Inter-Organizational Connectivity, Digital Transformation, and Firm Ambidextrous Innovation: A Coupled Perspective on Innovation Ecosystems and Digitalization
Abstract
1. Introduction
2. Literature Review and Theoretical Hypotheses
2.1. The Connectivity of the Digital Innovation Ecosystem and Ambidextrous Innovation
2.2. The Mediating Role of the Firm Digital Transformation Level
2.3. The Moderation Effect of Market Development
3. Methodology
3.1. Samples and Data
3.2. Measures
3.3. Research Model
4. Analyses and Results
4.1. Basic Data Analysis
4.2. Hypotheses Testing
4.3. Robustness Test
4.3.1. Instrumental Variable Method
4.3.2. Substitution of Variables
4.4. Heterogeneity Test for Digital Technology
5. Discussion
6. Conclusions
7. Theoretical Contributions and Originality
7.1. Theoretical Contributions
7.2. Originality
8. Management Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.C. The target path and policy supply for the high-quality development of China’s digital economy. Economist 2019, 6, 52–61. [Google Scholar]
- Benner, M.; Waldfogel, J. Changing the channel: Digitization and the rise of ‘middle aail’ strategies. Strateg. Manag. J. 2023, 44, 264–287. [Google Scholar] [CrossRef]
- Ravichandran, T.; Liu, Y. Environmental factors, managerial processes and information technology investment strategies. Decis. Sci. 2011, 42, 537–574. [Google Scholar] [CrossRef]
- Benner, M.J.; Tushman, M.L. Reflections on the 2013 decade award—“Exploitation, exploration, and process management: The productivity dilemma revisited” ten years later. Acad. Manag. Rev. 2015, 40, 497–514. [Google Scholar] [CrossRef]
- Cockburn, I.M.; Henderson, R.; Stern, S.; Professor, H. The impact of artificial intelligence on innovation: An exploratory analysis. In The Economics of Artificial Intelligence; University of Chicago Press: Chicago, IL, USA, 2019; pp. 115–146. [Google Scholar]
- Haefner, N.; Wincent, J.; Parida, V.; Gassmann, O. Artificial intelligence and innovation management: A review, framework, and research agenda. Technol. Forecast. Soc. Chang. 2021, 162, 120392. [Google Scholar] [CrossRef]
- Nambisan, S.; Lyytinen, K.; Majchrzak, A.; Song, M. Digital innovation management: Reinventing innovation management research. MIS Q. 2017, 41, 223–238. [Google Scholar] [CrossRef]
- Xie, X.; Wang, H. How to bridge the gap between innovation niche and exploratory and exploitative innovations in open innovation ecosystem. J. Bus. Res. 2021, 124, 299–311. [Google Scholar] [CrossRef]
- Bacon, E.; Williams, M.D.; Davies, G. Coopetition in innovation ecosystems: A comparative analysis of knowledge transfer configurations. J. Bus. Res. 2020, 115, 307–316. [Google Scholar] [CrossRef]
- Jacobides, M.G.; Cennamo, C.; Gawer, A. Towards a theory of ecosystems. Strateg. Manag. J. 2018, 39, 2255–2276. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Wang, L.; Xie, J. Investigating the effects of stakeholder collaboration strategies on risk prevention performance in a digital innovation ecosystem. Ind. Manag. Data Syst. 2022, 122, 2045–2071. [Google Scholar] [CrossRef]
- Wang, P. Connecting the parts with the whole: Toward an information ecology theory of digital innovation ecosystems. MIS Q. 2021, 45, 397–422. [Google Scholar] [CrossRef]
- Baldwin, C.Y. Organization design for business eco-systems. J. Organ. Des. 2012, 1, 20–23. [Google Scholar]
- Sahaymet, A.; Steensma, H.K.; Schilling, M.A. The influence of information technology on the use of loosely coupled organizational forms: An industry-level analysis. Organ. Sci. 2007, 18, 865–880. [Google Scholar] [CrossRef]
- Li, J.; Garnsey, E. Policy-driven ecosystems for new vaccine development. Technovation 2014, 34, 762–772. [Google Scholar] [CrossRef]
- Fukuda, K. Science, technology and innovation ecosystem transformation toward society 5.0. Int. J. Prod. Econ. 2020, 220, 107460. [Google Scholar] [CrossRef]
- Beltagui, A.; Rosli, A.; Candi, M. Exaptation in a digital innovation ecosystem: The disruptive impacts of 3D printing. Res. Policy 2020, 49, 103833. [Google Scholar] [CrossRef]
- Pushpananthan, G.; Elmquist, M. Joining forces to create value: The emergence of an innovation ecosystem. Technovation 2022, 115, 102453. [Google Scholar] [CrossRef]
- Hughes, M.; Martin, S.L.; Morgan, R.E.; Robson, M.J. Realizing product- market advantage in high-technology international new ventures: The mediating role of ambidextrous innovation. J. Int. Mark. 2010, 18, 1–21. [Google Scholar] [CrossRef]
- Limaj, E.; Bernroider, E.W. The roles of absorptive capacity and cultural balance for exploratory and exploitative innovation in SMEs. J. Bus. Res. 2019, 94, 137–153. [Google Scholar] [CrossRef]
- Laureiro-Martiínez, D.; Brusoni, S.; Canessa, N.; Zollo, M. Understanding the exploration–exploitation dilemma: An fMRI study of attention control and decision- making performance. Strateg. Manag. J. 2015, 36, 319–338. [Google Scholar] [CrossRef]
- Lyytinen, K.; Yoo, Y.; Boland, R. Digital product in-novation within four classes of innovation networks. Inf. Syst. J. 2016, 26, 47–75. [Google Scholar] [CrossRef]
- Helfat, C.; Peteraf, M. The dynamic resource—Based view: Capability lifecycles. Strateg. Manag. J. 2003, 24, 997–1010. [Google Scholar] [CrossRef]
- Chen, H.; Tian, Z. Environmental uncertainty, resource orchestration and digital transformation: A fuzzy-set QCA approach. J. Bus. Res. 2022, 139, 184–193. [Google Scholar] [CrossRef]
- Li, L. Digital transformation and sustainable performance: The moderating role of market turbulence. Ind. Mark. Manag. 2022, 104, 28–37. [Google Scholar] [CrossRef]
- Vlaisavljevic, V.; Medina, C.; Van Looy, B. The role of policies and the contribution of cluster agency in the development of biotech open innovation ecosystem. Technol. Forecast. Soc. Change 2020, 155, 119987. [Google Scholar] [CrossRef]
- Iansiti, M.; Levien, R. Strategy as Ecology. Harv. Bus. Rev. 2004, 82, 68–81. [Google Scholar]
- Dhanaraj, C.; Parkhe, A. Orchestrating innovation networks. Acad. Manag. Rev. 2006, 31, 659–669. [Google Scholar] [CrossRef]
- Takeda, Y.; Kajikawa, Y.; Sakata, I.; Matsushima, K. An analysis of geographical agglomeration and modularized industrial networks in a regional cluster: A case study at yamagata prefecture in Japan. Technovation 2008, 28, 531–539. [Google Scholar] [CrossRef]
- Baum, J.A.; Calabrese, T.; Silverman, B.S. Don’t go it alone: Alliance network composition and startups’ performance in Canadian biotechnology. Strateg. Manag. J. 2000, 21, 267–294. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Everett, M.G.; Freeman, L.C. Ucinet for windows: Software for social network analysis. Harv. MA Anal. Technol. 2002, 6, 12–15. [Google Scholar]
- Gilsing, V.; Nooteboom, B. Exploration and exploitation in innovation systems: The case of pharmaceutical biotechnology. Res. Policy 2006, 35, 1–23. [Google Scholar] [CrossRef]
- Lavie, D.; Stettner, U.; Tushman, M. Exploration and exploitation within and across organizations. Acad. Manag. Ann. 2010, 4, 109–155. [Google Scholar] [CrossRef]
- Yan, Y.; Guan, J. Social capital, exploitative and exploratory innovations: The mediating roles of ego-network dynamics. Technol. Forecast. Soc. Change 2018, 126, 244–258. [Google Scholar] [CrossRef]
- Enkel, E.; Gassmann, O. Creative imitation: Exploring the case of cross-industry innovation. RD Manag. 2010, 40, 256–270. [Google Scholar] [CrossRef]
- Guan, J.; Liu, N. Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy. Res. Policy 2016, 45, 97–112. [Google Scholar] [CrossRef]
- Adner, R.; Kapoor, R. Value creation in innovation ecosystems: How the structure of technological interdependence affects firm performance in new technology generations. Strateg. Manag. J. 2010, 31, 306–333. [Google Scholar] [CrossRef]
- Siebel, T. Digital Transformation: Survive and Thrive in an Era of Mass Extinction; RosettaBooks: New York, NY, USA, 2019. [Google Scholar]
- Usai, A.; Fiano, F.; Petruzzelli, A.M.; Paoloni, P.; Briamonte, M.F.; Orlando, B. Unveiling the impact of the adoption of digital technologies on firms’ innovation performance. J. Bus. Res. 2021, 133, 327–336. [Google Scholar] [CrossRef]
- Endres, H.; Hüsig, S.; Pesch, R. Digital innovation management for entrepreneurial ecosystems: Services and functionalities as drivers of innovation management software adoption. Rev. Manag. Sci. 2022, 16, 135–156. [Google Scholar] [CrossRef]
- Bloom, N.; Garicano, L.; Sadun, R.; Reenen, J. The distinct effects of information technology and communication technology on firm organization. Manag. Sci. 2014, 60, 2859–2885. [Google Scholar] [CrossRef]
- Autor, D.; Levy, F.; Murnane, R. The skill content of recent technological change: An empirical exploration. Q. J. Econ. 2003, 118, 1279–1333. [Google Scholar] [CrossRef]
- Guo, X.; Li, M.; Wang, Y.; Mardani, A. Does digital transformation improve the firm’s performance? From the perspective of digitalization paradox and managerial myopia. J. Bus. Res. 2023, 163, 113868. [Google Scholar] [CrossRef]
- Xie, X.; Wang, H. How can open innovation ecosystem modes push product innovation forward? An fsQCA analysis. J. Bus. Res. 2020, 108, 29–41. [Google Scholar] [CrossRef]
- Xie, X.; Gao, Y.; Zang, Z.; Meng, X. Collaborative ties and ambidextrous innovation: Insights from internal and external knowledge acquisition. Ind. Innov. 2020, 27, 285–310. [Google Scholar] [CrossRef]
- Xu, G.; Wu, Y.; Minshall, T.; Zhou, Y. Exploring innovation ecosystems across science, technology, and business: A case of 3D printing in China. Technol. Forecast. Soc. Change 2018, 136, 208–221. [Google Scholar] [CrossRef]
- Khan, Z.; Lew, Y.K.; Marinova, S. Exploitative and exploratory innovations in emerging economies: The role of realized absorptive capacity and learning intent. Int. Bus. Rev. 2019, 28, 499–512. [Google Scholar] [CrossRef]
- Tumbas, S.; Berente, N.; Brocke, J. Digital innovation and institutional entrepreneurship: Chief digital officer per-spectives of their emerging role. J. Inf. Technol. 2018, 33, 188–202. [Google Scholar] [CrossRef]
- Meng, M.; Lin, J.; Nie, H. Does digital transformation promote common prosperity within firms? Evidence from Chinese A-share listed firms. J. Quant. Technol. Econ. 2022, 39, 50–70. [Google Scholar]
- Nee, V.; Opper, S. Capitalism from Below: Markets and Institutional Change in China; Harvard University Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Spigel, B.; Harrison, R. Toward a process theory of entrepreneurial ecosystems. Strateg. Entrep. J. 2017, 12, 151–168. [Google Scholar] [CrossRef]
- Stam, E. Entrepreneurial ecosystems and regional policy: A sympathetic critique. Eur. Plan. Stud. 2015, 23, 1759–1769. [Google Scholar] [CrossRef]
- Tsang, E. Threats and opportunities faced by private businesses in China. J. Bus. Ventur. 1994, 9, 451–468. [Google Scholar] [CrossRef]
- Phelps, C.A. Longitudinal study of the influence of alliance network structure and composition on firm exploratory innovation. Acad. Manag. J. 2010, 53, 890–913. [Google Scholar] [CrossRef]
- Coviello, N.; Kano, L.; Liesch, P.W. Adapting the Uppsala model to a modern world: Macro-context and microfoundations. J. Int. Bus. Stud. 2017, 48, 1151–1164. [Google Scholar] [CrossRef]
- Giustiziero, G.; Kretschmer, T.; Somaya, D.; Wu, B. Hyperspecialization and hyperscaling: A resource-based theory of the digital firm. Strateg. Manag. J. 2023, 44, 1391–1424. [Google Scholar] [CrossRef]
- Tajedin, H.; Madhok, A.; Keyhani, M. A Theory of digital firm-designed markets: Defying knowledge constraints with crowds and marketplaces. Strategy Sci. 2019, 4, 323–342. [Google Scholar] [CrossRef]
- Benner, M.; Tushman, M. Exploitation, exploration, and process management: The productivity dilemma revisited. Acad. Manag. Rev. 2003, 28, 238–256. [Google Scholar] [CrossRef]
- Bi, X. Government subsidies, financial slack and ambidextrous innovation. Account. Res. 2017, 1, 46–52. [Google Scholar]
- Zhao, Y.; Li, L.; Qi, N.; Cheng, T.C.E.; Chin, T. The moderating role of collaborative capacity in the relationship between ecological niche-fitness and innovation investment: An ecosystem perspective. Int. J. Technol. Manag. 2025, 97, 305–335. [Google Scholar] [CrossRef]
- Burt, R. Structural Holes; Harvard University Press: Boston, MA, USA, 1992. [Google Scholar]
- Wen, H.; Zhong, Q.; Lee, C. Digitalization, competition strategy and corporate innovation: Evidence from Chinese manufacturing listed companies. Int. Rev. Financ. Anal. 2022, 82, 102166. [Google Scholar] [CrossRef]
- Buchanan, D.A.; Bryman, A. Contextualizing methods choice in organizational research. Organ. Res. Methods 2007, 10, 483–501. [Google Scholar] [CrossRef]
- Hu, Y.; Mcnamara, P.; Piaskowska, D. Project suspensions and failures in new product development: Returns for entrepreneurial firms in co-development alliances. J. Prod. Innov. Manag. 2017, 34, 35–59. [Google Scholar] [CrossRef]
- Havrylyshyn, O.; Van Rooden, R. Recovery and Growth in Transition Economies 1990-97: A Stylized Regression Analysis; International Monetary Fund (IMF): Washington, DC, USA, 1998; pp. 26–53. [Google Scholar] [CrossRef]
- Fan, G.; Wang, X. NERI Index of Marketization of China’s Provinces; Economics Science Press: Beijing, China, 2001. [Google Scholar]
- Li, H.; Zhou, L. Political turnover and economic performance: The incentive role of personnel control in China. J. Public Econ. 2005, 89, 1743–1762. [Google Scholar] [CrossRef]
- Jia, N.; Mayer, K. Political hazards and firms’ geographic concentration. Strateg. Manag. J. 2017, 38, 202–231. [Google Scholar] [CrossRef]
- Jia, N. Political strategy and market capabilities: Evidence from the Chinese private sector. Manag. Organ. Rev. 2016, 12, 75–102. [Google Scholar] [CrossRef]
- Wei, Y. Regional governments and opportunity entrepreneurship in underdeveloped institutional environments: An entrepreneurial ecosystem perspective. Res. Policy 2022, 51, 104380. [Google Scholar] [CrossRef]
- Yamaguchi, K. The flow of information through social networks: Diagonal-free measures of inefficiency and the structural determinants of inefficiency. Soc. Netw. 1994, 16, 57–86. [Google Scholar] [CrossRef]
- Gulati, R. Alliances and networks. Strateg. Manag. J. 1998, 19, 293–317. [Google Scholar] [CrossRef]
- Bouncken Ricarda, B.; Martin, R.; Sascha, K. Anti-aging: How innovation is shaped by firm age and mutual knowledge creation in an alliance. J. Bus. Res. 2021, 137, 422–429. [Google Scholar] [CrossRef]
- Ma, B.; Yu, D. Research on the influence of R&D human resources on innovation capability—Empirical research on GEM-listed enterprises of China. Manag. Decis. Econ. 2020, 42, 751–761. [Google Scholar]
- Barney, J.B. Firm resources and sustained competitive advantage. Adv. Strateg. Manag. 1991, 17, 3–10. [Google Scholar] [CrossRef]
- Belenzon, S.; Patacconi, A. Innovation and firm value: An investigation of the changing role of patents, 1985–2007. Res. Policy 2013, 42, 1496–1510. [Google Scholar] [CrossRef]
- Fang, E.; Zou, S. The effects of absorptive and joint learning on the instability of international joint ventures in emerging economies. J. Int. Bus. Stud. 2010, 41, 906–924. [Google Scholar] [CrossRef]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Preacher, K.; Hayes, A. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavious Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Haans, R.; Pieters, C.; He, Z. Thinking about U: Theorizing and testing U-and inverted U-shaped relationships in strategy research. Strateg. Manag. J. 2016, 37, 1177–1195. [Google Scholar] [CrossRef]
- Aiken, L.; West, S. Multiple regression: Testing and interpreting interactions. J. Oper. Res. Soc. 1991, 45, 119–120. [Google Scholar]
- Goldsmith-Pinkham, P.; Sorkin, I.; Swift, H. Bartik Instruments: What, When, Why, and How. Am. Econ. Rev. 2020, 110, 2586–2624. [Google Scholar] [CrossRef]
- Guo, J.H.; Zhu, C.L. Digital transformation, human capital structure adjustment and upgrading of manufacturing enterprises’ value chain. Econ. Manag. 2024, 46, 47–67. [Google Scholar] [CrossRef]
- Füller, J.; Hutter, K.; Wahl, J.; Bilgram, V.; Tekic, Z. How AI revolutionizes innovation management–Perceptions and implementation preferences of AI-based innovators. Technol. Forecast. Soc. Change 2022, 178, 121598. [Google Scholar] [CrossRef]
- Lubinski, C.; Wadhwani, R. Geopolitical jockeying: Economic nationalism and multinational strategy in historical perspective. Strateg. Manag. J. 2020, 41, 400–421. [Google Scholar] [CrossRef]
- Modic, D.; Suklan, J. Multidimensional experience and performance of highly skilled administrative staff: Evidence from a technology transfer office. Res. Policy 2022, 51, 104562. [Google Scholar] [CrossRef]
- Wei, F.; Feng, N.; Yang, S.; Zhao, Q. A conceptual framework of two-stage partner selection in platform-based innovation ecosystems for servitization. J. Clean. Prod. 2020, 262, 121431. [Google Scholar] [CrossRef]
- Walrave, B.; Talmar, M.; Podoynitsyna, K.S.; Romme, A.G.L.; Verbong, G.P. A multi-level perspective on innovation ecosystems for path-breaking innovation. Technol. Forecast. Soc. Change 2018, 136, 103–113. [Google Scholar] [CrossRef]
- Ji, G.; Gunasekaran, A. Evolution of innovation and its strategies: From ecological niche models of supply chain clusters. J. Oper. Res. Soc. 2014, 65, 888–903. [Google Scholar] [CrossRef]
- McIntyre, D.P.; Srinivasan, A. Networks, platforms, and strategy: Emerging views and next steps. Strateg. Manag. J. 2017, 38, 141–160. [Google Scholar] [CrossRef]
- Ben Slimane, S.; Coeurderoy, R.; Mhenni, H. Digital transformation of small and medium enterprises: A systematic literature review and an integrative framework. Int. Stud. Manag. Organ. 2022, 52, 96–120. [Google Scholar] [CrossRef]
- Feldman, M. The entrepreneurial event revisited: Firm formation in a regional context. Ind. Corp. Change 2001, 10, 861–891. [Google Scholar] [CrossRef]
- Spilling, O. The entrepreneurial system: On entrepreneurship in the context of a mega-event. J. Bus. Res. 1996, 36, 91–103. [Google Scholar] [CrossRef]
- Levinthal, D.A.; March, J.G. The myopia of learning. Strateg. Manag. J. 1993, 14, 95–112. [Google Scholar] [CrossRef]
- Gupta, A.K.; Smith, K.G.; Shalley, C.E. The interplay between exploration and exploitation. Acad. Manag. J. 2006, 49, 693–706. [Google Scholar] [CrossRef]
- Leonard-Barton, D. Core capabilities and core rigidities: A paradox in managing new product development. Strateg. Manag. J. 1992, 13, 111–125. [Google Scholar] [CrossRef]
Variable Category | Variable Label | Variable Measure |
---|---|---|
Dependent variable | Exploratory innovation (EI-1) | Expensed expenses for corporate R&D activities |
Exploitative innovation (EI-2) | Capitalized expenditures for corporate R&D activities | |
Independent variable | Local efficiency (LE) | The global efficiency of the network consisting of its neighboring nodes after removing a given node |
Reach rate (RR) | The inverse of the length of the shortest path the firm can reach | |
Mediating variable | Digital transformation (DT) | The sum of the word frequency of five categories: artificial intelligence technology, blockchain technology, cloud computing technology, big data technology, and digital application technology |
Moderating variable | Market development (MT) | Market indices constructed by the NERI |
Control variable | Firm age (FA) | Year of study minus year of business establishment plus 1 to take the natural logarithm |
Number of R&D personnel (RDP) | Number of R&D personnel | |
Registered capital (RC) | Registered capital | |
Net profit (NP) | Net profit | |
Return on assets (ROA) | Return on assets | |
Asset liability ratio (AIR) | Asset liability ratio | |
Network density (ND) | Ratio of the number of edges actually present in the network to the upper limit of the number of edges | |
Degree centrality (DC) | Number of direct links owned by the node |
Number | Variable | Mean | SD | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|---|
1 | LE | 4.446 × 107 | 7.997 × 109 | 1.000 | |||
2 | RR | 0.506 | 0.0229 | 0.0001 (0.9768) | 1.000 | ||
3 | MD | 10.02 | 1.544 | −0.009 (0.5049) | −0.040 *** (0.0050) | 1.000 | |
4 | DT | 20 | 44.60 | −0.005 (0.7182) | −0.020 (0.1493) | 0.089 *** (0.0001) | 1.000 |
Variable | EI-1 | EI-2 | |||||
---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | |
RDP | 0.029 * (1.41) | 0.028 (1.43) | 0.085 *** (5.31) | 0.041 * (2.37) | 0.021 * (0.61) | −0.012 * (−0.33) | −0.012 * (−0.34) |
FA | 0.0008 *** (5.24) | 0.0008 *** (5.25) | 0.0004 *** (−4.58) | 0.0002 (0.19) | 0.0003 (1.18) | 0.0004 (1.28) | 0.0004 (1.38) |
RC | −0.032 * (−1.17) | −0.032 (−1.18) | 0.037 (0.11) | 0.035 (0.56) | −0.015 (−0.72) | −0.013 (−0.25) | −0.013 (−0.25) |
NP | −0.067 (−0.12) | −0.072 (−0.96) | −0.028 *** (−2.84) | −0.099 (−1.38) | 0.081 (0.01) | 0.087 (0.06) | 0.072 (0.05) |
ROA | −0.090 *** (−5.15) | −0.089 *** (−5.21) | −0.018 *** (−6.57) | −0.098 *** (−5.77) | 0.023 (0.77) | 0.026 (0.82) | 0.026 (0.82) |
AIR | −0.016 *** (−1.05) | −0.016 *** (−1.05) | −0.013 *** (−6.72) | −0.028 * (−1.85) | 0.022 * (0.79) | 0.024 * (0.85) | 0.024 * (0.84) |
ND | −0.041 (−0.13) | −0.041 (−0.16) | −0.002 (−0.94) | −0.055 (−0.43) | −0.041 (−0.17) | −0.017 (−0.07) | −0.019 (−0.08) |
DC | −0.014 (−1.3) | −0.014 (−1.3) | −0.0001 (−0.11) | −0.014 (−1.24) | 0.023 (0.12) | 0.041 (0.2) | 0.043 (0.21) |
LE | 0.033 * (2.10) | −0.019 * (−2.30) | |||||
LE2 | −0.045 * (2.13) | ||||||
RR | 0.014 * (1.12) | 0.338 *** (3.25) | −0.018 * (−2.76) | ||||
RR2 | −0.648 *** (−3.21) | ||||||
Year | Control | Control | Control | Control | Control | Control | Control |
Province | Control | Control | Control | Control | Control | Control | Control |
Constant | 0.0168 *** (5.63) | 0.0168 *** (5.63) | 0.00921 * (1.24) | 0.0267 *** (3.78) | 0.0283 *** (4.59) | 0.0269 *** (4.97) | 0.0174 (1.3) |
F | 6.24 | 6.87 | 7.00 | 6.47 | 6.00 | 6.00 | 6.00 |
R2 | 0.3162 | 0.3162 | 0.3165 | 0.3134 | 0.3134 | 0.3134 | 0.3134 |
Variable | DT | EI-1 | EI-2 | ||
---|---|---|---|---|---|
Model 8 | Model 9 | Model 10 | Model 11 | Model 12 | |
RDP | 0.000707 *** (2.95) | 0.000707 *** (2.95) | 0.0007 *** (2.92) | 0.0273 *** (1.37) | −0.0996 (−0.28) |
FA | 2.819 *** (15.13) | 2.817 *** (15.12) | 2.962 *** (12.24) | 0.00771 *** (4.91) | 0.00437 (1.53) |
RC | 0.00189 (0.57) | 0.00188 (0.57) | 0.00196 (0.59) | −0.00323 (−1.19) | −0.00120 (−0.24) |
NP | 0.00176 * (1.92) | 0.00176 * (1.92) | 0.00173 * (1.89) | −0.0740 (−0.98) | 0.0132 (0.10) |
ROA | −0.0449 (−0.02) | −0.0290 (−0.01) | −0.0709 (−0.03) | −0.0895 *** (−5.21) | 0.00255 (0.82) |
AIR | −1.794 (−0.95) | −1.786 (−0.94) | −1.867 (−0.99) | −0.00162 (−1.04) | 0.00233 (0.83) |
ND | 0.799 (0.51) | 0.798 (0.51) | 0.685 (0.43) | −0.00414 (−0.32) | −0.00147 (−0.06) |
DC | −0.0487 (−0.36) | −0.0488 (−0.36) | −0.05 (−0.37) | −0.00143 (−1.30) | 0.00396 (0.20) |
LE | −0.00214 * (−1.50) | ||||
LE2 | 0.001 * (−1.45) | ||||
RR | −0.677 * (−1.46) | ||||
RR2 | 0.878 * (1.65) | ||||
DT | 0.00109 * (1.86) | −0.028 * (−1.21) | |||
Year | Control | Control | Control | Control | Control |
Province | Control | Control | Control | Control | Control |
Constant | −0.340 *** (−9.37) | −0.339 *** (−9.36) | −0.506 *** (−5.37) | 0.0172 *** (5.70) | 0.0259 *** (4.74) |
F | 30.62 | 27.57 | 25.39 | 6.94 | 6.00 |
R2 | 0.0620 | 0.0621 | 0.0629 | 0.0164 | 0.0164 |
Independent Variable | Indicator | Value | Boot | Boot CI | Boot CI | z |
---|---|---|---|---|---|---|
Standard Deviation | Lower | Upper | ||||
Exploratory innovation | indirect effect | −0.000194 | 0.0004 | −0.000979 | −0.00059 | −0.49 * |
Direct effect | 0.000636 | 0.000726 | −0.000786 | −0.000786 | 0.88 *** | |
Exploitative innovation | Indirect effect | 0.00228 | 0.00011 | −0.00193 | −0.00139 | 0.21 * |
Direct effect | −0.00256 | 0.00166 | −0.00352 | −0.003 | −0.15 *** |
Variable | EI-1 | EI-2 | ||||
---|---|---|---|---|---|---|
Model 13 | Model 14 | Model 15 | Model 16 | Model 17 | Model 18 | |
RDP | 0.081 *** | 0.082 *** | 0.061 *** | 0.08 *** | 0.08 *** | 0.06 *** |
(5.09) | (5.15) | (3.74) | (5.09) | (5.15) | (3.74) | |
FA | −0.004 *** | −0.004 *** | −0.004 *** | −0.004 *** | −0.003 *** | −0.003 *** |
(−5.14) | (−4.97 | (−5.10) | (−5.14) | (−4.97) | (−5.10) | |
RC | −0.012 | −0.013 | −0.018 | 0.012 | 0.013 | 0.018 |
(0.36) | (0.39) | (0.53) | (0.36) | (0.39) | (0.53) | |
NP | −0.030 *** | −0.029 *** | −0.028 ** | −0.003 *** | −0.003 *** | −0.028 *** |
(−3.03) | (−2.99) | (−2.83) | (−3.03) | (−2.99) | (−2.83) | |
ROA | −0.018 *** | −0.018 *** | −0.018 *** | −0.018 *** | −0.018 *** | −0.018 *** |
(−6.49) | (−6.48) | (−6.34) | (−6.49) | (−6.48) | (−6.34) | |
AIR | −0.013 *** | −0.014 *** | −0.016 *** | −0.013 *** | −0.013 *** | −0.013 *** |
(−6.63) | (−6.60) | (−6.45) | (−6.63) | (−6.60) | (−6.45) | |
ND | −0.020 | −0.0019 | −0.019 | −0.002 | −0.002 | −0.002 |
(−0.89) | (−0.88) | (−0.85) | (−0.89) | (−0.88) | (−0.85) | |
DC | 0.026 | 0.0025 * | −0.023 | 0.0003 | −0.0002 | −0.0002 |
(0.14) | (−1.74) | (−0.13) | (0.14) | (−0.10) | (−0.13) | |
LE | 0.082 | 0.082 | ||||
(0.99) | (0.99) | |||||
LE2 | 0.081 | |||||
(0.99) | ||||||
RR | −0.253 * | −0.253 * | ||||
(−1.74) | (−1.74) | |||||
RR2 | 0.463 * | |||||
(1.67) | ||||||
MD | 0.021 *** | 0.021 *** | 0.018 *** | 0.002 *** | 0.002 *** | 0.002 *** |
(6.36) | (6.52) | (5.37) | (6.36) | (6.52) | (5.37) | |
LE × MD | 0.035 * | −0.028 | ||||
(1.36) | (−0.30) | |||||
LE2 × MD | −0.028 * | |||||
(−1.30) | ||||||
RR × MD | 0.021 * | 0.049 * | ||||
(1.87) | (1.49) | |||||
RR2 × MD | −0.047 * | |||||
(1.49) | ||||||
Year | Control | Control | Control | Control | Control | Control |
Province | Control | Control | Control | Control | Control | Control |
Constant | 0.0231 *** | 0.0315 ** | 0.0244 *** | 0.023 *** | 0.032 *** | 0.024 *** |
(6.67) | (2.69) | (6.85) | (6.67) | (2.69) | (6.85) | |
F | 14.07 | 13.25 | 17.45 | 14.07 | 13.25 | 17.45 |
R2 | 0.0327 | 0.0333 | 0.0402 | 0.033 | 0.033 | 0.040 |
Variable | EI-1 | EI-2 |
---|---|---|
Model 1 | Model 2 | |
RDP | 0.009 *** | −0.001 ** |
(2.72) | (−2.17) | |
FA | −0.001 *** | −0.00001 |
(−3.65) | (−0.04) | |
RC | 0.057 | −0.069 |
(0.78) | (−0.59) | |
NP | −0.052 ** | −0.032 |
(−2.21) | (−0.84) | |
ROA | −0.019 *** | −0.001 |
(−3.36) | (−0.10) | |
AIR | −0.015 *** | −0.0003 |
(−3.44) | (−0.05) | |
ND | −0.005 | −0.009 |
(−1.04) | (−1.26) | |
DC | 0.001 | −0.001 |
(1.27) | (−1.14) | |
DT_Tool Variables | 0.007 *** | −0.001 * |
(2.97) | (−1.29) | |
Constant | 0.034 *** | 0.040 *** |
(7.78) | (5.66) | |
F | 9.51 | 8.94 |
R2 | 0.556 | 0.538 |
Variable | EI-1 | EI-2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | Model 10 | |
RDP | 0.078 *** | 0.084 *** | 0.081 *** | 0.074 *** | 0.067 *** | −0.012 ** | −0.012 ** | −0.019 ** | −0.012 ** | −0.013 ** |
(4.82) | (5.24) | (5.01) | (4.62) | (4.05) | (−2.28) | (−2.35) | (−2.26) | (−2.36) | (−2.35) | |
FA | −0.0004 *** | −0.0004 *** | −0.0003 *** | −0.0004 *** | −0.0003 *** | 0.0008 | 0.042 | −0.079 | 0.03 | 0.091 |
(−4.64) | (−4.64) | (−4.45) | (−4.85) | (−4.42) | (0.03) | (0.02) | (−0.00) | (0.01) | (0.04) | |
RC | 0.032 | 0.04 | 0.053 | 0.068 | 0.095 | −0.066 | −0.065 | −0.066 | −0.065 | −0.064 |
(0.87) | (0.12) | (0.16) | (0.20) | (0.28) | (−0.60) | (−0.59) | (−0.60) | (−0.59) | (−0.58) | |
NP | 0.027 | −0.028 *** | −0.028 *** | −0.027 *** | −0.029 *** | −0.027 | −0.027 | −0.027 | −0.026 | −0.027 |
(0.38) | (−2.82) | (−2.77) | (−2.67) | (−2.89) | (−0.82) | (−0.81) | (−0.83) | (−0.80) | (−0.82) | |
ROA | −0.018 | −0.018 *** | −0.018 *** | −0.018 *** | −0.018 *** | −0.002 | −0.002 | −0.002 | −0.002 | −0.002 |
(−0.53) | (−6.53) | (−6.53) | (−6.52) | (−6.54) | (−0.21) | (−0.19) | (−0.21) | (−0.19) | (−0.19) | |
AIR | −0.013 | −0.013 *** | −0.013 *** | −0.013 *** | −0.013 *** | −0.001 | −0.001 | −0.001 | −0.001 | −0.001 |
(−1.06) | (−6.62) | (−6.69) | (−6.52) | (−6.73) | (−0.15) | (−0.12) | (−0.14) | (−0.12) | (−0.13) | |
ND | −0.018 *** | −0.002 | −0.002 | −0.002 | −0.002 | −0.010 | −0.010 | −0.010 | −0.010 | −0.010 |
(−6.58) | (−0.91) | (−0.89) | (−0.99) | (−0.89) | (−1.36) | (−1.36) | (−1.37) | (−1.36) | (−1.36) | |
DC | −0.00013 *** | −0.00003 | −0.000033 | −0.00006 | −0.00003 | −0.001 | −0.001 | −0.001 | −0.001 | −0.001 |
(−0.54) | (−0.14) | (−0.18) | (−0.34) | (−0.15) | (−1.10) | (−1.12) | (−1.10) | (−1.12) | (−1.12) | |
Artificial intelligence | 0.0017 *** (5.28) | −0.005 (−0.47) | ||||||||
Blockchain technology | 0.002 *** (2.98) | 0.001 (0.31) | ||||||||
Cloud computing | 0.0008 *** | −0.00007 | ||||||||
(3.01) | (−0.77) | |||||||||
Big data | 0.0002 *** | 0.002 * | ||||||||
(5.73) | (1.25) | |||||||||
Digital technology applications | 0.0001 *** (4.45) | 0.003 * (1.35) | ||||||||
Constant | 0.042 *** | 0.043 *** | 0.042 *** | 0.042 *** | 0.042 *** | 0.038 *** | 0.038 *** | 0.038 *** | 0.038 *** | 0.038 *** |
(25.23) | (25.58) | (25.09) | (25.38) | (25.07) | (6.95) | (6.93) | (6.98) | (6.92) | (6.86) | |
F | 13.26 | 13.54 | 13.55 | 15.99 | 14.65 | 1.567 | 1.554 | 1.605 | 1.551 | 1.556 |
R2 | 0.031 | 0.026 | 0.026 | 0.031 | 0.028 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Guo, C.; Chen, X. Inter-Organizational Connectivity, Digital Transformation, and Firm Ambidextrous Innovation: A Coupled Perspective on Innovation Ecosystems and Digitalization. Sustainability 2025, 17, 6466. https://doi.org/10.3390/su17146466
Zhao Y, Guo C, Chen X. Inter-Organizational Connectivity, Digital Transformation, and Firm Ambidextrous Innovation: A Coupled Perspective on Innovation Ecosystems and Digitalization. Sustainability. 2025; 17(14):6466. https://doi.org/10.3390/su17146466
Chicago/Turabian StyleZhao, Yan, Changxu Guo, and Xuanji Chen. 2025. "Inter-Organizational Connectivity, Digital Transformation, and Firm Ambidextrous Innovation: A Coupled Perspective on Innovation Ecosystems and Digitalization" Sustainability 17, no. 14: 6466. https://doi.org/10.3390/su17146466
APA StyleZhao, Y., Guo, C., & Chen, X. (2025). Inter-Organizational Connectivity, Digital Transformation, and Firm Ambidextrous Innovation: A Coupled Perspective on Innovation Ecosystems and Digitalization. Sustainability, 17(14), 6466. https://doi.org/10.3390/su17146466