Vapor Pressure Deficit Thresholds and Their Impacts on Gross Primary Productivity in Xinjiang Arid Grassland Ecosystems
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Analysis Methods
2.3.1. Rate of Change Analysis
2.3.2. Partial Correlation Analysis
2.3.3. Ridge Regression Analysis
2.3.4. Structural Equation Modeling
3. Results
3.1. The Temporal and Spatial Variation Trend of GPP
3.2. Trends in Meteorological Factors in Grasslands
3.3. Impact of Meteorological Factors on GPP
3.3.1. Heterogeneous Adaptation Mechanisms of GPP to Multi-Dimensional Meteorological Stressors
3.3.2. Major Controlling Factors of GPP
3.3.3. VPD-Driven Suppression of GPP
3.4. Independent Effects of Atmospheric Drought on GPP
3.4.1. Contributions of Multi-Factors Dominated by VPD and Spatial Heterogeneity Regulation of GPP
3.4.2. Regulation of GPP by VPD Threshold Effects and Cumulative Drought Stress
4. Discussion
4.1. Overall Increasing Trend in GPP and Regional Response Differences
4.2. Threshold Response of Grassland Productivity to Atmospheric Drought
4.3. Research Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, Y.; Liu, L.; Cheng, L.; Fa, K.; Liu, X.; Huo, Z.; Huang, G. A shift in the dominant role of atmospheric vapor pressure deficit and soil moisture on vegetation greening in China. J. Hydrol. 2022, 615, 128680. [Google Scholar] [CrossRef]
- López, J.; Way, D.A.; Sadok, W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Glob. Change Biol. 2021, 27, 1704–1720. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, J.; Ju, W.; Zhou, Y.; Wang, S.; Wu, X. Water use efficiency of China’s terrestrial ecosystems and responses to drought. Sci. Rep. 2015, 5, 13799. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, Y.; Liu, X.; Hou, W.; Wang, J.; Li, S.; Zhao, L.; Hu, Z. Vapor pressure deficit dominates vegetation productivity during compound drought and heatwave events in China’s arid and semi-arid regions: Evidence from multiple vegetation parameters. Ecol. Inf. 2025, 88, 103144. [Google Scholar] [CrossRef]
- Li, M.; Yao, J.; Zheng, J. Spatio-Temporal Change and Drivers of the Vegetation Trends in Central Asia. Forests 2024, 15, 1416. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Konings, A.G.; Trugman, A.T.; Yu, K.; Bowling, D.R.; Gabbitas, R.; Karp, D.S.; Pacala, S.; Sperry, J.S.; Sulman, B.N.; et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 2018, 561, 538–541. [Google Scholar] [CrossRef]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z.; et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, W.; Yuan, W.; Chen, X.; Zhang, B.; Fan, L.; He, B.; Hu, Z.; Liu, S.; Liu, W.; et al. Higher plant photosynthetic capability in autumn responding to low atmospheric vapor pressure deficit. Innovation 2021, 2, 100163. [Google Scholar] [CrossRef]
- Zhong, Z.; He, B.; Wang, Y.-P.; Chen, H.W.; Chen, D.; Fu, Y.H.; Chen, Y.; Guo, L.; Deng, Y.; Huang, L.; et al. Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity. Sci. Adv. 2023, 9, eadf3166. [Google Scholar] [CrossRef]
- Tangjialeke, W.; Zou, J.; Ding, J.; Yahefujiang, H.; Huang, S.; Li, J. Analysis of drought response thresholds and drought-causing factors of central Asian vegetation. Ecol. Indic. 2024, 169, 112926. [Google Scholar] [CrossRef]
- Dong, J.; Wu, L.; Zeng, W.; Xiao, X.; He, J. Analysis of spatial-temporal trends and causes of vapor pressure deficit in China from 1961 to 2020. Atmos. Res. 2024, 299, 107199. [Google Scholar] [CrossRef]
- Qi, G.; She, D.; Xia, J.; Song, J.; Jiao, W.; Li, J.; Liu, Z. Soil moisture plays an increasingly important role in constraining vegetation productivity in China over the past two decades. Agric. For. Meteorol. 2024, 356, 110193. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.; Zimini, Y.; Yuan, L.; Wen, Z. Effects of Soil Moisture and Atmospheric Vapor Pressure Deficit on the Temporal Variability of Productivity in Eurasian Grasslands. Remote Sens. 2024, 16, 2368. [Google Scholar] [CrossRef]
- Roby, M.C.; Scott, R.L.; Moore, D.J.P. High Vapor Pressure Deficit Decreases the Productivity and Water Use Efficiency of Rain-Induced Pulses in Semiarid Ecosystems. J. Geophys. Res-Biogeosci. 2020, 125, e2020JG005665. [Google Scholar] [CrossRef]
- Li, S.; Wang, G.; Chai, Y.; Miao, L.; Fiifi Tawia Hagan, D.; Sun, S.; Huang, J.; Su, B.; Jiang, T.; Chen, T.; et al. Increasing vapor pressure deficit accelerates land drying. J. Hydrol. 2023, 625, 130062. [Google Scholar] [CrossRef]
- Sulman, B.N.; Roman, D.T.; Yi, K.; Wang, L.; Phillips, R.P.; Novick, K.A. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil. Geophys. Res. Lett. 2016, 43, 9686–9695. [Google Scholar] [CrossRef]
- Xu, C.; Chen, Y.; Yang, Y.; Hao, X.; Shen, Y. Hydrology and water resources variation and its response to regional climate change in Xinjiang. J. Geogr. Sci. 2010, 20, 599–612. [Google Scholar] [CrossRef]
- Zhou, G.; Chen, Y.; Yao, J. Variations in precipitation and temperature in Xinjiang (Northwest China) and their connection to atmospheric circulation. Front. Environ. Sci. 2023, 10, 1082713. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Li, W.; Li, F.; Xin, Q. Ecological Responses to Climate Change and Human Activities in the Arid and Semi-Arid Regions of Xinjiang in China. Remote Sens. 2022, 14, 3911. [Google Scholar] [CrossRef]
- Zhang, Q.; Singh, V.P.; Li, J.; Jiang, F.; Bai, Y. Spatio-temporal variations of precipitation extremes in Xinjiang, China. J. Hydrol. 2012, 434–435, 7–18. [Google Scholar] [CrossRef]
- Wang, Q.; Zhai, P.-M.; Qin, D.-H. New perspectives on ‘warming–wetting’ trend in Xinjiang, China. Adv. Clim. Change Res. 2020, 11, 252–260. [Google Scholar] [CrossRef]
- Zhang, R.; Liang, T.; Guo, J.; Xie, H.; Feng, Q.; Aimaiti, Y.J.S.R. Grassland dynamics in response to climate change and human activities in Xinjiang from 2000 to 2014. Sci. Rep. 2018, 8, 2888. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Yang, Y.; Zhou, W.; Gang, C.; Zhang, Y.; Li, J.; An, R.; Wang, K.; Odeh, I.; et al. Quantitative assess the driving forces on the grassland degradation in the Qinghai–Tibet Plateau, in China. Ecol. Inf. 2016, 33, 32–44. [Google Scholar] [CrossRef]
- Ma, R.; Xia, C.; Liu, Y.; Wang, Y.; Zhang, J.; Shen, X.; Lu, X.; Jiang, M. Spatiotemporal Change of Net Primary Productivity and Its Response to Climate Change in Temperate Grasslands of China. Front. Plant Sci. 2022, 13, 899800. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kong, X.; Guo, K.; Zhao, C.; Zhao, J. Spatiotemporal change in vegetation cover in the Yellow River Basin between 2000 and 2022 and driving forces analysis. Front. Ecol. Evol. 2023, 11, 1261210. [Google Scholar] [CrossRef]
- Xie, Z.; Huete, A.; Cleverly, J.; Phinn, S.; McDonald-Madden, E.; Cao, Y.; Qin, F. Multi-climate mode interactions drive hydrological and vegetation responses to hydroclimatic extremes in Australia. Remote Sens. Environ. 2019, 231, 111270. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Y.; Wu, C.; Li, G.; Ma, M.; Fan, L.; Zheng, H.; Song, L.; Tang, X. Exploring the contribution of environmental factors to evapotranspiration dynamics in the Three-River-Source region, China. J. Hydrol. 2023, 626, 130222. [Google Scholar] [CrossRef]
- Li, G.; Wu, C.; Chen, Y.; Huang, C.; Zhao, Y.; Wang, Y.; Ma, M.; Ding, Z.; Yu, P.; Tang, X. Increasing temperature regulates the advance of peak photosynthesis timing in the boreal ecosystem. Sci. Adv. 2023, 882, 163587. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, J.; Shirkey, G.; John, R.; Wu, S.R.; Park, H.; Shao, C. Applications of structural equation modeling (SEM) in ecological studies: An updated review. Ecol. Process. 2016, 5, 19. [Google Scholar] [CrossRef]
- Zhu, X.-J.; Yu, G.-R.; Chen, Z.; Zhang, W.-K.; Han, L.; Wang, Q.-F.; Qi, H.; Yang, M.; Liu, Z.-G.; Dou, X.-J.; et al. Ecosystem responses dominate the trends of annual gross primary productivity over terrestrial ecosystems of China during 2000–2020. Agric. For. Meteorol. 2023, 343, 109758. [Google Scholar] [CrossRef]
- Novick, K.A.; Ficklin, D.L.; Stoy, P.C.; Williams, C.A.; Bohrer, G.; Oishi, A.C.; Papuga, S.A.; Blanken, P.D.; Noormets, A.; Sulman, B.N.; et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 2016, 6, 1023–1027. [Google Scholar] [CrossRef]
- Kowalski, K.; Senf, C.; Okujeni, A.; Hostert, P. Large-scale remote sensing analysis reveals an increasing coupling of grassland vitality to atmospheric water demand. Glob. Change Biol. 2024, 30, e17315. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Han, Z.; He, M.; Meng, X.; Ma, X.; Liu, H.; Dong, T.; Shi, M.; Sun, Z. Atmospheric dryness thresholds of grassland productivity decline in China. J. Environ. Manag. 2023, 338, 117780. [Google Scholar] [CrossRef]
- Buckley, T.N. The control of stomata by water balance. New Phytol. 2005, 168, 275–292. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, W.; Piao, J.; Cai, Q.; Chen, S.; Xue, X.; Ma, T. Synergistic effects of high atmospheric and soil dryness on record-breaking decreases in vegetation productivity over Southwest China in 2023. npj Clim. Atmos. Sci. 2025, 8, 6. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Z.; Zhao, W.; Li, M.; Cao, S.; Zheng, Y.; Tian, F.; Myneni, R.B. The direct and indirect effects of the environmental factors on global terrestrial gross primary productivity over the past four decades. Environ. Res. Lett. 2023, 19, 014052. [Google Scholar] [CrossRef]
Data | Year | Original Resolution | Data Sources |
---|---|---|---|
GPP | 2000–2020 | 500 m | https://lpdaac.usgs.gov/products/mod17a2hv006 (accessed on 14 December 2024) |
Grassland range | 2021 | 500 m | https://lpdaac.usgs.gov/products/mcd12q1v006 (accessed on 14 December 2024) |
LAI | 2000–2020 | 0.05° | http://globalchange.bnu.edu.cn/research/laiv6 (accessed on 21 June 2025) |
DEM | 2020 | 90 m | https://zenodo.org/records/4700264 (accessed on 14 December 2024) |
TEM | 2000–2020 | 0.50° | https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.06 (accessed on 14 December 2024) |
PRE | 2000–2020 | 4000 m | https://www.climatologylab.org/terraclimate.html (accessed on 14 December 2024) |
SSR | 2000–2020 | 4000 m | https://www.climatologylab.org/terraclimate.html (accessed on 14 December 2024) |
VPD | 2000–2020 | 4000 m | https://www.climatologylab.org/terraclimate.html (accessed on 14 December 2024) |
Category | Slope (R) | p-Value Range |
---|---|---|
Extremely Significant Decrease | R < 0 | p < 0.01 |
Significant Negative | R < 0 | 0.01 ≤ p < 0.05 |
No Significant Decrease | R < 0 | p ≥ 0.05 |
No Significant Increase | R > 0 | p ≥ 0.05 |
Significant Increase | R > 0 | 0.01 ≤ p < 0.05 |
Extremely Significant increase | R > 0 | p < 0.01 |
Category | Correlation (R) | p-Value Range |
---|---|---|
Extremely Significant Negative Correlation | R < 0 | p < 0.01 |
Significant Negative Correlation | R < 0 | 0.01 ≤ p < 0.05 |
Not Significantly Negatively Correlated | R < 0 | p ≥ 0.05 |
Not Significantly Positively Correlated | R > 0 | p ≥ 0.05 |
Significant Positive Correlation | R > 0 | 0.01 ≤ p < 0.05 |
Extremely Significant Positive Correlation | R > 0 | p < 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Jing, C.; Liu, Y.; Wang, Y. Vapor Pressure Deficit Thresholds and Their Impacts on Gross Primary Productivity in Xinjiang Arid Grassland Ecosystems. Sustainability 2025, 17, 6261. https://doi.org/10.3390/su17146261
Bai Y, Jing C, Liu Y, Wang Y. Vapor Pressure Deficit Thresholds and Their Impacts on Gross Primary Productivity in Xinjiang Arid Grassland Ecosystems. Sustainability. 2025; 17(14):6261. https://doi.org/10.3390/su17146261
Chicago/Turabian StyleBai, Yinan, Changqing Jing, Ying Liu, and Yuhui Wang. 2025. "Vapor Pressure Deficit Thresholds and Their Impacts on Gross Primary Productivity in Xinjiang Arid Grassland Ecosystems" Sustainability 17, no. 14: 6261. https://doi.org/10.3390/su17146261
APA StyleBai, Y., Jing, C., Liu, Y., & Wang, Y. (2025). Vapor Pressure Deficit Thresholds and Their Impacts on Gross Primary Productivity in Xinjiang Arid Grassland Ecosystems. Sustainability, 17(14), 6261. https://doi.org/10.3390/su17146261