/zh-hans/data/d8c4df4c-eff1-495c-86c0-0ac33f4c57df/ (accessed on 10 April 2025).
- Zhao, N.; Liu, Y.; Cao, G.; Samson, E.L.; Zhang, J. Forecasting China’s GDP at the Pixel Level Using Nighttime Lights Time Series and Population Images. GIScience Remote Sens. 2017, 54, 407–425. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, Z.; Chen, B.; Gong, P.; Xu, B.; Fu, H. A Prolonged Artificial Nighttime-Light Dataset of China (1984–2020). Sci. Data 2024, 11, 414. [Google Scholar] [CrossRef] [PubMed]
- Kummu, M.; Taka, M.; Guillaume, J.H.A. Gridded Global Datasets for Gross Domestic Product and Human Development Index over 1990–2015. Sci. Data 2018, 5, 180004. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Zhen, L.; Lu, C.; Xiao, Y.; Chen, C. Expert Knowledge Based Valuation Method of Ecosystem Services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Bhatt, S.; Rahmat, S.; Paul, S.K.; Sen, S. Estimating Global Ecosystem Service Values and Its Response to Land Surface Dynamics during 1995–2015. J. Environ. Manag. 2018, 223, 115–131. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qu, B.; Jiang, E.; Hao, L.; Zhu, Y.; Jing, Y. Allocating Payments for Ecosystem Services under Future Multiple Scenarios in the Yellow River Basin, China. Ecol. Indic. 2023, 157, 111232. [Google Scholar] [CrossRef]
- Han, M.; Tu, J.; Xu, G.; Jiang, L. Spatio-temporal coordination between aquatic ecosystem services and economic development in the Yellow River Basin. J. Desert Res. 2021, 41, 167–176. [Google Scholar]
- Jiang, E.; Qu, B.; Jia, J.; Liu, C.; Wang, Y.; Li, D.; Li, J. Study on the Coordination of Flow and Sediment Transport, Ecological Environment, and Crop Production in the Lower Yellow River since 2000. River 2023, 2, 326–335. [Google Scholar] [CrossRef]
- Li, D.; Li, J.; Wang, Y.; Jiang, E.; Zhao, W.; Liu, G.; Yang, Z. A Multi-Attribute Decision-Making Method of Cascade Reservoir Joint Scheduling Schemes Considering Water–Sediment, Eco-Environment, and Socio-Economy in the Yellow River Basin. J. Hydrol. 2025, 660, 133393. [Google Scholar] [CrossRef]
- Wang, T.; Jian, S.; Wang, J.; Yan, D. Dynamic Interaction of Water–Economic–Social–Ecological Environment Complex System under the Framework of Water Resources Carrying Capacity. J. Clean. Prod. 2022, 368, 133132. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, T.; Ma, T.; Yang, D. Water-Carbon-Sediment Synergies and Trade-Offs: Multi-Faceted Impacts of Large-Scale Ecological Restoration in the Middle Yellow River Basin. J. Hydrol. 2024, 634, 131099. [Google Scholar] [CrossRef]
- Men, D.; Pan, J. Incorporating Network Topology and Ecosystem Services into the Optimization of Ecological Network: A Case Study of the Yellow River Basin. Sci. Total Environ. 2024, 912, 169004. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, G.; Yuan, R.; Singh, V.P.; Wu, W.; Wang, D. Dynamic Responses of Ecological Vulnerability to Land Cover Shifts over the Yellow River Basin, China. Ecol. Indic. 2022, 144, 109554. [Google Scholar] [CrossRef]
- Du, L.; Dong, C.; Kang, X.; Qian, X.; Gu, L. Spatiotemporal Evolution of Land Cover Changes and Landscape Ecological Risk Assessment in the Yellow River Basin, 2015–2020. J. Environ. Manag. 2023, 332, 117149. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Liu, H.; Gao, J.; Ma, H.; Song, T.; Gao, Y.; Feng, C. Spatial-Temporal Variations of Ecological Quality in the Yellow River Basin. Res. Environ. Sci. 2021, 34, 1700–1709. [Google Scholar]
- Tian, M.; Feng, C.; Wang, S.; Tian, Y.; Niu, Q. Ecological restoration of the Yellow River basin in the last 70 years and systematic restoration thinking. J. Environ. Eng. Technol. 2023, 13, 1787–1797. [Google Scholar]
Code | Secondary Water Resource Zone | Area /104 km2 | Mean Elevation/m | Total Water Resources /108 m3 | Water Consumption/108 m3 | Sediment Yield /108 t | |||
---|---|---|---|---|---|---|---|---|---|
Agriculture | Industry | Domestic | Ecological | ||||||
I | Upstream of Longyangxia | 13.20 | 4064.46 | 209.3 | 1.31 | 0.04 | 0.36 | 0.06 | 0.075 |
II | Longyangxia–Lanzhou | 9.10 | 3058.02 | 134.4 | 16.99 | 2.39 | 4.82 | 3.77 | 0.172 |
III | Lanzhou–Hekou Town | 15.32 | 1465.12 | 40.4 | 127.88 | 12.25 | 10.12 | 25.59 | 0.049 |
IV | Hekou Town- –Longmen | 12.24 | 1217.42 | 62.8 | 8.06 | 6.08 | 4.58 | 2.40 | 1.414 |
V | Longmen–Sanmenxia | 19.08 | 1266.50 | 160.3 | 63.78 | 12.12 | 24.34 | 7.77 | 0.890 |
VI | Sanmenxia–Huayuankou | 4.17 | 773.30 | 63.1 | 11.89 | 5.98 | 6.32 | 3.38 | −1.050 |
VII | Downstream of Huayuankou | 2.24 | 131.06 | 37.9 | 28.98 | 3.49 | 5.24 | 2.44 | −0.300 |
VIII | Endorheic region | 4.23 | 1364.23 | 11.4 | 5.90 | 0.39 | 0.24 | 0.44 | - |
Criteria | Major Categories | Subcategories |
---|---|---|
CEE ≤ 0.50 | Socioeconomic agglomeration is higher than ecosystem service agglomeration. | Socioeconomic agglomeration is much higher than ESV agglomeration. |
0.50 < CEE < 0.80 | Socioeconomic agglomeration is higher than ESV agglomeration. | |
0.80 ≤ CEE < 1.20, and CEE ≠ 1 | Ecosystem services are largely harmonized with socioeconomic agglomeration. | ESVs are basically harmonized with socioeconomic agglomeration. |
CEE = 1 | Ecosystem services are fully harmonized with socioeconomic agglomeration. | ESVs are fully harmonized with socioeconomic agglomeration. |
1.20 ≤ CEE < 2.0 | Clustering of ecosystem services over socioeconomic clustering. | ESV agglomeration is higher than socioeconomic agglomeration. |
CEE ≥ 2.0 | ESV agglomeration is much higher than socioeconomic agglomeration. |
Code | ESV (109 Yuan) | Change Rate (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1980 | 1990 | 2000 | 2010 | 2020 | 1980–1990 | 1990–2000 | 2000–2010 | 2010–2020 | 1980–2020 | |
I | 161.81 | 162.71 | 162.77 | 171.05 | 171.77 | 0.55 ↑ | 0.04 ↑ | 5.09 ↑ | 0.42 ↑ | 6.15 ↑ |
II | 134.11 | 134.11 | 134.18 | 136.15 | 137.30 | −0.01 ↓ | 0.05 ↑ | 1.47 ↑ | 0.84 ↑ | 2.37 ↑ |
III | 201.92 | 199.24 | 199.32 | 200.21 | 213.20 | −1.33 ↓ | 0.04 ↑ | 0.44 ↑ | 6.49 ↑ | 5.59 ↑ |
IV | 141.36 | 141.40 | 143.01 | 148.77 | 152.06 | 0.03 ↑ | 1.13 ↑ | 4.03 ↑ | 2.21 ↑ | 7.57 ↑ |
V | 280.28 | 280.05 | 281.50 | 292.14 | 296.51 | −0.08 ↓ | 0.52 ↑ | 3.78 ↑ | 1.50 ↑ | 5.79 ↑ |
VI | 77.28 | 77.27 | 77.21 | 81.13 | 82.46 | −0.01 ↓ | −0.08 ↓ | 5.08 ↑ | 1.63 ↑ | 6.70 ↑ |
VII | 40.72 | 38.85 | 37.89 | 41.41 | 42.95 | −4.59 ↓ | −2.49 ↓ | 9.29 ↑ | 3.72 ↑ | 5.47 ↑ |
VIII | 42.35 | 42.21 | 42.25 | 42.22 | 42.96 | −0.32 ↓ | 0.09 ↑ | −0.07 ↓ | 1.75 ↑ | 1.44 ↑ |
Total | 1079.83 | 1075.84 | 1078.12 | 1113.08 | 1139.20 | −0.37 ↓ | 0.21 ↑ | 3.24 ↑ | 2.35 ↑ | 5.50 ↑ |
Variation Coefficient | 1980 | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|---|---|---|
ESV | 0.6080 | 0.6103 | 0.6202 | 0.6132 | 0.6149 | 0.6109 | 0.6105 | 0.6117 |
POP | 1.1039 | 1.1037 | 1.1263 | 1.1188 | 1.1086 | 1.1264 | ||
GDP | 0.9668 | 0.9668 | 0.9884 | 0.9861 | 0.9849 | 0.9887 | 0.9826 | 0.9816 |
NTL | 1.1621 | 1.1420 | 1.1292 | 1.0857 | 1.0562 | 1.0381 | 0.9620 | 0.9424 |
HDI | 0.6134 | 0.6134 | 0.6134 | 0.6134 | 0.6134 | 0.6134 |
Code | Annual Time Series | Mean | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1980 | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 | 1980–2020 | 1980–2000 | 2005–2020 | |
I | 26.79 | 28.71 | 27.00 | 28.93 | 29.07 | 32.44 | 32.48 | 32.79 | 29.78 | 27.86 | 31.69 |
II | 9.92 | 10.04 | 10.59 | 10.19 | 10.43 | 10.50 | 10.67 | 11.01 | 10.42 | 10.19 | 10.65 |
III | 44.20 | 39.07 | 31.91 | 39.02 | 39.08 | 37.33 | 37.89 | 40.98 | 38.69 | 38.55 | 38.82 |
IV | 11.88 | 11.80 | 12.12 | 11.78 | 11.53 | 10.87 | 10.79 | 11.29 | 11.51 | 11.89 | 11.12 |
V | 20.57 | 18.87 | 20.19 | 18.19 | 18.91 | 16.62 | 16.87 | 18.22 | 18.56 | 19.46 | 17.66 |
VI | 8.66 | 8.41 | 6.54 | 6.74 | 8.73 | 8.45 | 8.74 | 9.11 | 8.17 | 7.59 | 8.75 |
VII | 19.07 | 14.38 | 11.68 | 10.84 | 12.01 | 13.33 | 13.66 | 14.50 | 13.68 | 13.99 | 13.38 |
VIII | 8.12 | 7.87 | 5.69 | 7.72 | 7.06 | 6.25 | 6.09 | 7.25 | 7.01 | 7.35 | 6.66 |
Total | 149.21 | 139.14 | 125.72 | 133.41 | 136.82 | 135.79 | 137.19 | 145.16 | 137.81 | 136.87 | 138.74 |
Code | Annual Time Series | Mean | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1980 | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 | 1980–2020 | 1980–2000 | 2005–2020 | |
I | 31.44 | 30.26 | 29.95 | 30.65 | 37.67 | 28.50 | 28.50 | 28.34 | 30.66 | 30.58 | 30.75 |
II | 0.48 | 0.47 | 0.48 | 0.48 | 0.47 | 0.43 | 0.43 | 0.43 | 0.46 | 0.48 | 0.44 |
III | 128.50 | 129.99 | 140.39 | 128.24 | 127.94 | 119.11 | 116.89 | 114.98 | 125.75 | 131.78 | 119.73 |
IV | 82.61 | 82.47 | 64.91 | 72.35 | 75.48 | 69.15 | 67.97 | 71.33 | 73.28 | 75.59 | 70.98 |
V | 1.13 | 1.12 | 0.90 | 0.80 | 0.75 | 0.63 | 0.34 | 0.48 | 0.77 | 0.99 | 0.55 |
VI | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
VII | 0.54 | 0.60 | 0.14 | 0.38 | 0.16 | 0.02 | 0.02 | 0.02 | 0.24 | 0.42 | 0.06 |
VIII | 110.79 | 110.88 | 108.61 | 110.02 | 114.92 | 108.71 | 107.95 | 109.09 | 110.12 | 110.08 | 110.17 |
Total | 355.50 | 355.79 | 345.39 | 342.95 | 357.41 | 326.56 | 322.11 | 324.67 | 341.30 | 349.91 | 332.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, L.; Jiang, E.; Qu, B.; Liu, C.; Liu, Y.; Li, J. Modelling the Spatiotemporal Coordination Between Ecosystem Services and Socioeconomic Development to Enhance Their Synergistic Development Based on Water Resource Zoning in the Yellow River Basin, China. Sustainability 2025, 17, 6588. https://doi.org/10.3390/su17146588
Hao L, Jiang E, Qu B, Liu C, Liu Y, Li J. Modelling the Spatiotemporal Coordination Between Ecosystem Services and Socioeconomic Development to Enhance Their Synergistic Development Based on Water Resource Zoning in the Yellow River Basin, China. Sustainability. 2025; 17(14):6588. https://doi.org/10.3390/su17146588
Chicago/Turabian StyleHao, Lingang, Enhui Jiang, Bo Qu, Chang Liu, Ying Liu, and Jiaqi Li. 2025. "Modelling the Spatiotemporal Coordination Between Ecosystem Services and Socioeconomic Development to Enhance Their Synergistic Development Based on Water Resource Zoning in the Yellow River Basin, China" Sustainability 17, no. 14: 6588. https://doi.org/10.3390/su17146588
APA StyleHao, L., Jiang, E., Qu, B., Liu, C., Liu, Y., & Li, J. (2025). Modelling the Spatiotemporal Coordination Between Ecosystem Services and Socioeconomic Development to Enhance Their Synergistic Development Based on Water Resource Zoning in the Yellow River Basin, China. Sustainability, 17(14), 6588. https://doi.org/10.3390/su17146588