Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of Biomass Boilers
2.2. Sampling Monitoring Analysis Method
2.3. Ozone and SOA Formation Potential
3. Results and Discussion
3.1. Physicochemical Properties of Biomass Fuel (Bagasse), Bottom Slag, and Fly Ash
3.2. Emission Characteristics of Conventional Pollutants Before and After the Treatment Process
3.2.1. Particulate Matter
3.2.2. NOx
3.3. Unconventional Pollutant Emission Characteristic for Biomass Boiler
3.3.1. CO
3.3.2. Heavy Metal
3.3.3. HF and HCl
3.3.4. Volatile Organic Compounds (VOCs) and Potential of Ozone and Aerosol Generation
- (1)
- Ozone formation potential (OFP)
- (2)
- Secondary organic aerosol formation potential (SOAFP)
4. Conclusions
5. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bilandzija, N.; Voca, N.; Jelcic, B.; Jurisic, V.; Matin, A. Evaluation of Croatian agricultural solid biomass energy potential. Renew. Sustain. Energy Rev. 2018, 93, 225–230. [Google Scholar] [CrossRef]
- Li, Y.; Song, X.; Xu, W.; Duan, X.; Shi, J.; Li, X. Preparation of biomass film from waste biomass energy corn stalk under carbon neutralization strategy. Mater. Today Commun. 2022, 32, 104001. [Google Scholar] [CrossRef]
- Saidur, R.; Abdelaziz, E.; Demirbas, A.; Hossain, M.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Ren, X.; Sun, R.; Meng, X.; Vorobiev, N.; Schiemann, M.; Levendis, Y. Carbon, sulfur and nitrogen oxide emissions from combustion of pulverized raw and torrefied biomass. Fuel 2017, 188, 310–323. [Google Scholar] [CrossRef]
- Zhang, W.; Kang, D.; Xiong, Z.; Huang, S.; Zong, C.; Liu, Y.; Zhao, W.; Feng, Q.; Chen, Q. Research on pollutant emission characteristics of typical biomass-fired boilers. E3S Web Conf. 2024, 536, 03003. [Google Scholar] [CrossRef]
- Pöykiö, R.; Mäkelä, M.; Watkins, G.; Dahi, O. Heavy metals leaching in bottom ash and fly ash fractions from industrial-scale BFB-boiler for environmental risks assessment. Trans. Nonferrous Met. Soc. China 2016, 26, 256–264. [Google Scholar] [CrossRef]
- Laaongnaun, S.; Patumsawad, S. Particulate matter characterization of the combustion emissions from agricultural waste products. Heliyon 2022, 8, e10392. [Google Scholar] [CrossRef]
- Williams, A.; Jones, J.; Ma, L.; Pourkashanian, M. Pollutants from the combustion of solid biomass fuels. Prog. Energy Combust. Sci. 2012, 38, 113–137. [Google Scholar] [CrossRef]
- Wang, T.; Guo, H.; Blake, D.; Kwok, Y.; Simpson, I.; Li, Y. Measurements of trace gases in the inflow of South China sea background air and outflow of regional pollution at Tai O, southern China. J. Atmos. Chem. 2005, 52, 295–317. [Google Scholar] [CrossRef]
- Forbes, E.; Easson, D.; Lyons, G.; McRoberts, W. Physico-chemical characteristics of eight different biomass fuels and comparison of combustion and emission results in a small scale multi-fuel boiler. Energy Convers. Manag. 2014, 87, 1162–1169. [Google Scholar] [CrossRef]
- Kong, X.; Salvador, C.; Carlsson, S.; Pathak, R.; Pettersson, J. Molecular characterization and optical properties of primary emissions from a residential wood burning boiler. Sci. Total Environ. 2021, 754, 142143. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, D.; Lu, J.; Guan, J.; Qi, G. Combustion characteristics and design of hot water boiler. IOP Conf. Ser. Earth Environ. Sci. 2017, 59, 012069. [Google Scholar] [CrossRef]
- Musialik-Piotrowska, A.; Kordylewski, W.; Ciołek, J.; Moscicki, K. Characteristics of air pollutants emitted from biomass combustion in small retort boiler. Environ. Prot. Eng. 2010, 36, 123–131. [Google Scholar]
- Yang, B.; Peng, L.; Wang, Y.; Song, J. The characteristics of air pollutants from the combustion o biomass pellets. Energy Sources Part A-Recovery Util. Environ. Eff. 2018, 40, 351–357. [Google Scholar] [CrossRef]
- Krugly, E.; Martuzevicius, D.; Puida, E.; Buinevicius, K.; Stasiulaitiene, I.; Radziuniene, I.; Minikauskas, A.; Kliucininkas, L. Characterization of gaseous- and particle-Phase emissions from the combustion of biomass-Residue-Derived fuels in a small residential boiler. Energy Fuels 2014, 28, 5057–5066. [Google Scholar] [CrossRef]
- Nie, Y.; Deng, M.; Shan, M.; Yang, X. Evaluating the impact of wood sawdust and peanut shell mixing ratio on co-combustion performance. Fuel 2022, 324, 124667. [Google Scholar] [CrossRef]
- Erlich, C.; Ohman, M.; Bjornbom, E.; Fransson, T. Thermochemical characteristics of sugar cane bagasse pellets. Fuel 2005, 84, 569–575. [Google Scholar] [CrossRef]
- Szczerbowski, D.; Pitarelo, A.; Zandoná Filho, A.; Ramos, L. Sugarcane biomass for biorefineries: Comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr. Polym. 2014, 114, 95–101. [Google Scholar] [CrossRef]
- Costa, M.; Schiavon, N.; Felizardo, M.; Souza, A.; Dussán, K. Emission analysis of sugarcane bagasse combustion in a burner pilot. Sustain. Chem. Pharm. 2023, 32, 101028. [Google Scholar] [CrossRef]
- Trinh, V.; Lee, B.; Kim, S.; Jeon, C. Numerical optimization on char conversion and NOx emission under various operating conditions in a retrofit biomass boiler. ACS Omega 2023, 8, 18530–18542. [Google Scholar] [CrossRef]
- Samae, H.; Tekasakul, S.; Tekasakul, P.; Furuuchi, M. Emission factors of ultrafine particulate matter (PM < 0.1 μm) and particle-bound polycyclic aromatic hydrocarbons from biomass combustion for source apportionment. Chemosphere 2021, 262, 127846. [Google Scholar]
- Yang, J.; Yao, Y.; Zhang, H.; Zhang, Y.; Ni, B. The Changes of PM2.5, BC, Elements and Pollution Sources Using Nuclear Technology in Xinzhen, Beijing over the Past Decade; Research Square Platform LLC: Durham, NC, USA, 2021. [Google Scholar]
- Fryda, L.; Panopoulos, K.; Vourliotis, P. Experimental investigation of fluidised bed co-combustion of meat and bone meal with coals and olive bagasse. Fuel 2006, 85, 1685–1699. [Google Scholar] [CrossRef]
- Mugica-Álvarez, V.; Hernández-Rosas, F.; Magaña-Reyes, M.; Herrera-Murillo, J.; Santiago-De La Rosa, N.; Gutierrez-Arzaluz, M.; de Jesus Figueroa-Lara, J.; Gonzalez-Cardoso, G. Sugarcane burning emissions: Characterization and emission factors. Atmos. Environ. 2018, 193, 262–272. [Google Scholar] [CrossRef]
- Ni, H.; Tian, J.; Wang, X.; Wang, Q.; Han, Y.; Cao, J.; Long, X.; Chen, L.; Chow, J.; Watson, J. PM2.5 emissions and source profiles from open burning of crop residues. Atmos. Environ. 2017, 169, 229–237. [Google Scholar] [CrossRef]
- Li, M.; Wang, R. Combined catalytic conversion of NOx and VOCs: Present status and prospects. Materials 2024, 18, 39. [Google Scholar] [CrossRef]
- Primo, K.; Salomon, K.; Teixeira, F.; Lora, E. Evaluation of the atmospheric dispersion of the nitrogen oxides (NOx) released during the burning of bagasse. Sugar Ind.-Zuckerind. 2006, 131, 239–245. [Google Scholar]
- Veld, M.; Seco, R.; Reche, C.; Perez, N.; Alastuey, A.; Portillo-Estrada, M.; Janssens, I.A.; Penuelas, J.; Fernandez-Martinez, M.; Marchand, N. Identification of volatile organic compounds and their sources driving ozone and secondary organic aerosol formation in NE Spain. Sci. Total Environ. 2024, 906, 167159. [Google Scholar] [CrossRef]
- Graham, E.; Wu, C.; Bell, D.; Bertrand, A.; Haslett, S.; Baltensperger, U.; El Haddad, I.; Krejci, R.; Riipinen, I.; Mohr, C. Volatility of aerosol particles from NO3 oxidation of various biogenic organic precursors. Atmospheric. Chem. Phys. 2023, 23, 7347–7362. [Google Scholar]
- Carter, W. Development of Ozone Reactivity Scales for Volatile Organic Compounds. Air Waste Manag. Assoc. 1994, 44, 881–899. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, L.; Carter, W.; Pei, C.; Chen, T.; Mu, J.; Wang, Y.; Zhang, Q.; Wang, W. Development of ozone reactivity scales for volatile organic compounds in a Chinese megacity. Atmos. Chem. Phys. 2021, 21, 11053–11068. [Google Scholar] [CrossRef]
- Odum, J.; Hoffmann, T.; Bowman, F.; Collins, D.; Flagan, R.C.; Seinfeld, J. Gas/Particle partitioning and secondary organic aerosol yields. Environ. Sci. Technol. 1996, 30, 2580–2585. [Google Scholar] [CrossRef]
- Donahue, N.; Robinson, A.; Stanier, C.; Pandis, S. Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ. Sci. Technol. 2006, 40, 2635–2643. [Google Scholar] [CrossRef] [PubMed]
- HJ 777-2015; Ambient Air and Waste Gas from Stationary Sources Emission. Determination of Metal Elements in Ambient Particle Matter. Inductively Coupled Plasma Optical Emission Spectrometry. Chinese Standard: Beijing, China, 2015.
- HJ 688-2019; Stationary Source Emission—Determination of Hydrogen Fluoride—Ion Chromatography. Chinese Standard: Beijing, China, 2019.
- HJ 549-2016; Ambient Air and Stationary Source Emissions—Determination of Hydrogen Chloride-Ion Chromatography. Chinese Standard: Beijing, China, 2016.
- GB/T 212-2008; Proximate Analysis of Coal. Chinese Standard: Beijing, China, 2008.
- Khan, A.; de Jong, W.; Jansens, P. Biomass combustion in fluidized bed boilers: Potential problems and remedies. Fuel Process. Technol. 2009, 90, 21–50. [Google Scholar] [CrossRef]
- Zheng, J. Study on carbon content per unit calorific value of coals in China. Coal Process. Compr. Util. 2022, 1, 58–62. [Google Scholar]
- Ozyuguran, A.; Akturk, A.; Yaman, S. Optimal use of condensed parameters of ultimate analysis to predict the calorific value of biomass. Fuel 2018, 214, 640–646. [Google Scholar] [CrossRef]
- Naumenko, D.; Hrebeniuk, T.; Zakladnyi, O.; Bronytskyi, V. Analysis of use of Trapa natans as alternative fuel for boiler. Econ. Tech. Ecol. 2020, 26, 90–96. [Google Scholar] [CrossRef]
- Rimar, M.; Kulikova, O.; Kulikov, A.; Fedak, M.; Krenicky, T. Analysis of the heavy metals concentration in the solid alternative fuel on biomass basis. MM Sci. J. 2022, 2022, 5901–5904. [Google Scholar] [CrossRef]
- Yan, Z.; Gao, Y.; Zhang, Y.; Jiang, N.; Pu, L.; Ji, L.; Liu, X. Study on the emission characteristics of VOCs under the condition of biomass blending combustion. Heliyon 2023, 9, e22340. [Google Scholar] [CrossRef]
- Bhattu, D.; Tripathi, S.; Bhowmik, H.; Moschos, V.; Lee, C.; Rauber, M.; Salazar, G.; Abbaszade, G.; Cui, T.; Slowik, J.; et al. Local incomplete combustion emissions define the PM2.5 oxidative potential in northern india. Nat. Commun. 2024, 15, 3517. [Google Scholar] [CrossRef]
- GB 13271-2014; Emission Standard of Air Pollutants for Boiler. Ministry of Ecology and Environment of the People’s Republic of China. National Environmental Protection Administration: Beijing, China, 2014.
- Price-Allison, A.; Mason, P.; Jones, J.; Barimah, E.; Jose, G.; Brown, A.; Ross, A.; Williams, A. The impact of fuelwood moisture content on the emission of gaseous and particulate pollutants from a wood stove. Combust. Sci. Technol. 2021, 195, 133–152. [Google Scholar] [CrossRef]
- DB 44/765-2019; Emission Standard of Air Pollutants for Boilers. Chinese Standard: Guangzhou, China, 2019.
- Shi, J.; Yin, Y.; Jiang, G. Molecular Transformation and Long-Range Transport of Mercury; Science Press: Beijing, China, 2019. [Google Scholar]
- Cottle, A.; Polanka, M.; Goss, L.; Goss, C. Investigation of Air Injection and Cavity Size Within a Circumferential Combustor to Increase G-Load and Residence Time. J. Eng. Gas Turbines Power 2018, 140, 011501. [Google Scholar] [CrossRef]
- Nagajyoti, P.; Lee, K.; Sreekanth, T. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Kalisińska, E.; Łanocha-Arendarczyk, N.; Kosik-Bogacka, D. Mammals and Birds as Bioindicators of Trace Element Contaminations in Terrestrial Environments; Springer International Publishing: New York, NY, USA, 2019; pp. 593–653. [Google Scholar]
- Schaefer, K.; Elshorbany, Y.; Jafarov, E.; Schuster, P.; Sunderland, E. Potential impacts of mercury released from thawing permafrost. Nat. Commun. 2020, 11, 4650. [Google Scholar] [CrossRef] [PubMed]
- Guney, M.; Kumisbek, A.; Akimzhanova, Z.; Kismelyeva, S.; Beisova, K.; Zhakiyenova, A.; Inglezakis, V.; Karaca, F. Environmental partitioning, spatial distribution, and transport of atmospheric mercury (Hg) originating from a site of former chlor-Alkali plant. Atmosphere 2021, 12, 275. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, P.; Li, Z.; Fan, C.; Wen, J.; Yu, Y.; Jia, L. Efficient removal of gaseous elemental mercury by Fe-UiO-66@BC composite adsorbent: Performance evaluation and mechanistic elucidation. Sep. Purif. Technol. 2025, 372, 133463. [Google Scholar] [CrossRef]
- GB 16297-1996; Integrated Emission Standard of Air Pollutants. Ministry of Ecology and Environment of the People’s Republic of China. National Environmental Protection Administration: Beijing, China, 1996.
- Jhumur, N.; Shofiul Islam Molla Jamal, A.; Tasnim, A.; Uddin, M.; Hasan, M.; Ahmed, S.; Shawon, M. Assessment of heavy metal accumulation in the coastal region of southwestern Bangladesh: Implications for soil, vegetation, and human health. J. Food Compos. Anal. 2025, 145, 107791. [Google Scholar] [CrossRef]
- Máté, Z.; Horváth, E.; Papp, A.; Kovács, K.; Tombácz, E.; Nesztor, D.; Szabó, T.; Szabó, A.; Paulik, E. Neurotoxic effects of subchronic intratracheal mn nanoparticle exposure alone and in combination with other welding fume metals in rats. Inhal. Toxicol. 2017, 29, 227–238. [Google Scholar] [CrossRef]
- Lavric, E.; Konnov, A.; Ruyck, J. Dioxin levels in wood combustion: A review. Biomass Bioenergy 2004, 26, 115–145. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, M.; Lu, S.; Chang, C.; Wang, J.; Chen, G. Volatile organic compound (VOC) measurements in the pearl river delta (PRD) region, China. Atmos. Chem. Phys. 2008, 8, 1531–1545. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, C.; Han, X. Emission characteristics of VOCs emitted from household stove combustion in the north of China. Atmos. Pollut. Res. 2024, 15, 101991. [Google Scholar] [CrossRef]
- Geng, C.; Yang, W.; Sun, X.; Wang, X.; Bai, Z.; Zhang, X. Emission factors, ozone and secondary organic aerosol formation potential of volatile organic compounds emitted from industrial biomass boilers. J. Environ. Sci. 2019, 83, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Gupta, S.; Dhital, N.; Wang, L.; Elumalai, S. Comparative investigation of coal- and oil-fired boilers based on emission factors, ozone and secondary organic aerosol formation potentials of VOCs. J. Environ. Sci. 2020, 92, 245–255. [Google Scholar] [CrossRef] [PubMed]
Enterprise 1 | Enterprise 2 | |
---|---|---|
Boiler size/t·h−1 | 75 | 180 |
Fuel type | Bagasse | Bagasse |
Fuel consumption/t·d−1 | 1550–1600 | 1500 |
Pollution treatment facilities | Water film removal duster | Bag filter |
Chimney height/m | 80 | 80 |
Boiler temperature/°C | 627~668 | 796~966.6 |
Air–fuel ratio | 8.9 | 8.4 |
Sample | Ultimate Analyses (wt.%) | Proximate Analyses (wt.%) | Heat Value (MJ/Kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ndaf | Cdaf | Hdaf | Sdaf | Odafdiff | Mar | Ad | Vd | FCddiff | LHV | HHV | |
Enterprise 1 | 0.18 | 30.80 | 3.72 | 0 | 24.04 | 53.34 | 1.34 | 39.71 | 6.60 | 11.89 | 12.67 |
Enterprise 2 | 0.14 | 24.98 | 3.20 | 0 | 29.93 | 47.71 | 0.63 | 44.20 | 7.46 | 8.93 | 9.63 |
Peanut shell [16] | 1.53 | / | / | / | / | / | 7.03 | 65.3 | / | 15.4~16.9 | |
Wood [16] | 0.38 | / | / | / | / | / | 1.71 | 73.87 | / | 17.6~19.2 | |
Corn [17] | 0.83 | / | / | / | / | / | 8.02 | 71.26 | / | 16.7 | |
Bituminous coal [38] | 1.2 | 65.7 | 5.6 | 0.5 | 7.7 | 4.9 | 14.7 | 32.3 | 48.1 | 18.24~24.93 [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Xu, X.; Ni, J.; Zhang, Q.; Chen, G.; Liu, Y.; Hong, W.; Liao, Q.; Chen, X. Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers. Sustainability 2025, 17, 6343. https://doi.org/10.3390/su17146343
Yang X, Xu X, Ni J, Zhang Q, Chen G, Liu Y, Hong W, Liao Q, Chen X. Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers. Sustainability. 2025; 17(14):6343. https://doi.org/10.3390/su17146343
Chicago/Turabian StyleYang, Xia, Xuan Xu, Jianguo Ni, Qun Zhang, Gexiang Chen, Ying Liu, Wei Hong, Qiming Liao, and Xiongbo Chen. 2025. "Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers" Sustainability 17, no. 14: 6343. https://doi.org/10.3390/su17146343
APA StyleYang, X., Xu, X., Ni, J., Zhang, Q., Chen, G., Liu, Y., Hong, W., Liao, Q., & Chen, X. (2025). Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers. Sustainability, 17(14), 6343. https://doi.org/10.3390/su17146343