Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = enteric fermentation manipulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 857 KB  
Review
Integrating Technological Innovations and Sustainable Practices to Abate Methane Emissions from Livestock: A Comprehensive Review
by Amr S. Morsy, Yosra A. Soltan, Waleed Al-Marzooqi and Hani M. El-Zaiat
Sustainability 2025, 17(14), 6458; https://doi.org/10.3390/su17146458 - 15 Jul 2025
Viewed by 1382
Abstract
Livestock farming is a vital component of global food security, yet it remains a major contributor to greenhouse gas (GHG) emissions, particularly methane (CH4), which has a global warming potential 28 times greater than carbon dioxide (CO2). This review [...] Read more.
Livestock farming is a vital component of global food security, yet it remains a major contributor to greenhouse gas (GHG) emissions, particularly methane (CH4), which has a global warming potential 28 times greater than carbon dioxide (CO2). This review provides a comprehensive synthesis of current knowledge surrounding the sources, biological mechanisms, and mitigation strategies related to CH4 emissions from ruminant livestock. We first explore the process of methanogenesis within the rumen, detailing the role of methanogenic archaea and the environmental factors influencing CH4 production. A thorough assessment of both direct and indirect methods used to quantify CH4 emissions is presented, including in vitro techniques (e.g., syringe method, batch culture, RUSITEC), in vivo techniques (e.g., respiration chambers, Greenfeed, laser CH4 detectors), and statistical modeling approaches. The advantages and limitations of each method are critically analyzed in terms of accuracy, cost, feasibility, and applicability to different farming systems. We then examine a wide range of mitigation strategies, organized into four core pillars: (1) animal and feed management (e.g., genetic selection, pasture quality improvement), (2) diet formulation (e.g., feed additives such as oils, tannins, saponins, and seaweed), (3) rumen manipulation (e.g., probiotics, ionophores, defaunation, vaccination), and (4) manure management practices and policy-level interventions. These strategies are evaluated not only for their environmental impact but also for their economic and practical viability in diverse livestock systems. By integrating technological innovations with sustainable agricultural practices, this review highlights pathways to reduce CH4 emissions while maintaining animal productivity. It aims to support decision-makers, researchers, and livestock producers in the global effort to transition toward climate-smart, low-emission livestock farming. Full article
Show Figures

Figure 1

21 pages, 1583 KB  
Review
3.0 Strategies for Yeast Genetic Improvement in Brewing and Winemaking
by Chiara Nasuti, Lisa Solieri and Kristoffer Krogerus
Beverages 2025, 11(4), 100; https://doi.org/10.3390/beverages11040100 - 1 Jul 2025
Viewed by 2241
Abstract
Yeast genetic improvement is entering a transformative phase, driven by the integration of artificial intelligence (AI), big data analytics, and synthetic microbial communities with conventional methods such as sexual breeding and random mutagenesis. These advancements have substantially expanded the potential for innovative re-engineering [...] Read more.
Yeast genetic improvement is entering a transformative phase, driven by the integration of artificial intelligence (AI), big data analytics, and synthetic microbial communities with conventional methods such as sexual breeding and random mutagenesis. These advancements have substantially expanded the potential for innovative re-engineering of yeast, ranging from single-strain cultures to complex polymicrobial consortia. This review compares traditional genetic manipulation techniques with cutting-edge approaches, highlighting recent breakthroughs in their application to beer and wine fermentation. Among the innovative strategies, adaptive laboratory evolution (ALE) stands out as a non-GMO method capable of rewiring complex fitness-related phenotypes through iterative selection. In contrast, GMO-based synthetic biology approaches, including the most recent developments in CRISPR/Cas9 technologies, enable efficient and scalable genome editing, including multiplexed modifications. These innovations are expected to accelerate product development, reduce costs, and enhance the environmental sustainability of brewing and winemaking. However, despite their technological potential, GMO-based strategies continue to face significant regulatory and market challenges, which limit their widespread adoption in the fermentation industry. Full article
(This article belongs to the Section Malting, Brewing and Beer)
Show Figures

Figure 1

25 pages, 683 KB  
Article
Quantifying the Impact of Different Dietary Rumen Modulating Strategies on Enteric Methane Emission and Productivity in Ruminant Livestock: A Meta-Analysis
by Bulelani N. Pepeta, Abubeker Hassen and Eyob H. Tesfamariam
Animals 2024, 14(5), 763; https://doi.org/10.3390/ani14050763 - 29 Feb 2024
Cited by 12 | Viewed by 5209
Abstract
A meta-analysis was conducted with an aim to quantify the beneficial effects of nine different dietary rumen modulating strategies which includes: the use of plant-based bioactive compounds (saponin, tannins, oils, and ether extract), feed additives (nitrate, biochar, seaweed, and 3-nitroxy propanol), and diet [...] Read more.
A meta-analysis was conducted with an aim to quantify the beneficial effects of nine different dietary rumen modulating strategies which includes: the use of plant-based bioactive compounds (saponin, tannins, oils, and ether extract), feed additives (nitrate, biochar, seaweed, and 3-nitroxy propanol), and diet manipulation (concentrate feeding) on rumen fermentation, enteric methane (CH4) production (g/day), CH4 yield (g/kg dry matter intake) and CH4 emission intensity (g/kg meat or milk), and production performance parameters (the average daily gain, milk yield and milk quality) of ruminant livestock. The dataset was constructed by compiling global data from 110 refereed publications on in vivo studies conducted in ruminants from 2005 to 2023 and anlayzed using a meta-analytical approach.. Of these dietary rumen manipulation strategies, saponin and biochar reduced CH4 production on average by 21%. Equally, CH4 yield was reduced by 15% on average in response to nitrate, oils, and 3-nitroxy propanol (3-NOP). In dairy ruminants, nitrate, oils, and 3-NOP reduced the intensity of CH4 emission (CH4 in g/kg milk) on average by 28.7%. Tannins and 3-NOP increased on average ruminal propionate and butyrate while reducing the acetate:propionate (A:P) ratio by 12%, 13.5% and 13%, respectively. Oils increased propionate by 2% while reducing butyrate and the A:P ratio by 2.9% and 3.8%, respectively. Use of 3-NOP increased the production of milk fat (g/kg DMI) by 15% whereas oils improved the yield of milk fat and protein (kg/d) by 16% and 20%, respectively. On the other hand, concentrate feeding improved dry matter intake and milk yield (g/kg DMI) by 23.4% and 19%, respectively. However, feed efficiency was not affected by any of the dietary rumen modulating strategies. Generally, the use of nitrate, saponin, oils, biochar and 3-NOP were effective as CH4 mitigating strategies, and specifically oils and 3-NOP provided a co-benefit of improving production parameters in ruminant livestock. Equally concentrate feeding improved production parameters in ruminant livestock without any significant effect on enteric methane emission. Therefore, it is advisable to refine further these strategies through life cycle assessment or modelling approaches to accurately capture their influence on farm-scale production, profitability and net greenhouse gas emissions. The adoption of the most viable, region-specific strategies should be based on factors such as the availability and cost of the strategy in the region, the specific goals to be achieved, and the cost–benefit ratio associated with implementing these strategies in ruminant livestock production systems. Full article
Show Figures

Figure 1

22 pages, 1893 KB  
Review
Reducing Enteric Methanogenesis through Alternate Hydrogen Sinks in the Rumen
by Prasanta Kumar Choudhury, Rajashree Jena, Sudhir Kumar Tomar and Anil Kumar Puniya
Methane 2022, 1(4), 320-341; https://doi.org/10.3390/methane1040024 - 29 Nov 2022
Cited by 29 | Viewed by 10521
Abstract
Climate change and the urgent need to reduce greenhouse gas (GHG) emission from agriculture has resulted in significant pressure on the livestock industry for advanced practices that are environmentally more sustainable. Livestock is responsible for more than 15% of anthropogenic methane (CH4 [...] Read more.
Climate change and the urgent need to reduce greenhouse gas (GHG) emission from agriculture has resulted in significant pressure on the livestock industry for advanced practices that are environmentally more sustainable. Livestock is responsible for more than 15% of anthropogenic methane (CH4) emission via enteric fermentation and improved strategies for mitigating enteric CH4 production therefore represents a promising target to reduce the overall GHG contribution from agriculture. Ruminal CH4 is produced by methanogenic archaea, combining CO2 and hydrogen (H2). Removal of H2 is essential, as its accumulation inhibits many biological functions that are essential for maintaining a healthy rumen ecosystem. Although several other pathways occur in the rumen, including reductive acetogenesis, propionogenesis, nitrate, and sulfate reduction, methanogenesis seems to be the dominant pathway for H2 removal. Global warming is not the only problem associated with the release of CH4 from ruminants, but the released GHG also represent valuable metabolic energy that is lost to the animal and that needs to be replenished via its food. Therefore, reduction of enteric CH4 emissions will benefit not only the environment but also be an important step toward the efficient production of high-quality animal-based protein. In recent decades, several approaches, relying on a diverse set of biological and chemical compounds, have been tested for their ability to inhibit rumen methanogenesis reliably and without negative effects for the ruminant animal. Although many of these strategies initially appeared to be promising, they turned out to be less sustainable on the industrial scale and when implemented over an extended period. The development of a long-term solution most likely has been hindered by our still incomplete understanding of microbial processes that are responsible for maintaining and dictating rumen function. Since manipulation of the overall structure of the rumen microbiome is still a significant challenge targeting key intermediates of rumen methanogenesis, such as H2, and population that are responsible for maintaining the H2 equilibrium in the rumen could be a more immediate approach. Addition of microorganisms capable of non-methanogenic H2 sequestration or of reducing equivalents are potential avenues to divert molecular H2 from methanogenesis and therefore for abate enteric CH4. However, in order to achieve the best outcome, a detailed understanding of rumen microbiology is needed. Here we discuss some of the problems and benefits associated with alternate pathways, such as reductive acetogenesis, propionogenesis, and sulfate and nitrate reduction, which would allow us to bypass H2 production and accumulation in the rumen. Full article
Show Figures

Figure 1

20 pages, 352 KB  
Review
Methane Emissions from Ruminants in Australia: Mitigation Potential and Applicability of Mitigation Strategies
by John L. Black, Thomas M. Davison and Ilona Box
Animals 2021, 11(4), 951; https://doi.org/10.3390/ani11040951 - 29 Mar 2021
Cited by 96 | Viewed by 25622
Abstract
Anthropomorphic greenhouse gases are raising the temperature of the earth and threatening ecosystems. Since 1950 atmospheric carbon dioxide has increased 28%, while methane has increased 70%. Methane, over the first 20 years after release, has 80-times more warming potential as a greenhouse gas [...] Read more.
Anthropomorphic greenhouse gases are raising the temperature of the earth and threatening ecosystems. Since 1950 atmospheric carbon dioxide has increased 28%, while methane has increased 70%. Methane, over the first 20 years after release, has 80-times more warming potential as a greenhouse gas than carbon dioxide. Enteric methane from microbial fermentation of plant material by ruminants contributes 30% of methane released into the atmosphere, which is more than any other single source. Numerous strategies were reviewed to quantify their methane mitigation potential, their impact on animal productivity and their likelihood of adoption. The supplements, 3-nitrooxypropanol and the seaweed, Asparagopsis, reduced methane emissions by 40+% and 90%, respectively, with increases in animal productivity and small effects on animal health or product quality. Manipulation of the rumen microbial population can potentially provide intergenerational reduction in methane emissions, if treated animals remain isolated. Genetic selection, vaccination, grape marc, nitrate or biochar reduced methane emissions by 10% or less. Best management practices and cattle browsing legumes, Desmanthus or Leucaena species, result in small levels of methane mitigation and improved animal productivity. Feeding large amounts daily of ground wheat reduced methane emissions by around 35% in dairy cows but was not sustained over time. Full article
(This article belongs to the Special Issue Methane Production in Ruminants, Enteric, and Manure Emissions)
14 pages, 627 KB  
Review
Mitigation of Rumen Methane Emissions with Foliage and Pods of Tropical Trees
by Jorge Canul-Solis, María Campos-Navarrete, Angel Piñeiro-Vázquez, Fernando Casanova-Lugo, Marcos Barros-Rodríguez, Alfonso Chay-Canul, José Cárdenas-Medina and Luis Castillo-Sánchez
Animals 2020, 10(5), 843; https://doi.org/10.3390/ani10050843 - 13 May 2020
Cited by 28 | Viewed by 5781
Abstract
Methane produced by enteric fermentation contributes to the emission of greenhouse gases (GHG) into the atmosphere. Methane is one of the GHG resulting from anthropogenic activities with the greater global warming contribution. Ruminant production systems contribute between 18% and 33% of methane emissions. [...] Read more.
Methane produced by enteric fermentation contributes to the emission of greenhouse gases (GHG) into the atmosphere. Methane is one of the GHG resulting from anthropogenic activities with the greater global warming contribution. Ruminant production systems contribute between 18% and 33% of methane emissions. Due to this, there has been growing interest in finding feed alternatives which may help to mitigate methane production in the rumen. The presence of a vast range of secondary metabolites in tropical trees (coumarins, phenols, tannins, and saponins, among others) may be a valuable alternative to manipulate rumen fermentation and partially defaunate the rumen, and thus reduce enteric methane production. Recent reports suggest that it is possible to decrease methane emissions in sheep by up to 27% by feeding them saponins from the tea leaves of Camellia sinensis; partial defaunation (54%) of the rumen has been achieved using saponins from Sapindus saponaria. The aim of this review was to collect, analyze, and interpret scientific information on the potential of tropical trees and their secondary metabolites to mitigate methane emissions from ruminants. Full article
(This article belongs to the Collection Feeding Cattle for Health Improvement)
Show Figures

Figure 1

12 pages, 1736 KB  
Review
The Role of Chitosan as a Possible Agent for Enteric Methane Mitigation in Ruminants
by Rafael Jiménez-Ocampo, Sara Valencia-Salazar, Carmen Elisa Pinzón-Díaz, Esperanza Herrera-Torres, Carlos Fernando Aguilar-Pérez, Jacobo Arango and Juan Carlos Ku-Vera
Animals 2019, 9(11), 942; https://doi.org/10.3390/ani9110942 - 9 Nov 2019
Cited by 33 | Viewed by 6773
Abstract
Livestock production is a main source of anthropogenic greenhouse gases (GHG). The main gases are CH4 with a global warming potential (GWP) 25 times and nitrous oxide (N2O) with a GWP 298 times, that of carbon dioxide (CO2) [...] Read more.
Livestock production is a main source of anthropogenic greenhouse gases (GHG). The main gases are CH4 with a global warming potential (GWP) 25 times and nitrous oxide (N2O) with a GWP 298 times, that of carbon dioxide (CO2) arising from enteric fermentation or from manure management, respectively. In fact, CH4 is the second most important GHG emitted globally. This current scenario has increased the concerns about global warming and encouraged the development of intensive research on different natural compounds to be used as feed additives in ruminant rations and modify the rumen ecosystem, fermentation pattern, and mitigate enteric CH4. The compounds most studied are the secondary metabolites of plants, which include a vast array of chemical substances like polyphenols and saponins that are present in plant tissues of different species, but the results are not consistent, and the extraction cost has constrained their utilization in practical animal feeding. Other new compounds of interest include polysaccharide biopolymers such as chitosan, mainly obtained as a marine co-product. As with other compounds, the effect of chitosan on the rumen microbial population depends on the source, purity, dose, process of extraction, and storage. In addition, it is important to identify compounds without adverse effects on rumen fermentation. The present review is aimed at providing information about chitosan for dietary manipulation to be considered for future studies to mitigate enteric methane and reduce the environmental impact of GHGs arising from livestock production systems. Chitosan is a promising agent with methane mitigating effects, but further research is required with in vivo models to establish effective daily doses without any detrimental effect to the animal and consider its addition in practical rations as well as the economic cost of methane mitigation. Full article
(This article belongs to the Special Issue Reducing Enteric Methane Emissions from Ruminants)
Show Figures

Figure 1

Back to TopTop