Integrating Technological Innovations and Sustainable Practices to Abate Methane Emissions from Livestock: A Comprehensive Review
Abstract
1. Introduction
2. Methodology
2.1. Literature Search Strategy
2.2. Inclusion Criteria
- Peer-reviewed journal articles
- Published in English
- Focused on ruminant livestock (cattle, buffalo, sheep, goats)
- Addressed methane measurement or mitigation
- Included original data, systematic reviews, or meta-analyses
- Published between 2010 and 2024
2.3. Exclusion Criteria
- Non-English articles
- Editorials, conference abstracts, or opinion pieces
- Studies on non-ruminant species
- Non-peer-reviewed publications
- Duplicate or retracted articles
2.4. Screening and Selection Process
2.5. Data Charting and Extraction
2.6. Quality Control
3. Overview of GHGs and Potential Global Warming
4. Contribution of Livestock on GHGs Emissions
5. Understanding of Methane (CH4) Mitigation in Livestock Sector
6. The Sources of CH4 Emission
6.1. Methanogenesis Process
6.2. Rumen Fermentation Processes
7. Measuring CH4 Emission from Enteric Fermentation
7.1. General Background
7.2. In Vitro Techniques
7.2.1. Syringe Technique
7.2.2. Semi-Automated Gas Production Technique
7.2.3. Automated Wireless Gas Production Technique
7.2.4. Full Automated Wireless Gas Production Technique
7.2.5. Batch Culture (BC) Techniques
7.2.6. Rumen Simulation Technique (RUSITEC)
7.3. In Vivo Techniques
7.3.1. Respiration Chamber (RC)
7.3.2. Portable Accumulation Chamber (PAC)
7.3.3. Sulfur Hexafluoride Tracer Technique (SHTT)
7.3.4. Greenfeed Technique (GF)
7.3.5. Ventilated Hood (VH)
7.3.6. The Sniffer Technique (ST)
7.3.7. The Facemask (FM)
7.3.8. The Laser CH4 Detector (LMD)
7.4. In Direct Methods (Statistical Models)
8. Sustainable Approaches to Reduce GHGs Emissions
8.1. Animal and Feed Management Related Strategies
8.1.1. Genetic Selection
8.1.2. Feed Management
- Forage management
- Forage-to-concentrate (F:C) ratio
- The pasture quality
8.2. Diet Formulation
8.2.1. Feed Additives
- Fats and oils
- Phytochemicals compounds
- Essential oils (EOs)
- Propolis supplementation
- Saponins
- Tannins
- Flavonoids
8.2.2. Microalgae and Macroalgae (Seaweeds)
8.2.3. Enzymes
8.2.4. Chitosan (CHI)
8.2.5. Chemical Modifiers Feed Additives
8.2.6. Nano Clays Additives
8.2.7. Other Strategies
- Biochar supplementation
- Halogens
8.3. Rumen Manipulation Strategies
8.3.1. Direct Fed Microbials (DFMs) or Probiotics
8.3.2. Ionophores
8.3.3. Vaccines for Limiting Methanogenesis
8.3.4. The Elimination of Protozoa from the Rumen Ecology (Defaunation)
8.3.5. Electron Receptors (H2 Sink)
8.4. Manure-Related Strategies
9. Conclusions and Recommendations
- Invest in innovation and scaling: Continued research and development in precision livestock technologies, such as automated feeding systems, CH4 sensors, and microbiome-targeted feed additives, is essential to enhance emissions control and productivity.
- Promote knowledge transfer and capacity building: Establish farmer training programs and extension services focused on sustainable livestock management and methane mitigation.
- Enable supportive policy and incentives: Governments should offer financial incentives (e.g., subsidies, carbon credits) to encourage the adoption of climate-smart technologies and practices in livestock production.
- Foster multi-stakeholder collaboration: Strong partnerships between farmers, researchers, policymakers, and industry actors are needed to ensure practical implementation and continuous improvement of mitigation strategies.
- Enhance monitoring and accountability: Deploy standardized monitoring and reporting systems to evaluate environmental performance and ensure transparency in mitigation outcomes.
- Encourage sustainable consumption: Public awareness campaigns and policy nudges promoting responsible meat and dairy consumption can complement supply-side efforts to reduce emissions.
- In conclusion, this review contributes to the scientific foundation for designing and implementing integrated, data-driven strategies for methane mitigation in livestock systems. It provides decision-makers and practitioners with an evidence-based roadmap for advancing environmental sustainability in animal agriculture while maintaining productivity and food security.
10. Future Perspective
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gerber, P.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock–A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- San Martin Ruiz, M.; González Puelles, J.E.; Herra Bogantes, J.; Rivera-Méndez, W.; Reiser, M.; Kranert, M. Methane, nitrous oxide, and ammonia emissions on dairy farms in Spain with or without bio-activator treatment. Atmos 2022, 13, 893–908. [Google Scholar] [CrossRef]
- USEPA 2013. United States Environmental Protection Agency. Global Mitigation of Non-CO2 Greenhouse Gases: 2010–2030, EPA Report 430R13011, United States Environmental Protection Agency: Washington, DC, USA. Available online: https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases/global-mitigation-non-co2-ghgs-report-2010-2030 (accessed on 5 February 2023).
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A.G. Livestock and climate change: Impact of livestock on climate and mitigation strategies. Anim. Front. 2019, 9, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Opio, C.; Gerber, P.; Mottet, A.; Falcucci, A.; Tempio, G.; MacLeod, M.; Vellinga, T.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from Ruminant Supply Chains—A global Life Cycle Assessment; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Haque, M.N. Dietary manipulation: Asustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 2018, 60, 15. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.R.; Hawkins, E.; Jones, P.D. CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius and Callendar to today’s earth system models. Endeavour 2016, 40, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Kataria, R.P. Use of feed additives for reducing greenhouse gas emissions from dairy farms. Microbiol. Res. 2015, 6, 6120. [Google Scholar] [CrossRef]
- Calabrò, P.S. Greenhouse gases emission from municipal waste management: The role of separate collection. Waste Manag. 2009, 29, 2178–2187. [Google Scholar] [CrossRef] [PubMed]
- Palangi, V.; Taghizadeh, A.; Abachi, S.; Lackner, M. Strategies to mitigate enteric methane emissions in ruminants: A Review. Sustainability 2022, 14, 13229. [Google Scholar] [CrossRef]
- Króliczewska, B.; Pecka-Kiełb, E.; Bujok, J. Strategies Used to Reduce Methane Emissions from Ruminants: Controversies and Issues. Agriculture 2023, 13, 602. [Google Scholar] [CrossRef]
- Gavurova, B.; Rigelsky, M.; Ivankova, V. Gas emissions and health in the countries of the European union. Front. Public Health 2021, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Dilmore, R.; Zhang, L. Greenhouse gases and their role in climate change. In Greenhouse Gases and Clay Minerals; Green Energy and Technology Series; Springer: Cham, Switzerland, 2018; pp. 15–32. [Google Scholar]
- USEPA. United States Environmental Protection Agency Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990–2021. 2021. Available online: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2021 (accessed on 1 April 2024).
- Masson-Delmotte, V.; Zhai, A.; Pirani, L.; Connors, C.; Péan, S.; Berger, N.; Intergovernmental Panel on Climate Change (IPCC). The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 239. [Google Scholar]
- WHO. World Health Organization. WHO Health and Climate Change Survey Report. 2021. Available online: https://reliefweb.int/report/world/2021-who-health-and-climate-change-survey-report (accessed on 8 November 2021).
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; p. 184. [Google Scholar] [CrossRef]
- Bbass, K.; Qasim, Z.; Song, H.; Murshed, M.H.; Younis, I. A Review of The Global Climate Change Impacts, Adaptation, and Sustainable Mitigation measures. Environ. Sci. Pollut. Res. Int. 2022, 29, 42539–42559. [Google Scholar]
- Hamaamin, Y.; Abdullah, J. Assessing Environmental Awareness of Students at the University of Sulaimani. J. Zankoy Sulaimani 2019, 21, 2–21. [Google Scholar] [CrossRef]
- Perez Dominguez, I.; Fellmann, T.; Weiss, F.; Witzke, H.; Barreiro Hurle, J.; Himics, M.; Jansson, T.; Salputra, G.; Leip, A. An Economic Assessment of GHG Mitigation Policy Options for EU Agriculture (EcAMPA 2); Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Muller, R.A.; Muller, E.A. Fugitive methane and the role of atmospheric half-life. Geoinformatics Geostat. Overv. 2017, 5, 3. [Google Scholar] [CrossRef]
- Patra, A.K. Enteric methane mitigation technologies for ruminant livestock: A synthesis of current research and future directions. Environ. Monit Assess 2012, 184, 1929–1952. [Google Scholar] [CrossRef] [PubMed]
- Madsen, J.; Bjerg, B.; Hvelplund, T.; Weisbjerg, M.; Lund, P. Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants. Livest. Sci. 2010, 129, 223–227. [Google Scholar] [CrossRef]
- Keith, R.; Lassey, L. Livestock methane emission and its perspective in the global, methane cycle. Aust. J. Exp. Agric. 2008, 48, 114–118. [Google Scholar] [CrossRef]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K. The Global Methane Budget 2000–2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- Broucek, J. Production of methane emissions from ruminant husbandry: A Review. J. Environ. Prot. 2014, 5, 51796–51810. [Google Scholar] [CrossRef]
- Harper, L.A.; Denmead, O.T.; Freney, J.R.; Byers, F.M. Direct measurements of methane emissions from grazing and feedlot cattle. J. Anim. Sci. 1999, 77, 1392–1401. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.E.; Smith, J.A. Biologically produced methane as a renewable energy source. Adv. Appl. Microbiol. 2016, 97, 1–61. [Google Scholar] [PubMed]
- Leng, R.A. Interactions between microbial consortia in biofilms: A paradigm shift in rumen microbial ecology and enteric methane mitigation. Anim. Prod. Sci. 2014, 54, 519–543. [Google Scholar] [CrossRef]
- Valle, E.R.; Henderson, G.; Janssen, P.H.; Cox, F.; Alexander, T.W.; McAllister, T.A. Considerations in the use of fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy to characterize rumen methanogens and define their spatial distributions. Can. J. Microbiol. 2015, 61, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Teklebrhan, T.; Tan, Z.; Wang, M.; Wang, R. Rumen methanogens community as drivers of methane emission. J. Vet. Sci. Anim. Husb. 2018, 6, 406. [Google Scholar]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Abecia, L.; Angarita, E.; Aravena, P.; Nora Arenas, G.; Ariza, C. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Reprod. Sci. 2015, 5, 14567. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.; Park, T.; Kim, M.; Yu, Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 2017, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.; Asrar, G.R.; West, T.O. Revised methane emissions factors and spatially distributed annual carbon fluxes for global livestock. Carbon Balance Manag 2017, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Wolin, M.J.; Miller, T.L.; Stewart, C.S. Microbemicrobe interactions. In The Rumen Microbial Ecosystem, 2nd ed.; Hobson, P.J., Stewart, C.S., Eds.; Blackie Acad. Profess.: London, UK, 1997; pp. 467–491. [Google Scholar]
- Lan, W.; Yang, C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 2019, 654, 1270–1283. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Nan, X.; Chu, K.; Tong, J.; Yang, L.; Zheng, S.; Zhao, G.; Jiang, L.; Xiong, B. Shifts of hydrogen metabolism from methanogenesis to propionate production in response to replacement of forage fiber with non-forage fiber sources in diets in vitro. Front. Microbiol. 2018, 9, 2764. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Rooke, J.A.; Cabeza, I.; Wallace, R.J. Nitrate and inhibition of ruminal methanogenesis: Microbial ecology, obstacles, and opportunities for lowering methane emissions from ruminant livestock. Front. Microbiol. 2016, 7, 132. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Lee, S.S. 2019 Advanced estimation mitigation strategies: Acumulative approach to enteric methane abatement from ruminants. J. Anim. Sci. Technol. 2016, 61, 122–137. [Google Scholar] [CrossRef] [PubMed]
- Morgavi, D.P.; Forano, E.; Martin, C.; Newbold, C.J. Microbial ecosystem and methanogenesis in ruminants—CORRIGENDUM. Animal 2012, 6, 871. [Google Scholar] [CrossRef]
- Rymer, C.; Huntington, J.A.; Williams, B.A.; Givens, D.I. In vitro cumulative gas production techniques: History, methodological considerations and challenges. Anim. Feed Sci. Technol. 2005, 124, 9–30. [Google Scholar] [CrossRef]
- Dijkstra, J.; Kebreab, E.; Bannink, A.; France, J.; Lopez, S. Application of the gas production technique to feed evaluation systems for ruminants. Anim Feed Sci Technol. 2005, 123, 561–578. [Google Scholar] [CrossRef]
- Czerkawski, J.W.; Breckenridge, G. New inhibitors of methane production by rumen micro-organisms. Br. J. Nutr. 1975, 34, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor. J. Agri. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef]
- Blümmel, M.; Ørskov, E.R. Comparison of in vitro gas production and nylon bag degradability of roughages in predicting feed intake in cattle. Anim Feed Sci Technol. 1993, 40, 109–119. [Google Scholar] [CrossRef]
- Wilkins, J. Pressure transducer method for measuring gas production by microorganisms. Appl. Microbiol. 1974, 27, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Tekippe, J.A.; Tacoma, R.; Hristov, A.N.; Lee, C.; Oh, J.; Heyler, K.S.; Cassidy, T.W.; Varga, G.A.; Bravo, D. Effect of essential oils on ruminal fermentation and lactation performance of dairy cows. J. Dairy Sci. 2013, 96, 7892–7903. [Google Scholar] [CrossRef] [PubMed]
- Cornou, C.; Storm, I.D.; Hindrichsen, I.; Worgan, H.; Bakewell, E.; Yáñez-Ruiz, D.; Abecia, L. A ring test of a wireless in vitro gas production system. Anim. Prod. Sci. 2013, 53, 585–592. [Google Scholar] [CrossRef]
- Muetzel, S.; Hunt, C.; Tavendale, M.H. A fully automated incubation system for the measurement of gas production and gas composition. Anim. Feed Sci. Technol. 2014, 196, 1–11. [Google Scholar] [CrossRef]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the digestion of forage crops. J. Br. Grassl. Soc. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analysis (Apparatus, Reagents, Procedures and Some Applications); Agriculture Handbook No. 379; ARS-USDA: Washington, DC, USA, 1970.
- Ziemer, C.J.; Sharp, R.; Stern, M.D.; Cotta, M.A.; Whitehead, T.R.; Stahl, D.A. Comparison of microbial populations in model and natural rumens using 16S ribosomal RNA-targeted probes. Environ. Microbiol. 2000, 2, 632–643. [Google Scholar] [CrossRef] [PubMed]
- Czerkawski, J.W.; Breckenridge, G. Design and development of a long-term rumen simulation technique (RUSITEC). Br. J. Nutr. 1977, 38, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Ertl, P.; Knaus, W.; Metzler-Zebeli, B.U.; Klevenhusen, F.; Khiaosa-Ard, R.; Zebeli, Q. Substitution of common concentrates with by-products modulated ruminal fermentation, nutrient degradation, and microbial community composition in vitro. J. Dairy Sci. 2015, 98, 4762–4771. [Google Scholar] [CrossRef] [PubMed]
- Hynes, D.N.; Stergiadis, S.; Gordon, A.; Yan, T. Effects of concentrate crude protein content on nutrient digestibility, energy utilization, and methane emissions in lactating dairy cows fed fresh-cut perennial grass. J. Dairy Sci. 2016, 99, 8858–8866. [Google Scholar] [CrossRef] [PubMed]
- Storm, I.M.L.D.; Hellwing, A.L.F.; Nielsen, N.I.; Madsen, J. Methods for measuring and estimating methane emission from ruminants. Animals 2012, 2, 160–183. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.T.; Wang, C.M.; Zhao, Y.G.; Chen, T.B.; Aubry, A.; Gordon, A.W.; Yan, T. Updating maintenance energy requirement for the current sheep flocks and the associated effect of nutritional and animal factors. Animal 2019, 14, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.G.; Aubry, A.; Annett, R.; O’Connell, N.E.; Yan, T. Enteric methane emissions and nitrogen utilization efficiency for two genotype of hill hoggets offered fresh, ensiled and pelleted ryegrass. Livest. Sci. 2016, 188, 1–8. [Google Scholar] [CrossRef]
- Garnsworthy, P.C.; Diord, G.F.; Bell, M.J.; Bayat, A.R.; Huhtanen, P.; Kuhla, B.; Lassen, J.; Peiren, N.; Pszczola, M.; Sorg, D. Comparison of methods to measure methane for use in genetic evaluation of dairy cattle. Animals 2019, 9, 837. [Google Scholar] [CrossRef] [PubMed]
- Sejian, V.; Lal, R.; Lakritz, J.; Ezeji, T. Measurement and prediction of enteric methane emission. Int. J. Biomet. 2011, 55, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Goopy, J.P.; Woodgate, R.; Donaldson, A.; Robinson, D.L.; Hegarty, R.S. Validation of a short-term methane measurement using portable static chambers to estimate daily methane production in sheep. Anim Feed Sci Technol. 2011, 167, 219–226. [Google Scholar] [CrossRef]
- Lassey, K.R. On the importance of background sampling in applications of the SF6 tracer technique to determine ruminant methane emissions. Anim Feed Sci Technol. 2013, 180, 115–120. [Google Scholar] [CrossRef]
- Johnson, K.A.; Huyler, M.T.; Westberg, H.H.; Lamb, B.K.; Zimmerman, P. Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique. Environ. Sci Technol. 1994, 28, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Rochette, Y.; Jonker, A.; Moate, P.; Vanlierde, A.; Martin, C. Sulphur hexafluoride (SF6) tracer technique. In Methods in Cattle Physiology and Behavior—Recommendations from the Smart Cow Consortium; Mesgaran, S.D., Baumont, R., Munksgaard, L., Humphries, D., Kennedy, E., Dijkstra, J., Dewhurst, R., Ferguson, H., Terré, M., Kuhla, B., Eds.; PUBLISSO: Cologne, Germany, 2020. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.S.; Clark, H. Reliability of the sulfur hexafluoride tracer technique for methane emission measurement from individual animals: An overview. Aust. J. Exp. Agric. 2008, 48, 223–229. [Google Scholar] [CrossRef]
- Cottle, D.J.; Velazco, J.; Hegarty, R.S.; Mayer, D.G. Estimating daily methane production in individual cattle with irregular feed intake patterns from short-term methane emission measurements. Animal 2015, 9, 1949–1957. [Google Scholar] [CrossRef] [PubMed]
- Castelán Ortega, O.A.; Pedraza Beltrán, P.E.; Hernández Pineda, G.S.; Benaouda, M.; González Ronquillo, M.; Molina, L.T.; Ku Vera, J.C.; Montelongo Pérez, H.D.; Vázquez Carrillo, M.F. Construction and operation of a respiration chamber of the head-box type for methane measurement from cattle. Animals 2020, 10, 227. [Google Scholar] [CrossRef] [PubMed]
- Troy, S.M.; Duthie, C.A.; Ross, D.W.; Hyslop, J.J.; Roehe, R.; Waterhouse, A.; Rooke, J.A. A comparison of methane emissions from beef cattle measured using methane hoods with those measured using respiration chambers. Anim. Feed Sci. Technol. 2016, 211, 227–240. [Google Scholar] [CrossRef]
- Garnsworthy, P.C.; Craigon, J.; Hernandez-Medrano, J.H.; Saunders, N. On-farm methane measurements during milking correlate with total methane production by individual dairy cows. J. Dairy Sci. 2012, 95, 3166–3180. [Google Scholar] [CrossRef] [PubMed]
- Silveira, S.R.; Terry, S.A.; Bin, T.E.; Maurício, R.M.; Pereira, L.G.R.; Ferreira, A.L.; Ribeiro, R.S.; Sacramento, J.P.; Tomich, T.R.; Machado, F.S. Replacement of soybean meal with soybean cake reduces methane emissions in dairy cows and an assessment of a face-mask technique for methane measurement. Front Vet. Sci. 2019, 6, 295. [Google Scholar] [CrossRef] [PubMed]
- Ricci, P.; Chagunda, M.G.G.; Rooke, J.; Houdijk, J.G.M.; Duthie, C.A.; Hyslop, J.; Roehe, R.; Waterhouse, A. Evaluation of the laser methane detector to estimate methane emissions from ewes and steers. J. Anim. Sci. 2014, 92, 5239–5250. [Google Scholar] [CrossRef] [PubMed]
- Chagunda, M.G.G.; Ross, D.; Rooke, J.; Yan, T.; Douglas, J.L.; Poret, L.; McEwan, N.R.; Teeranavattanakul, P.; Roberts, D.J. Measurement of enteric methane from ruminants using a hand-held laser methane detector. Acta Agric. Scand. Sect. A—Anim. Sci. 2013, 63, 68–75. [Google Scholar] [CrossRef]
- Chagunda, M.G.G. Opportunities and challenges in the use of the laser methane detector to monitor enteric methane emissions from ruminants. Animal 2013, 7, 394–400. [Google Scholar] [CrossRef] [PubMed]
- IPCC Intergovernmental Panel Climate Change. Emissions from livestock and manure management. Volume 4 Agriculture, Forestry and Other Land Use. In Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006; pp. 10.1–10.87. [Google Scholar]
- Ominski, K.H.; Boadi, D.A.; Wittenberg, K.M.; Fulawka, D.L.; Basarab, J.A. Estimates of enteric methane emissions from cattle in Canada using the IPCC Tier-2 methodology. Can. J. Anim. Sci. 2007, 87, 459–467. [Google Scholar] [CrossRef]
- Jackson, R.B.; Saunois, M.; Bousquet, P.; Canadell, J.G.; Poulter, B.; Stavert, A.R.; Bergamaschi, P.; Niwa, Y.; Segers, A.; Tsuruta, A. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett. 2020, 15, 071002. [Google Scholar] [CrossRef]
- Arndt, C.; Alexander, N.H.; William, J.P.; Shelby, C.M.; Amalia, M.P.; Sergio, F.C.; Joonpyo, O.; Jan, D.; Andre, B.; Ali, R.B.; et al. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proc. Natl. Acad. Sci. USA 2022, 119, 20. [Google Scholar] [CrossRef] [PubMed]
- Sypniewski, M.; Strabel, T.; Pszczola, M. Genetic variability of methane production and concentration measured in the breath of polish holstein-friesian cattle. Animals 2021, 11, 3175. [Google Scholar] [CrossRef] [PubMed]
- Hickey, S.M.; Bain, W.E.; Bilton, T.P.; Greer, G.J.; Elmes, S.; Bryson, B.; Pinares-Patiño, C.S.; Wing, J.; Jonker, A.; Young, E.A. Impact of breeding for reduced methane emissions in New Zealand sheep on maternal and health traits. Front. Genet. 2022, 13, 2165. [Google Scholar] [CrossRef] [PubMed]
- Rowe, S.; Hickey, S.; Jonker, A.; Hess, M.; Janssen, P.; Johnson, T.; Bryson, B.; Knowler, K.; Pinares-Patino, C.; Bain, W. Selection for divergent methane yield in New Zealand sheep—A ten year perspective. In Proceedings of the 23rd Conference of the Association for the Advancement of Animal Breeding and Genetics (AAABG), Armidale, NSW, Australia, 27 October–1 November 2019; pp. 306–309. [Google Scholar]
- De Haas, Y.; Veerkamp, R.F.; de Jong, G.; Aldridge, M.N. Selective breeding as a mitigation tool for methane emissions from dairy cattle. Animal 2021, 15, 100294. [Google Scholar] [CrossRef] [PubMed]
- Manzanilla-Pech, C.I.V.; Lvendahl, P.; Mansan Gordo, D.; Difford, G.F.; Pryce, J.E.; Schenkel, F.; Wegmann, S.; Miglior, F.; Chud, T.C.; Moate, P.J. Breeding for reduced methane emission and feed-efficient Holstein cows: An international response. J. Dairy Sci. 2021, 104, 8983–9001. [Google Scholar] [CrossRef] [PubMed]
- Eugène, M.; Klumpp, K.; Sauvant, D. Methane mitigating options with forages fed to ruminants. Grass Forage Sci. 2021, 76, 196–204. [Google Scholar] [CrossRef]
- Suybeng, B.; Charmley, E.; Gardiner, C.P.; Malau-Aduli, B.S.; Malau-Aduli, A.E. Methane emissions and the use of desmanthus in beef cattle production in Northern Australia. Animals 2019, 9, 542. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, M.; Shibata, M.; Nishida, T.; Purnomoadi, A.; Terada, F. Methane production and its dietary manipulation in ruminants. In Rumen Microbes and Digestive Physiology in Ruminants; Japan Scientific Societies Press: Tokyo, Japan, 1997; pp. 199–208. ISBN 4-7622-0864-7. [Google Scholar]
- Nampoothiri, V.M.; Mohini, M.; Malla, B.A.; Mondal, G.; Pandita, S. Animal performance, and enteric methane, manure methane and nitrous oxide emissions from Murrah buffalo calves fed diets with different forage-to-concentrate ratios. Anim. Prod. Sci. 2020, 60, 780. [Google Scholar] [CrossRef]
- Thakur, S.; Mohini, M.; Malik, T.A.; Howal, S.; Varun, T.K.; Madavi, A.; Yadev, R.D.; Mondal, G.; Datt, C. Performance of crossbred goat kids fed with diets varying in concentrate-to-forage ratio: Intake, nutrient utilization, enteric methane emission and body weight changes. Biol. Rhythm Res. 2019, 52, 1334–1341. [Google Scholar] [CrossRef]
- Barbosa, A.L.; Voltolini, T.V.; Menezes, D.R.; Nascimento, J.C.S.; De Moraes, S.A.; Rodrigues, R.T.D.S. Intake, digestibility, growth performance, and enteric methane emission of Brazilian Semiarid non-descript breed goats fed diets with different forage to concentrate ratios. Trop. Anim. Health Prod. 2018, 50, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Al-Qaisi, O.; Al-Jazmi, F.; Al-Abri, M.; Al Kalaldeh, M.; Al Sabahi, J.; Al-Marzooqi, W. Effect of diet quality and shearing on feed and water intake, in vitro ruminal methane production, and blood parameters of Omani sheep. Trop. Anim. Health Prod. 2019, 52, 1115–1124. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Teng, Z.; Lang, C.; Zhou, H.; Zhong, W.; Ban, Z.; Yan, X.; Yang, H.; Farouk, M.H.; Lou, Y. Effect of different forage-to-concentrate ratios on ruminal bacterial structure and real-time methane production in sheep. PLoS ONE 2019, 14, e0214777. [Google Scholar] [CrossRef] [PubMed]
- Van Gastelen, S.; Dijkstra, J.; Bannink, A. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep? J. Dairy Sci. 2019, 102, 6109–6130. [Google Scholar] [CrossRef] [PubMed]
- Chagunda, M.G.G.; Flockhart, J.F.; Roberts, D.J. The effect of forage quality on predicted enteric methane production from dairy cows. Int. J. Agric. Sustain. 2010, 8, 250–256. [Google Scholar] [CrossRef]
- Thompson, L.; Rowntree, J. Invited Review: Methane sources, quantification, and mitigation in grazing beef systems. Appl. Anim. Sci. 2020, 36, 556–573. [Google Scholar] [CrossRef]
- Huhtanen, P.; Huuskonen, A. Modelling effects of carcass weight, dietary concentrate and protein levels on the CH4 emission, N and P excretion of dairy bulls. Livest. Sci. 2020, 232, 103896. [Google Scholar] [CrossRef]
- Singh, T.; Sharma, J.M. Feeding of concentrate and green fodder at an early age and its effects on growth rate in goat kids. J. Krishi Vigyan 2019, 8, 133–136. [Google Scholar] [CrossRef]
- Dini, Y.; Gere, J.I.; Cajarville, C.; Ciganda, V.S. Using highly nutritious pastures to mitigate enteric methane emissions from cattle grazing systems in South America. Anim. Prod. Sci. 2017, 58, 2329. [Google Scholar] [CrossRef]
- Vázquez-Carrillo, M.F.; Montelongo-Pérez, H.D.; González-Ronquillo, M.; Castillo-Gallegos, E.; Castelán-Ortega, O.A. Effects of three herbs on methane emissions from beef cattle. Animals 2020, 10, 1671. [Google Scholar] [CrossRef] [PubMed]
- Soltan, Y.A.; Morsy, A.S.; Sallam, S.M.A.; Louvandini, H.; Abdalla, A.L. Comparative in vitro evaluation of forage legumes (Prosopis, Acacia, Atriplex, and Leucaena) on ruminal fermentation and methanogenesis. J. Anim. Feed Sci. 2012, 21, 759–772. [Google Scholar] [CrossRef]
- Machmüller, A.; Soliva, C.R.; Kreuzer, M. Methane-suppressing effect of myristic acid in sheep as affected by dietary calcium and forage proportion. Br. J. Nutr. 2003, 90, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zeitz, J.O.; Meile, L.; Kreuzer, M.; Schwarm, A. Influence of pH and the degree of protonation on the inhibitory effect of fatty acids in the ruminal methanogen Methanobrevibacter ruminantium strain M1. J. Appl. Microbiol. 2015, 119, 1482–1493. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A.; McGinn, S.M.; Petit, H.V. Methane abatement strategies for cattle: Lipid supplementation of diets. Can. J. Anim. Sci. 2007, 87, 431–440. [Google Scholar] [CrossRef]
- Patra, A.K. The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: A meta-analysis. Livest. Sci. 2013, 155, 244–254. [Google Scholar] [CrossRef]
- Hassanat, F.; Benchaar, C. Methane emissions of manure from dairy cows fed red clover- or corn silage-based diets supplemented with linseed oil. J. Dairy Sci. 2019, 102, 11766–11776. [Google Scholar] [CrossRef] [PubMed]
- Grainger, C.; Beauchemin, K.A. Can enteric methane emissions from ruminants be lowered without lowering their production? Anim. Feed Sci. Technol. 2011, 167, 308–320. [Google Scholar] [CrossRef]
- McGinn, S.M.; Beauchemin, K.A.; Coates, T.; Colombatto, D. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid1. J. Anim. Sci. 2004, 82, 3346–3356. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.E.; Andrés, S.; López-Ferreras, L.; Snelling, T.J.; Yáñez-Ruíz, D.R.; García-Estrada, C.; López, S. Dietary supplemental plant oils reduce methanogenesis from anaerobic microbial fermentation in the rumen. Sci. Rep. 2020, 10, 1613. [Google Scholar] [CrossRef] [PubMed]
- Judy, J.V.; Bachman, G.C.; Brown-Brandl, T.M.; Fernando, S.C.; Hales, K.E.; Miller, P.S.; Stowell, R.R.; Kononoff, P.J. Reducing methane production with corn oil and calcium sulfate: Responses on whole-animal energy and nitrogen balance in dairy cattle. J. Dairy Sci. 2019, 102, 2054–2067. [Google Scholar] [CrossRef] [PubMed]
- Kholif, A.E.; Anele, U.Y.; Patra, A.K.; Varadyova, Z. Editorial: The use of phytogenic feed additives to enhance productivity and health in ruminants. Front. Vet. Sci. 2021, 8, 685262. [Google Scholar] [CrossRef] [PubMed]
- El-Zaiat, H.M.; Masood, A.H.; Al Hinai, S.S.; Al Maamari, R.H.; Al Riyami, S.S.; Al-Kharousi, K.; Al-Salami, A.H.; Al-Habsi, N. Assessment of different phytogenic-based additives on in vitro rumen fermentation profile and methane emissions. Front. Vet. Sci. 2025, 10, 1280611. [Google Scholar] [CrossRef] [PubMed]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Ferret, A. Essential oils as modifiers of rumen microbial fermentation: Invited review. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef] [PubMed]
- Soltan, Y.; Natel, A.; Araujo, R.; Morsy, A.; Abdalla, A. Progressive adaptation of sheep to a microencapsulated blend of essential oils: Ruminal fermentation, methane emission, nutrient digestibility, and microbial protein synthesis. Anim. Feed Sci. Technol. 2018, 237, 8–18. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Effects of Adaptation of in vitro rumen culture to garlic oil, nitrate, and saponin and their combinations on methanogenesis, fermentation, and abundances and diversity of microbial populations. Front. Microbiol. 2015, 6, 1434. [Google Scholar] [CrossRef] [PubMed]
- Morsy, A.S.; Soltan, Y.A.; Sallam, S.M.A.; Kreuzer, M.; Alencar, S.M.; Abdalla, A.L. Comparison of the in vitro efficiency of supplementary bee propolis extracts of different origin in enhancing the ruminal degradability of organic matter and mitigating the formation of methane. Anim. Feed Sci. Technol. 2015, 199, 51–60. [Google Scholar] [CrossRef]
- Morsy, A.S.; Soltan, Y.A.; El-Zaiat, H.M.; Alencar, S.M.; Abdalla, A.L. Bee propolis extract as a phytogenic feed additive to enhance diet digestibility, rumen microbial biosynthesis, mitigating methane formation and health status of late pregnant ewes. Anim. Feed Sci. Technol. 2021, 273, 114834. [Google Scholar] [CrossRef]
- Morsy, A.S.; Soltan, Y.A.; Sallam, S.M.; Alencar, S.M.; Abdalla, A.L. Impact of Brazilian red propolis extract on blood metabolites, milk production, and lamb performance of Santa Inês ewes. Trop. Anim. Health Prod. 2016, 48, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Soltan, Y.A.; Patra, A.K. Bee propolis as a natural feed additive: Bioactive compounds and effects on ruminal fermentation pattern as well as productivity of ruminants. Indian J. Anim. Health 2020, 59, 50–61. [Google Scholar] [CrossRef]
- Kalinowska, M.; Zimowski, J.; Paczkowski, C.; Wojciechowski, Z.A. The formation of sugar chains in triterpenoid saponins and glycoalkaloids. Phytochem. Rev. 2005, 4, 237–257. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutr. Res. Rev. 2009, 22, 204–219. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Morales, E.; Arco-Pérez, A.; Martín-García, A.I.; Yáñez-Ruiz, D.R.; Frutos, P.; Hervás, G. Use of stomach tubing as an alternative to rumen cannulation to study ruminal fermentation and microbiota in sheep and goats. Anim. Feed Sci. Technol. 2014, 198, 57–66. [Google Scholar] [CrossRef]
- Goel, G.; Makkar, H.P.S. Methane mitigation from ruminants using tannins and saponins, a status review. Trop. Anim. Health Prod. 2012, 44, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Ku-Vera, J.C.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Montoya-Flores, M.D.; Molina-Botero, I.C.; Arango, J. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Front. Vet. Sci. 2020, 7, 584. [Google Scholar] [CrossRef] [PubMed]
- El-Zaiat, H.M.; Kholif, A.E.; Moharam, M.S.; Attia, M.F.; Abdalla, A.L.; Sallam, S.M.A. The ability of tanniniferous legumes to reduce methane production and enhance feed utilization in Barki rams: In vitro and in vivo evaluation. Small Rumin Res. 2020, 193, 106259. [Google Scholar] [CrossRef]
- Pal, K.; Patra, A.K.; Sahoo, A.; Kumawat, P.K. Evaluation of several tropical tree leaves for methane production potential, degradability and rumen fermentation in vitro. Livest. Sci. 2015, 180, 98–105. [Google Scholar] [CrossRef]
- Soltan, Y.A.; Morsy, A.S.; Lucas, R.C.; Abdalla, A.L. Potential of mimosine of Leucaena leucocephala for modulating ruminal nutrient degradability and methanogenesis. Anim. Feed Sci. Technol. 2017, 223, 30–41. [Google Scholar] [CrossRef]
- Formato, M.; Cimmino, G.; Brahmi-Chendouh, N.; Piccolella, S.; Pacifico, S. Polyphenols for livestock feed: Sustainable perspectives for animal husbandry. Molecules 2022, 27, 7752. [Google Scholar] [CrossRef] [PubMed]
- Oskoueian, E.; Abdullah, N.; Oskoueian, A. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. BioMed Res. Int. 2013, 2013, 349129. [Google Scholar] [CrossRef] [PubMed]
- Seradj, A.R.; Abecia, L.; Crespo, J.; Villalba, D.; Fondevila, M.; Balcells, J. The effect of Bioflavex®and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high concentrate diets. Anim. Feed Sci. Technol. 2014, 197, 85–91. [Google Scholar] [CrossRef]
- María Carpena, R.; Cristina, C.; Bernabe, N.-E.; Eliana, P.; Maria, F.-C.; Filipa, S.R.; Jesus, S.G.; Isabel, C.F.R.F.; Miguel, A.P.; Lillian, B. Flavonoids: A group of potential food additives with beneficial health effects. In Natural Food Additives; Miguel, A.P., Paz, O., Eds.; IntechOpen: Rijeka, Croatia, 2021; p. 4. [Google Scholar]
- Fievez, V.; Boeckaert, C.; Vlaeminck, B.; Mestdagh, J.; Demeyer, D. In vitro examination of DHA-edible micro-algae: 2. Effect on rumen methane production and apparent degradability of hay. Anim. Feed Sci. Technol. 2007, 136, 80–95. [Google Scholar] [CrossRef]
- Sucu, E. Effects of microalgae species on in vitro rumen fermentation pattern and methane production. Ann. Anim. Sci. 2007, 20, 207–218. [Google Scholar] [CrossRef]
- Anele, U.; Yang, W.; McGinn, P.; Tibbetts, S.; McAllister, T. Ruminal in vitro gas production, dry matter digestibility, methane abatement potential, and fatty acid biohydrogenation of six species of microalgae. Can. J. Anim. Sci. 2016, 96, 354–363. [Google Scholar] [CrossRef]
- Machado, L.; Magnusson, M.; Paul, N.A.; de Nys, R.; Tomkins, N. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS ONE 2014, 9, e85289. [Google Scholar] [CrossRef] [PubMed]
- Kinley, R.D.; De Nys, R.; Vucko, M.J.; Machado, L.; Tomkins, N.W. The red macroalgae Asparagopsis taxiformis is a potent natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. Anim. Prod. Sci. 2016, 56, 282–289. [Google Scholar] [CrossRef]
- Roque, B.M.; Brooke, C.G.; Ladau, J.; Polley, T.; Marsh, L.J.; Najafi, N.; Pandey, P.; Singh, L.; Kinley, R.; Salwen, J.K. Effect of the macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage. Anim. Microb 2019, 1, 1–14. [Google Scholar]
- Maia, M.R.; Fonseca, A.J.; Cortez, P.P.; Cabrita, A.R. In vitro evaluation of macroalgae as unconventional ingredients in ruminant animal feeds. Algal Res. 2019, 40, 101481. [Google Scholar] [CrossRef]
- Magnusson, M.; Vucko, M.J.; Neoh, T.L.; de Nys, R. Using oil immersion to deliver a naturally-derived, stable bromoform product from the red seaweed Asparagopsis taxiformis. Algal Res. 2020, 51, 102065. [Google Scholar] [CrossRef]
- Tirado-González, D.N.; Miranda-Romero, L.A.; Ruíz-Flores, A.; Medina-Cuéllar, S.E.; Ramírez-Valverde, R.; Tirado-Estrada, G. Meta-analysis: Effects of exogenous fibrolytic enzymes in ruminant diets. J. Appl. Anim. Res. 2018, 46, 771–783. [Google Scholar] [CrossRef]
- Eun, J.S.; Beauchemin, K.A. Assessment of the efficacy of varying experimental exogenous fibrolytic enzymes using in vitro fermentation characteristics. Anim. Feed Sci. Technol. 2007, 132, 298–315. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Jiménez-Ocampo, R.; Valencia-Salazar, S.; Pinzón-Díaz, C.E.; Herrera-Torres, E.; Aguilar-Pérez, C.F.; Jacobo-Arango, J. The role of chitosan as a possible agent for enteric methane mitigation in ruminants. Animals 2019, 9, 942. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cai, C.; Li, J.; Li, J.; Li, J.; Sun, T.W.L. Chitosan-based nanomaterials for drug delivery. Molecules 2018, 23, 2661. [Google Scholar] [CrossRef] [PubMed]
- El-Zaiat, H.M.; Al-Marzooqi, W.; Al-Kharousi, K. Exploring rumen fermentation and microbial populations in Dhofari goats fed a chitosan-added diet. Anim. Biotechnol. 2024, 35, 2337748. [Google Scholar] [CrossRef] [PubMed]
- El-Zaiat, H.M.; Al-Marzooqi, W.; Al-Kharousi, K. Effects of Chitosan-Based Additive on Rumen Fermentation Microbial Community Nutrients Digestibility Lactation Performance in Goats. J. Anim. Physiol. Anim. Nutr. 2025, 109, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Gandra, J.R.; Takiya, C.S.; Oliveira, E.R.; Paiva, P.G.; Goes, R.H.T.B.; Gandra, É.R.S. Nutrient digestion, microbial protein synthesis, and blood metabolites of Jersey heifers fed chitosan and whole raw soybeans. R. Bras. Zootec. 2016, 45, 130–137. [Google Scholar] [CrossRef]
- Zanferari, F.; Vendramini, T.H.A.; Rentas, M.F.; Gardinal, R.; Calomeni, G.D.; Mesquita, L.G. Effects of chitosan and whole raw soybeans on ruminal fermentation and bacterial populations, and milk fatty acid profile in dairy cows. J. Dairy Sci. 2018, 101, 10939–10952. [Google Scholar] [CrossRef] [PubMed]
- McAllister, T.A.; Newbold, C.J. Redirecting rumen fermentation to reduce methanogenesis. Aust. J. Exp. Agric. 2008, 48, 7–13. [Google Scholar] [CrossRef]
- El-Zaiat, H.M.; Araujo, R.C.; Soltan, Y.A.; Morsy, A.S.; Louvandini, H.; Pire, A.V.; Correa, P.S.; Patiño, H.O.; Abdalla, A.L. Encapsulated nitrate and cashew nut shell liquid on blood and rumen constituents, methane emission, and growth performance of lambs. J. Anim. Sci. 2014, 92, 2214–2224. [Google Scholar] [CrossRef] [PubMed]
- Nolan, J.V.; Hegarty, R.S.; Hegarty, J.; Godwin, I.R.; Woodgate, R. Effects of dietary nitrate on fermentation, methane production and digesta kinetics in sheep. Anim. Prod Sci. 2010, 50, 801–806. [Google Scholar] [CrossRef]
- Van Zijderveld, S.M.; Gerrits, W.J.J.; Dijkstra, J.; Newbold, J.R.; Hulshof, R.B.A.; Perdok, H.B. Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. J. Dairy Sci. 2011, 94, 4028–4038. [Google Scholar] [CrossRef] [PubMed]
- Troy, S.M.; Duthie, C.A.; Hyslop, J.J.; Roehe, R.; Ross, D.W.; Wallace, R.J.; Wterhouse, A.; Rooke, J.A. Effectiveness of nitrate addition increased oil content as methane mitigation strategies for beef cattle fed two contrasting basal diets. J. Anim. Sci. 2015, 93, 1815–1823. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C. SPECIAL TOPICS—Mitigation of methane and nitrous oxide emissions from animal operations: I. A Review of Enteric Methane Mitigation Options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef] [PubMed]
- Tate, K.; Yuan, G.; Theng, B.; Churchman, G.; Singh, J.; Berben, P. Can geophagy mitigate enteric methane emissions from cattle. J. Prelim. Res. 2015, 2, 1–8. [Google Scholar]
- Maki, C.R.; Haney, S.; Wang, M.; Ward, S.H.; Bailey, R.H. Calcium montmorillonite clay for the reduction of aflatoxin residues in milk and dairy products. Dairy Vet. Sci. J. 2017, 2, 555587. [Google Scholar]
- Soltan, Y.; Morsy, A.; Nesrein, H.; Mahmoud, E.; Mohamed, S.; Haneen, M.; Gomaa, A.; Nagwa, E.; Nourhan, H.; Ahmed, M.; et al. Modified nano-montmorillonite and monensin modulate in vitro ruminal fermentation, nutrient degradability, and methanogenesis differently. Animals 2021, 11, 3005. [Google Scholar] [CrossRef] [PubMed]
- Soltan, Y.; Morsy, A.S.; Hashem, N.M.; Elazab, M.A.; Sultan, M.A.; El-Nile, A.; Marey, H.N.; Abo El Lail, G.; El-Desoky, N.; Hosny, N.S.; et al. Potential of montmorillonite modified by an organosulfur surfactant for reducing aflatoxin B1 toxicity and ruminal methanogenesis in vitro. BMC Vet. Res. 2022, 18, 387. [Google Scholar] [CrossRef] [PubMed]
- Al Adawi, S.A.; El-Zaiat, H.M.; Morsy, A.S.; Soltan, Y.A. Lactation performance and rumen fermentation in dairy cows fed a diet supplemented with monensin or Gum Arabic-Nano Montmorillonite compost as a natural feed additive. Animals 2024, 149, 1649. [Google Scholar] [CrossRef] [PubMed]
- Banat, F.; Al-Asheh, S.; Abu-Aitah, L. Examination of the effectiveness of Physical and chemical activation of natural bentonite for the removal of heavy metal ions from aqueous solutions. Adsorpt. Sci. Technol. 2002, 20, 151–167. [Google Scholar] [CrossRef]
- Magaña, S.M.; Quintana, P.; Aguilar, D.H.; Toledo, J.A.; Ángeles-Chávez, C.; Cortés, M.A.; León, L.; Freile-Pelegrín, Y.; López, T.; Torres Sánchez, R.M. Antibacterial activity of montmorillonites modified with silver. J. Mol. Catal. A Chem. 2008, 281, 192–199. [Google Scholar] [CrossRef]
- El-Nile, A.; Elazab, M.; El-Zaiat, H.; El-Azrak, K.E.; Elkomy, A.; Sallam, S.; Soltan, Y. In vitro and in vivo assessment of dietary supplementation of both natural or nano-zeolite in goat diets: Effects on ruminal fermentation and nutrients digestibility. Animals 2021, 11, 2215. [Google Scholar] [CrossRef] [PubMed]
- Leng, R.A.; Preston, T.R.; Inthapanya, S. Biochar reduces enteric methane and improves growth and feed conversion in local “Yellow” cattle fed cassava root chips and fresh cassava foliage. Livest. Res. Rural Develop. 2012, 24, 11. [Google Scholar]
- Llonch, P.; Haskell, M.J.; Dewhurst, R.J.; Turner, S.P. Current available strategies to mitigate greenhouse gas emissions in livestock systems: An animal welfare perspective. Animal 2017, 11, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Norman, H.C.; Kinley, R.D.; Laurence, M.; Wilmot, M.; Bender, H.; de Nys, R.; Tomkins, N. Asparagopsis taxiformis decreases enteric methane production from sheep. Anim. Prod. Sci. 2016, 58, 681–688. [Google Scholar] [CrossRef]
- Jayanegara, A.; Sarwono, K.A.; Kondo, M.; Matsui, H.; Ridla, M.; Laconi, E.; Nahrowi, B. Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: A meta-analysis. Ital. J. Anim. Sci. 2018, 17, 650–656. [Google Scholar] [CrossRef]
- Martínez-Fernández, G.; Abecia, L.; Arco, A.; Cantalapiedra-Hijar, G.; Martín-García, A.I.; Molina-Alcaide, E.; Kindermann, M.; Duval, S.; Yáñez-Ruiz, D.R. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep. J. Dairy. Sci. 2014, 97, 3790–3799. [Google Scholar] [CrossRef] [PubMed]
- Haisan, J.; Sun, Y.; Guan, L.L.; Beauchemin, K.A.; Iwaasa, A.; Duval, S.; Barreda, D.; Oba, M. The effects of feeding 3- nitrooxypropanol on methane emissions productivity of Holstein cows in mid lactation. J. Dairy Sci. 2014, 97, 3110–3119. [Google Scholar] [CrossRef] [PubMed]
- Krehbiel, C.R.; Rust, S.R.; Zhang, G.; Gilliland, S.E. Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. J. Anim. Sci. 2003, 81, E120–E132. [Google Scholar]
- Ungerfeld, E.M. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Front. Microbiol. 2015, 6, 37. [Google Scholar] [CrossRef] [PubMed]
- Jeyanathan, J.; Martin, C.; Morgavi, D.P. The use of direct-fed microbials for mitigation of ruminant methane emissions: Review. Animal 2014, 8, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Vyas, D.; Alazzeh, A.; McGinn, S.M.; McAllister, T.A.; Harstad, O.M.; Holo, H. Enteric methane emissions in response to ruminal inoculation of Propionibacterium strains in beef cattle fed a mixed diet. Anim. Prod Sci. 2015, 56, 1035–1040. [Google Scholar] [CrossRef]
- Chen, J.; Harstad, O.M.; McAllister, T.; Dörsch, P.; Holo, H. Propionic acid bacteria enhance ruminal feed degradation and reduce methane production in vitro. Acta Agric. Scand. 2020, 69, 169–175. [Google Scholar] [CrossRef]
- Jeyanathan, J.; Martin, C.; Eugène, M.; Ferlay, A.; Popova, M.; Morgavi, D.P. Bacterial direct-fed microbials fail to reduce methane emissions in primiparous lactating dairy cows. J. Anim. Sci. Biotechnol. 2019, 10, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Ragsdale, S.W.; Pierce, E. Acetogenesis and the wood–ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta 2008, 1784, 1873–1898. [Google Scholar] [CrossRef] [PubMed]
- Henderson, G.; Naylor, G.E.; Leahy, S.C.; Janssen, P.H. Presence of novel, potentially homoacetogenic bacteria in the rumen as determined by analysis of formyltetrahydrofolate synthetase sequences from ruminants. Appl. Environ. Microbiol. 2010, 76, 2058–2066. [Google Scholar] [CrossRef] [PubMed]
- Finn, D.; Ouwerkerk, D.; Klieve, A. Methanotrophs from Natural Ecosystems as Biocontrol Agents for Ruminant Methane Emissions; Meat & Livestock Australia Limited: North Sydney, Australia, 2012. [Google Scholar]
- Lackner, M.; Drew, D.; Bychkova, V.; Mustakhimov, I. Value-Added Products from Natural Gas Using Fermentation Processes: Products from natural gas using fermentation processes, Part 2. In Natural Gas—New Perspectives and Future Developments; Ravanchi, M.T., Ed.; Intechopen: London, UK, 2022. [Google Scholar]
- Schären, M.; Drong, C.; Kiri, K.; Riede, S.; Gardener, M.; Meyer, U.; Hummel, J.; Urich, T.; Breves, G.; Dänicke, S. Differential effects of monensin and a blend of essential oils on rumen microbiota composition of transition dairy cows. J. Dairy Sci. 2017, 100, 2765–2783. [Google Scholar] [CrossRef] [PubMed]
- Ranga Niroshan Appuhamy, J.A.D.; Strathe, A.B.; Jayasundara, S.; Wagner-Riddle, C.; Dijkstra, J.; France, J.; Kebreab, E. Anti-methanogenic effects of monensin in dairy and beef cattle: A meta-analysis. J. Dairy Sci. 2013, 96, 5161–5173. [Google Scholar] [CrossRef] [PubMed]
- Hook, S.E.; Northwood, K.S.; Wright, A.D.; McBride, B.W. Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Appl. Environ. Microbiol. 2009, 75, 374–380. [Google Scholar] [CrossRef] [PubMed]
- CMPVU Committee for Medicinal Products for Veterinary Use. Monensin (Cattle, Including Dairy Cows). European Medicines Agency Veterinary Medicines and Inspections. 2007. Available online: https://www.ema.europa.eu/en/documents/mrl-report/monensin-cattle-including-dairy-cows-summary-report-committee-veterinary-medicinal-products_en.pdf (accessed on 10 February 2023).
- Subharat, S.; Shu, D.; Zheng, T.; Buddle, B.M.; Kaneko, K.; Hook, S.; Janssen, P.H.; Wedlock, D.N. Vaccination of sheep with a methanogen protein provides insight into levels of antibody in saliva needed to target ruminal methanogens. PLoS ONE 2016, 11, e0159861. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.R.; Maiti, P.K.; Chaves, A.V.; Benchaar, C.; Beauchemin, K.A.; McAllister, T.A. Avian (IgY) anti-methanogen antibodies for reducing ruminal methane production: In vitro assessment of their effects. Aust. J. Exp. Agric. 2008, 48, 260–264. [Google Scholar] [CrossRef]
- Baca-González, V.; Asensio-Calavia, P.; González-Acosta, S.; Pérez de la Lastra, J.M.; Morales de la Nuez, A. Are vaccines the solution for methane emissions from ruminants? A systematic review. Vaccines 2020, 8, 460. [Google Scholar] [CrossRef] [PubMed]
- Williams, Y.J.; Rea, S.M.; Popovski, S.; Pimm, C.L.; Williams, A.J.; Toovey, A.F.; Skillman, L.C.; Wright, A.D. Reponses of sheep to a vaccination of entodinial or mixed rumen protozoal antigens to reduce rumen protozoal numbers. Br. J. Nutr. 2008, 99, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Williams, Y.J.; Popovski, S.; Rea, S.M.; Skillman, L.C.; Toovey, A.F.; Northwood, K.S.; Wright, A.D. A vaccine against rumen methanogens can alter the composition of archaeal populations. Appl. Environ. Microbiol. 2009, 75, 1860–1866. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Hess, P.S.; Little, S.M.; Moate, P.J.; Jacobs, J.L.; Beauchemin, K.A.; Eckard, R.J. A partial life cycle assessment of the greenhouse gas mitigation potential of feeding 3-nitrooxypropanol and nitrate to cattle. Agric. Syst. 2019, 169, 14–23. [Google Scholar] [CrossRef]
- Kittelmann, S.; Pinares-Patiño, C.S.; Seedorf, H.; Kirk, M.R.; McEwan, J.C.; Janssen, P.H. Natural variation in methane emission of sheep fed on a lucerne pellet diet is unrelated to rumen ciliate community type. Microbiol. 2016, 162, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Kalscheur, K.F.; Huhtanen, P.; Faciola, A.P. Effects of ruminal protozoa on methane emissions in ruminants-A metaanalysis. J. Dairy Sci. 2022, 105, 7482–7491. [Google Scholar] [CrossRef] [PubMed]
- Morgavi, D.P.; Forano, E.; Martin, C.; Newbold, C.J. Microbial ecosystem and methanogenesis in ruminants. Animal 2010, 4, 1024–1036. [Google Scholar] [CrossRef] [PubMed]
- Newbold, C.J.; de la Fuente, G.; Belanche, A.; Ramos-Morales, E.; McEwan, N.R. The role of ciliate protozoa in the rumen. Front. Microbiol. 2015, 6, 1313. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.H.; Nguyen, H.D.T.; Hegarty, R.S. Defaunation and its impacts on ruminal fermentation, enteric methane production and animal productivity. Livest. Res. Rural Develop. 2020, 32, 60. [Google Scholar]
- Bayaru, E.; Kanda, S.; Kamada, T.; Itabashi, H.; Andoh, S.; Nishida, T.; Ishida, M.; Itoh, T.; Nagara, K.; Isobe, Y. Effect of fumaric acid on methane production, rumen fermentation and digestibility of cattle fed roughage alone. Nihon Chikusan Gakkaiho 2001, 72, 139–146. [Google Scholar] [CrossRef]
- Wood, T.A.; Wallace, R.J.; Rowe, A.; Price, J.; Yáñez-Ruiz, D.R.; Murray, P.; Newbold, C.J. Encapsulated fumaric acid as a feed ingredient to decrease ruminal methane emissions. Anim. Feed Sci. Technol. 2009, 52, 62–71. [Google Scholar] [CrossRef]
- Eckard, R.J.; Grainger, C.; De Klein, C.A.M. Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livest. Sci. 2010, 130, 47–56. [Google Scholar] [CrossRef]
- Reynolds, C.K.; Humphries, D.J.; Kirton, P.; Kindermann, M.; Duval, S.; Steinberg, W. Effects of 3-nitrooxypropanol on methane emission, digestion, and energy and nitrogen balance of lactating dairy cows. J. Dairy Sci. 2014, 97, 3777–3789. [Google Scholar] [CrossRef] [PubMed]
- Sonesson, U.; Cederberg, C.; Berglund, M. Greenhouse Gas Emissions in Animal Feed Production; Klimatmärkning för mat, Svenskt Sigill: Stockholm, Sweden, 2009. [Google Scholar]
- Rennie, T.J.; Gordon, R.J.; Smith, W.N.; VanderZaag, A.C. Liquid manure storage temperature is affected by storage design and management practices—A modelling assessment. Agric. Ecosyst. Environ. 2018, 260, 47–57. [Google Scholar] [CrossRef]
- Aguirre-Villegas, H.A.; Larson, R.A. Evaluating greenhouse gas emissions from dairy manure management practices using survey data and lifecycle tools. J. Cleaner Prod. 2017, 143, 169–179. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
Method Type | Technique | Description | Advantages | Limitations |
---|---|---|---|---|
In vitro | Syringe technique | Measures gas volume or pressure from fermentation in gas-tight syringes | Simple, low-cost, widely used | Limited data resolution; not automated |
Batch culture | Static fermentation using rumen fluid and feed to measure CH4 and fermentation end-products | Scalable, suitable for screening | Lacks continuous feeding and product removal | |
RUSITEC (Rumen Simulation Technique) | Multi-vessel continuous system mimicking rumen environment over long periods | Reproducible, long-term studies, microbial adaptation possible | Complex setup, labor-intensive | |
Semi-automated gas production technique | Uses water displacement and pressure sensors for periodic gas measurements | Reduces manual handling, higher data resolution | Requires operator supervision; not fully continuous | |
Automated wireless gas production technique | Uses sensors with wireless data transmission to record gas production in real-time | Real-time data, reduced human error, scalable | Requires calibration and controlled environment | |
Fully automated wireless gas production technique | Fully integrated system for gas, pH, and temperature monitoring with remote control | High throughput, real-time monitoring, minimal labor | High initial cost, needs technical setup | |
In vivo | Respiration chambers | Sealed chambers monitor animal respiration gases (CH4, CO2, O2) | Highly accurate; gold standard | Expensive, limited throughput, animal confinement |
GreenFeed system | Portable feeding unit measures CH4 during short-term visits | Field-usable, less invasive, allows for multiple animals | Depends on animal behavior and access | |
SF6 tracer technique | Uses sulfur hexafluoride as a tracer gas to estimate CH4 in breath samples | Applicable to grazing animals | Technical complexity, calibration required | |
Laser CH4 detector (LMD) | Infrared laser detects CH4 concentration near the animal’s muzzle | Non-invasive, portable, instant readings | Measures concentration, not volume; influenced by wind | |
Sniffer, face mask, ventilated hood | Devices to capture and analyze breath CH4 directly from animal’s headspace | Easy to deploy, moderate cost | Variability due to animal movement, moderate accuracy | |
Indirect | IPCC Tier 1–3 models | Statistical models estimating CH4 based on emission factors and activity data | Useful at national or regional scales | Tier 1 is highly generalized; accuracy improves with data quality |
Strategy Type | Example Techniques/Additives | Mode of Action | Effectiveness | Challenges |
---|---|---|---|---|
Animal and Feed Management | Genetic selection, improved pasture, F:C ratio | Lower CH4 yield per unit product | Moderate–High (long-term) | Data-intensive, slow progress |
Diet Formulation | Oils, tannins, saponins, seaweeds, microalgae | Inhibit methanogens, shift VFA profile | Variable (5–80%) | Cost, diet palatability |
Rumen Manipulation | Probiotics, DFMs, ionophores, vaccines | Alter microbial fermentation, suppress CH4 | Moderate–High | Regulatory limitations, consistency |
Manure Management | Anaerobic digestion, composting, cooling, cover systems | Reduce CH4/N2O from waste storage | Moderate | Cost, infrastructure |
Electron Acceptors | Nitrate, fumarate, sulfate | Compete with CH4 pathways | Moderate–High | Risk of toxicity (e.g., nitrate) |
Emerging Technologies | Nanoclays, biochar, 3-NOP, halogenated compounds | Target methanogenesis enzymes or microbes | High (up to 90%) | Safety, acceptance, regulations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morsy, A.S.; Soltan, Y.A.; Al-Marzooqi, W.; El-Zaiat, H.M. Integrating Technological Innovations and Sustainable Practices to Abate Methane Emissions from Livestock: A Comprehensive Review. Sustainability 2025, 17, 6458. https://doi.org/10.3390/su17146458
Morsy AS, Soltan YA, Al-Marzooqi W, El-Zaiat HM. Integrating Technological Innovations and Sustainable Practices to Abate Methane Emissions from Livestock: A Comprehensive Review. Sustainability. 2025; 17(14):6458. https://doi.org/10.3390/su17146458
Chicago/Turabian StyleMorsy, Amr S., Yosra A. Soltan, Waleed Al-Marzooqi, and Hani M. El-Zaiat. 2025. "Integrating Technological Innovations and Sustainable Practices to Abate Methane Emissions from Livestock: A Comprehensive Review" Sustainability 17, no. 14: 6458. https://doi.org/10.3390/su17146458
APA StyleMorsy, A. S., Soltan, Y. A., Al-Marzooqi, W., & El-Zaiat, H. M. (2025). Integrating Technological Innovations and Sustainable Practices to Abate Methane Emissions from Livestock: A Comprehensive Review. Sustainability, 17(14), 6458. https://doi.org/10.3390/su17146458