Riverscape Nature-Based Solutions and River Restoration: Common Points and Differences
Abstract
1. Introduction
2. Differences Between Riverscape NbS and River Restoration
2.1. Objectives and Approaches: Anthropocentric vs. Ecocentric
2.2. Typology: Actions to Restore vs. Designed Items
2.3. Presence of Living Organisms
3. Common Points Between Riverscape NbS and River Restoration
4. Exemplification Through Case Studies
4.1. River Restoration Only: The Thur River Example
4.2. Riverscape Nature-Based Solution Only: The Lyon Confluence Example
4.3. Both River Restoration and Riverscape Nature-Based Solution: The Emscher Catchment Example
5. Discussion
5.1. Monitoring and Scale Problems
5.2. Effectiveness Assessment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNEP-WCMC. Ecosystem Restoration Key to Future of People and Planet, New Report. 2021. Available online: https://www.unep-wcmc.org/en/news/%20ecosystem-restoration-key-to-future-of-people-and-planet--new-report (accessed on 19 June 2025).
- IUCN. Science Task Force for the UN Decade on Ecosystem Restoration. Science-Based Ecosystem Restoration for the 2020s and Beyond. 2021. Available online: https://portals.iucn.org/library/sites/library/files/documents/2021-032-En.pdf (accessed on 19 June 2025).
- Shackelford, N.; McDougall, C. Ecosystem restoration, regeneration and rewilding. BMC Ecol. Evol. 2023, 23, 52. [Google Scholar] [CrossRef] [PubMed]
- IUCN. WCC-2016-Res-069-EN Defining Nature-Based Solutions. 2016. Available online: https://portals.iucn.org/library/sites/library/files/resrecfiles/WCC_2016_RES_069_EN.pdf (accessed on 21 June 2025).
- UNEP-UNEA. Resolution Adopted By the United Nations Environment Assembly on 2 March 2022: Nature-Based Solutions for Supporting Sustainable Development, United Nations Environmental Assembly (UNEA) of the United Nations Environment Programme (UNEP). 2022. Available online: https://www.unep.org/resources/resolutions-treaties-and-decisions/UN-Environment-Assembly-5-2 (accessed on 21 June 2025).
- IUCN. IUCN Global Standard for Nature-Based Solutions. A User-Friendly Framework for the Verification, Design and Scaling up of NbS (First Edition). 2020. Available online: https://portals.iucn.org/library/node/49070 (accessed on 21 June 2025).
- Cohen-Shacham, E.; Angela, A.; Maginnis, S. Proposing the IUCN Global Standard for NbS as the main operational framework to implement UNEA Resolutions 5/5 on NbS for supporting Sustainable Development. IUCN Inf. Pap. 2024. Available online: https://iucn.org/resources/information-brief/proposing-iucn-global-standard-nature-based-solutions-main-operational (accessed on 1 July 2025).
- Sowińska-Świerkosz, B.; García, J. What are Nature-based solutions (NBS)? Setting core ideas for concept clarification. Nat.-Based Solut. 2022, 2, 100009. [Google Scholar] [CrossRef]
- Waylen, K.A.; Wilkinson, M.E.; Blackstock, K.L.; Bourke, M.A. Nature-based solutions and restoration are intertwined but not identical: Highlighting implications for societies and ecosystems. Nat.-Based Solut. 2024, 5, 100116. [Google Scholar] [CrossRef]
- Preti, F.; Capobianco, V.; Sangalli, P. Soil and Water Bioengineering (SWB) is and has always been a nature-based solution (NBS): A reasoned comparison of terms and definitions. Ecol. Eng. 2022, 181, 106687. [Google Scholar] [CrossRef]
- Moreau, C.; Cottet, M.; Rivière-Honegger, A.; François, A.; Evette, A. Nature-based solutions (NbS): A management paradigm shift in practitioners’ perspectives on riverbank soil bioengineering. J. Environ. Manag. 2022, 308, 114638. [Google Scholar] [CrossRef]
- Rosenzweig, M.L. Coevolution of habitat diversity and species diversity. In Species Diversity in Space and Time; Rosenzweig, M.L., Ed.; Cambridge University Press: Cambridge, UK, 2021; pp. 151–189. [Google Scholar]
- Naiman, R.J.; Decamps, H. The Ecology of Interfaces: Riparian Zones. Annu. Rev. Ecol. Syst. 1997, 28, 621–658. [Google Scholar] [CrossRef]
- Palmer, M.A.; Menninger, H.L.; Bernhardt, E. River restoration, habitat heterogeneity and biodiversity: A failure of theory or practice? Freshw. Biol. 2021, 55, 205–222. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Basak, S.M.; Hossain, M.S.; Tusznio, J.; Grodzińska-Jurczak, M. Social benefits of river restoration from ecosystem services perspective: A systematic review. Environ. Sci. Policy 2021, 124, 90–100. [Google Scholar] [CrossRef]
- Wohl, E.; Lane, S.N.; Wilcox, A.C. The science and practice of river restoration. Water Resour. Res. 2015, 51, 5974–5997. [Google Scholar] [CrossRef]
- Pringle, C. What is hydrologic connectivity and why is it ecologically important? Hydrol. Process. 2003, 17, 2685–2689. [Google Scholar] [CrossRef]
- European Commission. DG Environment, Directorate C—Zero Pollution, Unit C.1, Sustainable Freshwater Management, Biodiversity Strategy 2030. Barrier Removal for River Restoration, Curated by Bastino, V. (DG Environment), Boughaba, J. (DG Environment), van de Bund, W. (Joint Research Centre). 2021. Available online: https://environment.ec.europa.eu/system/files/2021-12/Barrier%20removal%20for%20river%20restoration.pdf (accessed on 21 June 2025).
- REFORM. REstoring Rivers FOR Effective Catchment Management. Available online: https://www.reformrivers.eu/start.html (accessed on 24 May 2025).
- Stoffers, T.; Altermatt, F.; Baldan, D.; Bilous, O.; Borgwardt, F.; Buijse, A.D.; Bondar-Kunze, E.; Cid, N.; Erős, T.; Ferreira, M.T.; et al. Reviving Europe’s rivers: Seven challenges in the implementation of the Nature Restoration Law to restore free-flowing rivers. WIREs Water 2024, 11, e1717. [Google Scholar] [CrossRef]
- O’Briain, R.; Corenblit, D.; Garófano-Gómez, V.; O’Leary, C. Towards biogeomorphic river restoration: Vegetation as a critical driver of physical habitat. River Res. Appl. 2024, 40, 1087–1105. [Google Scholar] [CrossRef]
- Johnson, M.F.; Thorne, C.R.; Castro, J.M.; Kondolf, G.M.; Searles; Mazzacano, C.; Rood, S.B.; Westbrook, C. Biomic river restoration: A new focus for river management. River Res. Appl. 2020, 36, 3–12. [Google Scholar] [CrossRef]
- Gurnell, A.M. Plants as river system engineers. Earth Surf. Process. Landforms 2014, 39, 4–25. [Google Scholar] [CrossRef]
- Engl, J.; Dobbek, L.; Finn, L.B.; Gurnell, A.M.; Wharton, G. Restoration of a chalk stream using wood: Assessment of habitat improvements using the Modular River Survey. Water Environ. J. 2019, 33, 378–389. [Google Scholar]
- Cashman, M.J.; Wharton, G.; Harvey, G.L.; Naura, M.; Bryden, A. Trends in the use of large wood in UK river restoration projects: Insights from the National River Restoration Inventory. Water Environ. J. 2019, 33, 318–328. [Google Scholar] [CrossRef]
- Cashman, M.J.; Harvey, G.L.; Wharton, G. Structural complexity influences the ecosystem engineering effects of in-stream large wood. Earth Surf. Process. Landforms 2021, 46, 2079–2091. [Google Scholar] [CrossRef]
- NWRM Project. A Guide to Support the Selection, Design and Implementation of Natural Water Retention Measures in Europe, Service Contract 07.0330/2013/659147/SER/ENV.C1 for the Directorate General for Environment of the European Commission. 2014. Available online: https://www.nwrm.eu/guide/files/assets/common/downloads/publication.pdf (accessed on 24 May 2025).
- Burek, P.; Mubareka, S.; Rojas, R.; De Roo, A.; Bianchi, A.; Baranzelli, C.; Lavalle, C.; Vandecasteele, I. Evaluation of the Effectiveness of Natural Water Retention Measures: Support to the EU Blueprint to Safeguard Europe’s Waters. JRC Scientific and Policy Reports. Luxembourg, European Commission/Joint Research Centre/Institute for Environment and Sustainability (EC/JRC/IES). 2012. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC75938 (accessed on 24 May 2025).
- Rijke, J.; van Herk, S.; Zevenbergen, C.; Ashley, R. Room for the River: Delivering integrated riverbasin management in the Netherlands. Int. J. River Basin Manag. 2012, 10, 369–382. [Google Scholar] [CrossRef]
- Schmitt, K.; Schäffer, M.; Koop, J.; Symmank, L. River bank stabilisation by bioengineering: Potentials for ecological diversity. J. Appl. Water Eng. Res. 2018, 6, 262–273. [Google Scholar] [CrossRef]
- Tisserant, M.; Bourgeois, B.; Gonzalez, E.; Evette, A.; Poulin, M. Controlling erosion while fostering plant biodiversity: A comparison of riverbank stabilization techniques. Ecol. Eng. 2021, 172, 106387. [Google Scholar] [CrossRef]
- Somarakis, G.; Stagakis, S.; Chrysoulakis, N.; Arata, L.; Bailly, E.; Banwart, S.; Bernardi, A.; Coles, N.; De Luca, C.; Elgar, H.; et al. ThinkNature Nature-Based Solutions Handbook; Somarakis, G., Stagakis, S., Chrysoulakis, N., Eds.; Zenodo: Geneva, Switzerland; Available online: https://european-dredging.eu/pdf/thinknature_handbook_final_lowres.pdf (accessed on 21 June 2025).
- Gerner, N.V.; Nafo, I.; Winking, C.; Wencki, K.; Strehl, C.; Wortberg, T.; Niemann, A.; Anzaldua, G.; Lago, M.; Birk, S. Large-scale river restoration pays off: A case study of ecosystem service valuation for the Emscher restoration generation project. Ecosyst. Serv. 2018, 30, 327–338. [Google Scholar] [CrossRef]
- Pozzi, A.C.M.; Petit, S.; Marjolet, L.; Youenou, B.; Lagouy, M.; Namour, P.; Schmitt, L.; Navratil, O.; Breil, P.; Branger, F.; et al. Ecological assessment of combined sewer overflow management practices through the analysis of benthic and hyporheic sediment bacterial assemblages from an intermittent stream. Sci. Total. Environ. 2024, 907, 167854. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Tondera, K.; Pálfy, T.G.; Dittmer, U.; Meyer, D.; Schreiber, C.; Zacharias, N.; Ruppelt, J.P.; Esser, D.; Molle, P.; et al. Constructed wetlands for combined sewer overflow treatment: A state-of-the-art review. Sci. Total. Environ. 2020, 727, 138618. [Google Scholar] [CrossRef]
- Buckley, Y.M.; Austin, A.; Bardgett, R.; Catford, J.A.; Hector, A.; Iler, A.; Mariotte, P. The plant ecology of nature-based solutions for people, biodiversity and climate. J. Ecol. 2024, 112, 2424–2431. [Google Scholar] [CrossRef]
- European Commission. Proposal for a Regulation of the European Parliament and of the Council on Nature Restoration. 2022. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52022PC0304 (accessed on 21 June 2025).
- Eggermont, H.; Balian, E.; Azevedo, J.M.N.; Beumer, V.; Brodin, T.; Claudet, J.; Fady, B.; Grube, M.; Keune, H.; Lamarque, P.; et al. Nature-based Solutions: New Influence for Environmental Management and Research in Europe. GAIA Ecol. Perspect. Sci. Soc. 2015, 24, 243–248. [Google Scholar] [CrossRef]
- Hammond, M.P.; Kolasa, J.; Fung, P. Synthetic ecosystems: An emerging opportunity for science and society? Oikos 2023, 2023, e09816. [Google Scholar] [CrossRef]
- Tsatsou, A.; Frantzeskaki, N.; Malamis, S. Nature-based solutions for circular urban water systems: A scoping literature review and a proposal for urban design and planning. J. Clean. Prod. 2023, 394, 136325. [Google Scholar] [CrossRef]
- Li, L.; Chan, F.; Cheshmehzangi, A. Nature-based solutions and sponge city for urban water management. In Woodhead Publishing Series in Civil and Structural Engineering, Adapting the Built Environment for Climate Change; Pacheco-Torgal, F., Granqvist, C.-G., Eds.; Woodhead Publishing: Sawston, UK, 2023; pp. 371–402. [Google Scholar]
- Greksa, A.; Ljubojević, M.; Blagojević, B. The Value of Vegetation in Nature-Based Solutions: Roles, Challenges, and Utilization in Managing Different Environmental and Climate-Related Problems. Sustainability 2024, 16, 3273. [Google Scholar] [CrossRef]
- Krauze, K.; Wagner, I. From classical water-ecosystem theories to nature-based solutions - Contextualizing nature-based solutions for sustainable city. Sci. Total. Environ. 2019, 655, 697–706. [Google Scholar] [CrossRef]
- Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 2022, 8, 1000203. [Google Scholar] [CrossRef]
- Fink, H.S. Human-nature for climate action: Nature-based solutions for urban sustainability. Sustainability 2016, 8, 254. [Google Scholar] [CrossRef]
- Lorenz, A.W.; Jähnig, S.C.; Hering, D. Re-Meandering German Lowland Streams: Qualitative and Quantitative Effects of Restoration Measures on Hydromorphology and Macroinvertebrates. Environ. Manag. 2009, 44, 745–754. [Google Scholar] [CrossRef]
- Lorenz, S.; Leszinski, M.; Graeber, D. Meander reconnection method determines restoration success for macroinvertebrate communities in a German lowland river. Int. Rev. Hydrobiol. 2016, 101, 123–131. [Google Scholar] [CrossRef]
- Meyer, A.; Grac, C.; Combroux, S.L.; Trémolières, M.; Graeber, D. Biological feedback of unprecedented hydromorphological side channel restoration along the Upper Rhine (France). Hydrobiologia 2021, 848, 1593–1609. [Google Scholar] [CrossRef]
- Baho, D.L.; Arnott, D.; Myrstad, K.D.; Schneider, S.C.; Moe, T.F. Rapid colonization of aquatic communities in an urban stream after daylighting. Restor. Ecol. 2021, 5, e13394. [Google Scholar] [CrossRef]
- Baho, D.L.; Arnott, D.; Myrstad, K.D.; Schneider, S.C.; Moe, T.F. Re-engineering buried urban streams: Daylighting results in rapid changes in stream invertebrate communities. Ecol. Eng. 2016, 87, 175–184. [Google Scholar]
- Chardon, V.; Schmitt, L.; Arnaud, F.; Piégay, H.; Clutier, A. Efficiency and sustainability of gravel augmentation to restore large regulated rivers: Insights from three experiments on the Rhine River (France/Germany). Geomorphology 2021, 380, 107639. [Google Scholar] [CrossRef]
- Rachelly, C.; Friedl, F.; Boes, R.M.; Weitbrecht, V. Morphological response of channelized, sinuous gravel-bed rivers to sediment replenishment. Water Resour. Res. 2021, 57, e2020WR029178. [Google Scholar] [CrossRef]
- Wharton, G.; Mohajeri, S.H.; Righetti, M. The pernicious problem of streambed colmation: A multi-disciplinary reflection on the mechanisms, causes, impacts, and management challenges. WIREs Water 2017, 4, e1231. [Google Scholar] [CrossRef]
- Jähnig, S.C.; Brabec, K.; Buffagni, A.; Erba, S.; Lorenz, A.W.; Ofenböck, T.; Verdonschot, P.F.M.; Hering, D. A comparative analysis of restoration measures and their effects on hydromorphology and benthic invertebrates in 26 central and southern European rivers. J. Appl. Ecol. 2020, 47, 671–680. [Google Scholar] [CrossRef]
- Brettschneider, D.J.; Spring, T.; Blumer, M.; Welge, L.; Dombrowski, A.; Schulte-Oehlmann, U.; Sundermann, A.; Oetken, M.; Oehlmann, J. Much effort, little success: Causes for the low ecological efficacy of restoration measures in German surface waters. Environ. Sci. Eur. 2023, 35, 31. [Google Scholar] [CrossRef]
- Gerner, N.V.; Sommerhäuser, M.M.; Heldt, S.; Sutcliffe, R.; Stein, U.; Tröltzsch, J. River Restoration on Catchment Scale in the Metropolitan Region and Post-Mining Landscape of the Emscher Catchment, Germany. In River Culture—Life as a Dance to the Rhythm of the Waters; Wantzen, K.M., Ed.; UNESCO Publishing: Paris, France, 2023; pp. 589–610. [Google Scholar]
- Rumbaur, C.; Thevs, N.; Disse, M.; Ahlheim, M.; Brieden, A.; Cyffka, B.; Duethmann, D.; Feike, T.; Frör, O.; Gärtner, P.; et al. Sustainable management of river oases along the Tarim River (SuMaRiO) in Northwest China under conditions of climate change. Earth Syst. Dyn. 2015, 6, 83–107. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Alves, C.B.M.; Badiane, S.D.; Bala, R.; Blettler, M.; Callisto, M.; Cao, Y.; Kolb, M.; Kondolf, G.M.; Leite, M.F.; et al. Urban Stream and Wetland Restoration in the Global South—A DPSIR Analysis. Sustainability 2019, 11, 4975. [Google Scholar] [CrossRef]
- Schirmer, M.; Luster, J.; Linde, N.; Perona, P.; Mitchell, E.A.D.; Barry, D.A.; Hollender, J.; Cirpka, O.A.; Schneider, P.; Vogt, T.; et al. Morphological, hydrological, biogeochemical and ecological changes and challenges in river restoration—The Thur River case study. Hydrol. Earth Syst. Sci. 2014, 18, 2449–2462. [Google Scholar] [CrossRef]
- Martín, E.J.; Ryo, M.; Doering, M.; Robinson, C.T. Evaluation of Restoration and Flow Interactions on River Structure and Function: Channel Widening of the Thur River, Switzerland. Water 2018, 10, 439. [Google Scholar] [CrossRef]
- Seidl, R.; Stauffacher, M. Evaluation of river restoration by local residents. Water Resour. Res. 2013, 10, 7077–7087. [Google Scholar] [CrossRef]
- Zieliński, R. The issue of the linearity of the waterfront based on the redevelopment of Lyon’s river banks. Tech. Trans. 2018, 2, 85–96. [Google Scholar]
- Chidiac, J. Riverfront Interventions in Urban Settings. How Do They Affect and Define the Identity of Cities? Master’s Thesis, Politecnico di Torino, Turin, Italy, 2022. [Google Scholar]
- Société Publique Locale Lyon Confluence. Lyon Confluence. Available online: https://www.lyon-confluence.fr/fr (accessed on 20 May 2025).
- Roebeling, P.; Saraiva, M.; Palla, A.; Gnecco, I.; Teotónio, C.; Fidelis, T.; Martins, F.; Alves, H.; Rocha, J. Assessing the socio-economic impacts of green/blue space, urban residential and road infrastructure projects in the Confluence (Lyon): A hedonic pricing simulation approach. J. Environ. Plan. Manag. 2016, 60, 482–499. [Google Scholar] [CrossRef]
- Anzaldua, G.; Gerner, N.V.; Lago, M.; Abhold, K.; Hinzmann, M.; Beyer, S.; Winking, C.; Riegels, N.; Krogsgaard, J.J.; Termes, M.; et al. Getting into the water with the Ecosystem Services Approach: The DESSIN ESS Evaluation Framework. Ecosyst. Serv. 2018, 30, 318–326. [Google Scholar] [CrossRef]
- Garcia, L.G.A.; Bertoldi, W.; Henshaw, A.J.; Gurnell, A.M. The effect of lateral confinement on gravel bed river morphology. Water Resour. Res. 2015, 51, 7145–7158. [Google Scholar] [CrossRef]
- Carbonari, C.; Recking, A.; Solari, L. Morphology, bedload, and sorting process variability in response to lateral confinement: Results from physical models of gravel-bed rivers. J. Geophys. Res. Earth Surf. 2020, 125, e2020JF005773. [Google Scholar] [CrossRef]
- Jähnig, S.C.; Brunzel, S.; Gacek, S.; Lorenz, A.W.; Hering, D. Effects of re-braiding measures on hydromorphology, floodplain vegetation, ground beetles and benthic invertebrates in mountain rivers. J. Appl. Ecol. 2020, 46, 406–416. [Google Scholar] [CrossRef]
- European Parliament. Directive 2000/60/EC. 2000. Available online: https://eur-lex.europa.eu/eli/dir/2000/60/oj/eng (accessed on 20 May 2025).
- European Commission. Ecological Flows in the Implementation of the Water Framework Directive. Guidance Document No. 31. 2015. Available online: https://op.europa.eu/en/publication-detail/-/publication/b2369e0f-d154-11e5-a4b5-01aa75ed71a1/language-en (accessed on 24 May 2025).
- Borges, C.; Almeida, S.B.; Astudillo, F.; Edwards, S.; McBreen, J. Improving the Sustainability of Freshwater Services: Assessing Voluntary Measures inMinas-Rio Using the IUCN Global Standard for Nature-Based SolutionsTM; IUCN: Gland, Switzerland, 2024. [Google Scholar]
- Gurnell, A.M.; Scott, S.J.; Engl, J.; Gurnell, D.; Jeffries, R.; Shuker, L.; Wharton, G. Assessing river condition: A multiscale approach designed for operational application in the context of biodiversity net gain. River Res. Appl. 2020, 36, 1559–1578. [Google Scholar] [CrossRef]
- Pawlowski, J.; Kelly-Quinn, M.; Altermatt, F.; Apothéloz-Perret-Gentil, L.; Beja, P.; Boggero, A.; Borja, A.; Bouchez, A.; Cordier, T.; Domaizon, I.; et al. The future of biotic indices in the ecogenomic era: Integrating (e) DNA metabarcoding in biological assessment of aquatic ecosystems. Sci. Total. Environ. 2018, 637, 1295–1310. [Google Scholar] [CrossRef]
- IUCN. Guidance for Using the IUCN Global Standard for Nature-Based Solutions: A User-Friendly Framework for the Verification, Design and Scaling up of Nature-Based Solutions, 5th ed.; IUCN: Gland, Switzerland, 2020. [Google Scholar] [CrossRef]
- Berg, M.; Spray, C.J.; Blom, A.; Slinger, J.H.; Stancanelli, L.M.; Snoek, Y.; Schielen, R.M.J. Assessing the IUCN global standard for nature-based solutions in riverine flood risk mitigation. Environ. Dev. 2024, 51, 101025. [Google Scholar] [CrossRef]
- Berg, M.; Spray, C.J.; Blom, A.; Slinger, J.H.; Stancanelli, L.M.; Snoek, Y.; Schielen, R.M.J. Assessing the IUCN global standard as a framework for nature-based solutions in river flood management applications. Sci. Total. Environ. 2024, 950, 175269. [Google Scholar] [CrossRef]
Case Study | Documents | Type | Relevant and Quantitatively Assessed Ecosystem Restoration | Relevant and Quantitatively Assessed Social and Economic Outcomes | Presence of Vegetation Starting from Design and Building Phase | Extensive Involvement of Multiple Stakeholders Including Inhabitants |
---|---|---|---|---|---|---|
1—Thur River Restoration | [60,61,62] | River restoration only | ✔ | ✗ | ✗ | ✗ |
2—Lyon Confluence Regeneration | [63,64,65,66] | Riverscape NbS only | ✗ | ✔ | ✔ | ✔ |
3—Emscher Catchment Restoration | [34,57,67] | Both river restoration and riverscape NbS | ✔ | ✔ | ✔ | ✔ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbonari, C.; Solari, L. Riverscape Nature-Based Solutions and River Restoration: Common Points and Differences. Sustainability 2025, 17, 6108. https://doi.org/10.3390/su17136108
Carbonari C, Solari L. Riverscape Nature-Based Solutions and River Restoration: Common Points and Differences. Sustainability. 2025; 17(13):6108. https://doi.org/10.3390/su17136108
Chicago/Turabian StyleCarbonari, Costanza, and Luca Solari. 2025. "Riverscape Nature-Based Solutions and River Restoration: Common Points and Differences" Sustainability 17, no. 13: 6108. https://doi.org/10.3390/su17136108
APA StyleCarbonari, C., & Solari, L. (2025). Riverscape Nature-Based Solutions and River Restoration: Common Points and Differences. Sustainability, 17(13), 6108. https://doi.org/10.3390/su17136108